EPR Theoretical Study of the Local Lattice Structure of Fe³⁺ Doped in MgTiO₃ and LiTaO₃

Lei-Lei Pan^a, Xiao-Yu Kuang^{a,b}, Guang-Dong Li^a, and Hui Wang^a

Reprint requests to X.-Y. K.; E-mail: panlei225@163.com

Z. Naturforsch. **62a**, 101 – 106 (2007); received November 9, 2006

The EPR zero-field splittings of Fe^{3+} doped in MgTiO₃ and LiTaO₃ are studied by diagonalizing the complete energy matrices of the electron-electron repulsion, ligand-field and spin-orbit coupling interactions for a d^5 configuration ion in a trigonal ligand-field. It is shown that, when Fe^{3+} is doped in a MgTiO₃ or LiTaO₃ crystal, the local lattice structure around the octahedral Fe^{3+} center has an obvious distortion along the C_3 axis. By simulating the second- and fourth-order EPR parameters D and (a-F) simultaneously, the local structure parameters of Fe^{3+} doped in MgTiO₃ and LiTaO₃ crystals are determined, which reveal that Fe^{3+} occupies both the Mg²⁺ and Ti⁴⁺ sites in the MgTiO₃: Fe^{3+} system and occupies the Li⁺ site rather than the Te^{3+} site in the LiTaO₃: Fe^{3+} system. The results accord with the ENDOR and EPR experiments. – PACS numbers: 71.70.Gm; 75.30.Et; 71.70.Ch.

Key words: MgTiO₃:Fe³⁺ and LiTaO₃:Fe³⁺ Systems; Local Lattice Structure; EPR Spectrum.

1. Introduction

The ABO₃ type (A = Mg, Li, K, La; B = Ti, Ta, Nb, Al) pervoskite structure is one of the typical structures of ion crystals, which are extensively applied in the industry [1,2]. MgTiO₃ and LiTaO₃ crystals, belonging to the ABO₃ type like Al₂O₃ [3], are important dielectric materials. Their crystals, doped with Fe³⁺ are of great interest because of their application in ceramic multilayer capacitors, electro-optic, waveguide and nonlinear optical devices [4-6]. In particular, the impurity ion Fe³⁺ plays an important role in the photorefractive effect [7]. Therefore, it is necessary to know the local lattice structure of the impurity centers. From ENDOR and EPR experiments [8-10, 15], one knows that Fe³⁺, doped in MgTiO₃ crystals, replaces both Mg²⁺ and Ti⁴⁺ sites, and their zero-field splitting parameters were measured on the basis of the angular dependence of EPR spectra. As for Fe³⁺ doped in LiTaO₃, according to the EPR parameter D [8–16], it replaces the Li⁺ site rather than the Ta⁵⁺ site. Until now, however one can not explain satisfactorily the interrelation between the local lattice structure and the EPR spectrum of Fe³⁺ doped in MgTiO₃ and LiTaO₃ crystals.

It is well known that for a d⁵ configuration ion in a trigonal ligand-field the high-spin ground-state is the

 6 A₁ state. In order to describe the 6 A₁ ground state splitting, the spin Hamiltonian should include the three EPR parameters a, D and (a-F). The parameter a relates to a fourth-order spin operator and represents a cubic component of the crystalline electric field. The parameters D and (a-F) relate to the axial ligand-field. So, generally speaking, the EPR parameters D and (a-F) should be simultaneously considered in the determination of the local distortion structures for Fe³⁺ doped in crystals. In the present paper we study the crystal structure around an Fe³⁺ ion located at an octahedral site in MgTiO₃ and LiTaO₃ by simulating the EPR parameters D and (a-F) simultaneously.

2. Theoretical Method

The perturbation Hamiltonian of an ion of d⁵ configuration in a trigonal ligand-field can be expressed as [17]

$$\hat{H} = \hat{H}_{ee} + \hat{H}_{SO} + \hat{H}_{LF} = \sum_{i < j} \frac{e^2}{r_{i,j}} + \zeta \sum_{i} l_i s_i + \sum_{i} V_i,$$
(1)

where the first term is the electron-electron repulsion interaction, the second one is the spin-orbit coupling

0932-0784 / 07 / 0100-0101 \$ 06.00 © 2007 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

^b International Centre for Materials Physics, Academia Sinica, Shenyang 110016, China

interaction, and the third one is the ligand-field interaction

 V_i is the potential function that may be expressed as

$$V_{i} = \gamma_{00}Z_{00} + \gamma_{20}r_{i}^{2}Z_{20}(\theta_{i}, \varphi_{i}) + \gamma_{40}r_{i}^{4}Z_{40}(\theta_{i}, \varphi_{i}) + \gamma_{43}^{c}r_{i}^{4}Z_{43}^{c}(\theta_{i}, \varphi_{i}) + \gamma_{43}^{s}r_{i}^{4}Z_{43}^{s}(\theta_{i}, \varphi_{i}),$$
(2)

where r_i , θ_i and φ_i are the spherical coordinates of the *i*-th electron. Z_{lm} , Z_{lm}^c and Z_{lm}^s are defined as

$$Z_{l0} = Y_{l0}, \quad Z_{lm}^c = \left(1/\sqrt{2}\right) \left[Y_{l,-m} + (-1)^m Y_{l,m}\right],$$

$$Z_{lm}^s = \left(i/\sqrt{2}\right) \left[Y_{l,-m} - (-1)^m Y_{l,m}\right].$$
(3)

The $Y_{l,m}$ in (3) are the spherical harmonics. γ_{l0} , γ_{lm}^c and γ_{lm}^s are associated with the local structure around the d⁵ configuration ion by the relations

$$\gamma_{l0} = -\frac{4\pi}{2l+1} \sum_{i=1}^{n} \frac{eq_i}{R_i^{l+1}} Z_{l0}(\theta_i, \varphi_i),
\gamma_{lm}^c = -\frac{4\pi}{2l+1} \sum_{i=1}^{n} \frac{eq_i}{R_i^{l+1}} Z_{lm}^c(\theta_i, \varphi_i),$$
(4)

$$\gamma_{l0}^{s} = -\frac{4\pi}{2l+1} \sum_{i=1}^{n} \frac{eq_{i}}{R_{i}^{l+1}} Z_{lm}^{s}(\theta_{i}, \varphi_{i}),$$

where θ_i and ϕ_i are the angular coordinates of the ligand, i and q_i represent the i-th ligand ion and its effective charge, respectively. R_i denotes the impurity-ligand distance.

Three 84×84 energy matrices for a d⁵ configuration ion, corresponding to the perturbation Hamiltonian (1), have been derived, based on the irreducible representations $\Gamma 4(\Gamma 5)$ and $\Gamma 6$ of C_3^* point group [17]. The matrix elements are functions of the Racah parameters B and C, Trees correction α , seniority correction β , the spin-orbit coupling coefficient ζ , and the ligand-field parameters B_{20} , B_{40} , B_{43}^c . For Fe³⁺ doped in MgTiO₃ crystal or LiTaO₃ crystal, the ligand-field parameters have the forms

$$B_{20} = \frac{3}{2} \left[G_2(p_1) (3\cos^2\theta_1 - 1) + G_2(p_2) (3\cos^2\theta_2 - 1) \right],$$

$$B_{40} = \frac{3}{8} \left[G_4(p_1) (35\cos^4\theta_1 - 30\cos^2\theta_1 + 3) + G_4(p_2) (35\cos^4\theta_2 - 30\cos^2\theta_2 + 3) \right],$$
(5)

$$B_{43}^{c} = \frac{3}{4}\sqrt{35} \left[G_4(p_1)\cos\theta_1 \sin^3\theta_1 + G_4(p_2)\cos\theta_2 \sin^3\theta_2 \right],$$

where

$$G_{2}(p_{i}) = qeG^{2}(p_{i}), \quad G_{4}(p_{i}) = qeG^{4}(p_{i}),$$

$$G^{k}(p_{i}) = \int_{0}^{R_{p_{i}}} R_{3d}^{2}(r)r^{2} \frac{r^{k}}{R_{p_{i}}^{k+1}} dr$$

$$+ \int_{R_{p_{i}}}^{\infty} R_{3d}^{2}(r)r^{2} \frac{R_{p_{i}}^{k}}{r^{k+1}} dr.$$
(6)

We use p_1 , p_2 to represent the ligand ions in the up and down pyramids in the MgTiO₃:Fe³⁺ or LiTaO₃:Fe³⁺ system and use θ_1 , θ_2 to represent the corresponding angles between the metal-ligand bonds and the C_3 axis, respectively. Since the bond lengths in the octahedron in MgTiO₃:Fe³⁺ or LiTaO₃:Fe³⁺ are different [18], we may predict that

$$G_2(p_1) \neq G_2(p_2), \quad G_4(p_1) \neq G_4(p_2).$$
 (7)

According to the Van Vleck approximation of the $G^k(p_i)$ integral [19], we can obtain the relations

$$G_2(P_i) = \frac{A_2}{R_{P_i}^3}, \quad G_4(P_i) = \frac{A_4}{R_{P_i}^5},$$
 (8)

where

$$A_2 = -eq_{\tau}\langle r^2 \rangle, \ A_4 = -eq_{\tau}\langle r^4 \rangle, \ A_2/A_4 = \langle r^2 \rangle/\langle r^4 \rangle.$$

The ratio of $\langle r^2 \rangle / \langle r^4 \rangle = 0.097$ is obtained from the radial wave function of Fe³⁺ in complexes [20]. A_4 as a constant for an octahedral [FeO₆]⁹⁻ cluster can be determined from the optical spectra and the Fe-O bond length of the α -Fe₂O₃ crystal [21,22]. In this way, we derive $A_4 = 27.6967$ au and $A_2 = 2.6870$ au for an octahedral [FeO₆]⁹⁻ cluster, and we will take them in the following calculation.

The EPR spectra of a d⁵ configuration Fe³⁺ ion in a trigonal ligand-field can be analyzed by employing the spin Hamiltonian [23, 24]

$$\hat{H}_{S} = \beta \vec{S} \cdot g \cdot \vec{B}_{0} + \frac{1}{3} b_{2}^{0} O_{2}^{0} + \frac{1}{60} (b_{4}^{0} O_{4}^{0} + b_{4}^{3} O_{4}^{3}), \tag{9}$$

where b_k^q are the EPR zero-field splitting parameters and O_k^q are the standard Stevens spin operators. The O_k^q can be expressed as [24]

$$O_2^0 = 3S_z^2 - S(S+1),$$

$$O_4^0 = 35S_z^4 - 30S(S+1)S_z^2 + 25S_z^2 - 6S(S+1) + 3S^2(S+1)^2,$$

$$O_4^3 = 1/4[S_z(S_+^3 + S_-^3) + (S_+^3 + S_-^3)S_z].$$
(10)

From the spin Hamiltonian, the splitting energy levels in the ground state 6A_1 for a zero magnetic field are given as [25,26]

$$E_{\pm 1/2} = (1/3)b_2^0 + (3/2)b_4^0 \mp (1/6)[(18b_2^0 - 3b_4^0)^2 + (9/10)(b_4^3)^2]^{1/2},$$

$$E_{\pm 3/2} = -(2/3)b_2^0 - 3b_4^0,$$

$$E_{\pm 5/2} = (1/3)b_2^0 + (3/2)b_4^0 \pm (1/6)[(18b_2^0 - 3b_4^0)^2 + (9/10)(b_4^3)^2]^{1/2}.$$
(11)

Then, the zero-field splitting energies ΔE_1 and ΔE_2 , which are energies between three Kramers doublets of the 6A_1 ground state, can be explicitly expressed as a function of the EPR parameters b_2^0 , b_4^0 , and b_4^3 :

$$\Delta E_1 = (\pm 1/3)[(18b_2^0 - 3b_4^0)^2 + (9/10)(b_4^3)^2]^{1/2},$$

$$\Delta E_2 = -b_2^0 - (9/2)b_4^0 \pm (1/6)[(18b_2^0 - 3b_4^0)^2 + (9/10)(b_4^3)^2]^{1/2}.$$
(12)

The positive and negative signs in (12) correspond to $b_2^0 \ge 0$ and $b_2^0 < 0$, respectively. Here exists the simple relationship between the b_2^0 , b_4^0 , b_4^0 parameters and the EPR parameters D, a, (a-F):

$$D = b_2^0$$
, $a = -\frac{3}{20\sqrt{2}}b_4^3$, $a - F = -3b_4^0$.

Corresponding to the relation $D \gg a$, Kuang had shown that the low-symmetry EPR parameters D and (a-F) are almost independent of the EPR cubic parameter a for Fe³⁺ in the Al₂O₃:Fe³⁺ system [17]. We note that this conclusion is also suitable for Fe³⁺ doped in MgTiO₃ and LiTaO₃ crystals. Therefore, we can fix the parameter a when we study the relationship between the low-symmetry EPR parameters D, (a-F) and the local structure distortion in the MgTiO₃:Fe³⁺ or LiTaO₃:Fe³⁺ system. Meanwhile, the local distortion structures of Fe³⁺ doped MgTiO₃ and in LiTaO₃ crystals are determined by diagonalizing the complete energy matrices.

3. Calculations

The lattice structures of MgTiO₃ and LiTaO₃ crystals are similar to the trigonal one of Al₂O₃. When

the Fe³⁺ ion is doped in MgTiO₃ or LiTaO₃ crystals, the local lattice structure displays a trigonal distortion. This can be described by use of the two parameters $\Delta\theta_1$ and $\Delta\theta_2$. Here we use an approximate relationship to evaluate the Fe-O bond lengths in MgTiO₃:Fe³⁺ and LiTaO₃:Fe³⁺:

$$R_1 = R_{10} + \Delta R, \quad R_2 = R_{20} + \Delta R,$$
 (13)

where $R_{10}=2.19$ Å and $R_{20}=2.04$ Å are the Mg-O bond lengths in MgTiO₃; $R_{10}=2.12$ Å and $R_{20}=1.89$ Å are the Ti-O bond lengths in MgTiO₃; $R_{10}=2.307$ Å and $R_{20}=2.041$ Å are the Li-O bond lengths in LiTaO₃. To our knowledge, no optical spectra data were reported for Fe³⁺ in MgTiO₃:Fe³⁺ and LiTaO₃:Fe³⁺ but one can estimate it from the spectra data of α -Fe₂O₃. Thus, the values of $\Delta R=-0.08$ Å for Fe³⁺ replacing Mg²⁺ and $\Delta R=0.04$ Å for Fe³⁺ replacing Ti⁴⁺ in MgTiO₃:Fe³⁺ and $\Delta R=-0.17$ Å for Fe³⁺ replacing Li⁺ in LiTaO₃ are determined approximately by fitting the optical spectra of α -Fe₂O₃ [27,28]. Then in MgTiO₃:Fe³⁺ or LiTaO₃:Fe³⁺, the angles between the Fe-O bonds and the C_3 axis can be written as

$$\theta_1 = \theta_{10} + \Delta \theta_1, \quad \theta_2 = \theta_{20} + \Delta \theta_2,$$
 (14)

where θ_{10} , θ_{20} represent the angles between the M(Mg, Ti, Li)-O bond and the C₃ axis in the up and down pyramids of the host MO₆ octahedron. The trigonal ligand-field parameters (B_{20} , B_{40} , B_{43}^c) are functions of the distortion parameters $\Delta\theta_1$ and $\Delta\theta_2$. In order to reduce the number of adjustable parameters and to reflect the effect of covalence, we take an average covalence factor N and use the following relations:

$$B = N^4 B_0, \quad C = N^4 C_0,$$

 $\alpha = N^4 \alpha_0, \quad \beta = N^4 \beta_0, \quad \zeta = N^2 \zeta_0,$ (15)

where $B_0 = 1106 \text{ cm}^{-1}$, $C_0 = 3922 \text{ cm}^{-1}$, $\alpha_0 = 81 \text{ cm}^{-1}$, $\beta_0 = -29 \text{ cm}^{-1}$, $\zeta_0 = 470 \text{ cm}^{-1}$, are the free ion parameters of Fe³⁺ [29]. Then, by diagonalizing the complete energy matrices, the optical and EPR spectra of the MgTiO₃:Fe³⁺ and LiTaO₃:Fe³⁺ systems can be simulated with use of the distortion parameters $\Delta\theta_1$, $\Delta\theta_2$ and the covalence factor N. As for Fe³⁺ in MgTiO₃:Fe³⁺ or in LiTaO₃:Fe³⁺, here we take a typical covalence factor N (N = 0.91) as found in MgO:Fe³⁺ [29]. In order to calculate accurately, a reasonable variation range of the covalence factor N ($0.91 \sim 0.92$) has been employed in the calculation.

$\Delta\theta_1$ (deg)	$\Delta\theta_2$ (deg)	ΔE_1	ΔE_2	D	(a-F)
0.854	-0.82	7648.20	2715.57	1268	107
	-1.82	6279.37	2266.69	1040	111
	-2.82	4778.41	1774.37	789	116
	-3.82	3163.00	1243.48	519	121
	-4.82	1462.59	686.99	234	127
1.854	-0.82	7958.30	2822.88	1320	109
	-1.82	6597.98	2376.90	1093	114
	-2.82	5107.88	1886.86	844	118
	-3.82	3507.20	1361.20	577	123
	-4.82	1820.70	808.19	294	128
2.854	-0.82	8306.39	2943.31	1378	112
2.00	-1.82	6958.20	2500.53	1153	116
	-2.82	5483.82	2016.11	907	121
	-3.82	3901.48	1495.90	642	125
	-4.82	2235.41	948.22	364	130
Expt. [5]		5107.48	1886.74	844	118

Table 1. Ground-state zerofield splittings ΔE_1 , ΔE_2 and EPR parameters D and (a-F)for Fe³⁺ occupying Mg²⁺ in MgTiO₃:Fe³⁺ as a function of the distortion angles $\Delta \theta_1$, $\Delta \theta_2$. Values are given in 10^{-4} cm⁻¹ (except $\Delta \theta_1$, $\Delta \theta_2$), N=0.91.

$\Delta\theta_1$ (deg)	$\Delta\theta_2$ (deg)	ΔE_1	ΔE_2	D	(a-F)
3.02	-3.68	7535.02	2711.22	1248	128
	-4.68	5927.89	2180.60	980	131
	-5.68	4224.82	1618.50	695	134
	-6.68	2454.61	1036.11	399	138
	-7.68	707.28	471.57	100	145
4.02	-3.68	7979.70	2861.90	1322	129
	-4.68	6400.99	2341.31	1058	133
	-5.68	4727.82	1789.02	779	136
	-6.68	2990.11	1215.29	488	139
	-7.68	1236.38	641.10	193	144
5.02	-3.68	8463.82	3027.80	1403	132
	-4.68	6917.00	2516.10	1144	135
	-5.68	5278.32	1973.61	871	137
	-6.68	3575.90	1411.82	586	140
	-7.68	1847.88	842.59	296	143
Expt. [8]		4727.83	1788.91	779	136

Table 2. Ground-state zerofield splittings ΔE_1 , ΔE_2 and EPR parameters D and (a-F) for Fe³⁺ occupying Ti⁴⁺ in MgTiO₃:Fe³⁺ as a function of the distortion angles $\Delta \theta_1$, $\Delta \theta_2$. Values are given in 10^{-4} cm⁻¹ (except $\Delta \theta_1$, $\Delta \theta_2$), N=0.91.

$\Delta\theta_1$ (deg)	$\Delta\theta_2$ (deg)	ΔE_1	ΔE_2	D	(a-F)
3.48	-4.621	19502.98	6739.50	3241.38	152.93
	-5.621	18980.90	6580.51	3153.82	162.58
	-6.621	18174.02	6328.39	3018.71	173.39
	-7.621	17082.02	5980.42	2836.10	183.67
	-8.621	15708.92	5539.13	2606.60	194.18
4.48	-4.621	19844.90	6864.40	3297.99	159.96
	-5.621	19324.91	6707.12	3210.74	170.26
	-6.621	18516.88	6453.10	3075.49	180.10
	-7.621	17420.92	6104.20	2892.21	190.63
	-8.621	16043.28	5661.20	2661.96	201.02
5.48	-4.621	20203.48	6995.39	3357.35	167.34
	-5.621	19690.82	6840.52	3271.32	177.62
	-6.621	18886.03	6588.02	3136.61	187.74
	-7.621	17791.86	6239.59	2953.62	198.18
	-8.621	16414.99	5795.90	2723.54	207.97
Expt. [15]		18516.70	6453.07	3075.46	180.12

Table 3. Ground-state zerofield splittings ΔE_1 , ΔE_2 and EPR parameters D and (a-F) for Fe³⁺ occupying Li⁺ in LiTaO₃:Fe³⁺ as a function of the distortion angles $\Delta \theta_1$, $\Delta \theta_2$. Values are given in 10^{-4} cm⁻¹ (except $\Delta \theta_1$, $\Delta \theta_2$), N=0.91.

The comparison between the theoretical values and the experimental data are listed in Tables 1-4.

From Tables 1-4, we can see that the experimental findings of the EPR parameters D and (a - F)

can be satisfactorily explained by the distortion parameters $\Delta\theta_1$ and $\Delta\theta_2.$ The local distortion parameters $\Delta R=-0.08\sim-0.098$ Å, $\Delta\theta_1=1.854\sim3.177^\circ,$ $\Delta\theta_2=-2.82\sim-3.17^\circ$ for Fe³+ replacing Mg²+ in

	N	ΔR	$\Delta\theta_1$ (deg)	$\Delta\theta_2$ (deg)	ΔE_1	ΔE_2	D	(a-F)
MgTiO ₃ :Mg ²⁺	0.91	-0.08	1.854	-2.82	5107.88	1886.86	844	118
	0.915	-0.089	2.483	-2.98	5107.50	1886.79	844	118
	0.92	-0.098	3.177	-3.17	5107.50	1886.52	844	118
Expt. [5]					5107.48	1886.74	844	118
MgTiO ₃ :Ti ⁴⁺	0.91	0.04	4.02	-5.68	4727.82	1789.02	779	136
	0.915	0.03	4.282	-5.79	4727.48	1788.29	779	136
	0.92	0.02	4.747	-5.97	4727.40	1788.41	779	136
Expt. [8]					4727.83	1788.91	779	136
LiTaO ₃ :Li ⁺	0.91	-0.17	4.48	-6.621	18516.88	6453.10	3075.49	180.10
	0.915	-0.178	4.998	-6.748	18516.92	6453.10	3075.50	180.09
	0.92	-0.187	5.154	-6.901	18516.92	6453.10	3075.50	180.09
Expt. [15]					18516.70	6453.07	3075.46	180.12

Table 4. The EPR parameters D and (a - F) for Fe^{3+} in MgTiO₃ and LiTaO₃: Fe^{3+} as a function of the covalence factor N, where ΔE_1 , ΔE_2 , D and (a - F) are in units of 10^{-4} cm⁻¹.

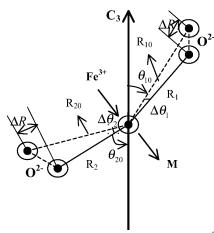


Fig. 1. Local structure distortion of an octahedral Fe^{3+} center in MgTiO₃ or LiTaO₃. M represents the Mg²⁺ or Li⁺ ion.

MgTiO₃; $\Delta R = 0.04 \sim 0.02 \text{ Å}, \Delta \theta_1 = 4.02 \sim 4.747^{\circ},$ $\Delta\theta_2 = -5.68 \sim -5.97^{\circ}$ for Fe³⁺ replacing Ti⁴⁺ in MgTiO₃; $\Delta R = -0.17 \sim -0.187 \text{ Å}, \Delta \theta_1 = 4.48 \sim$ 5.154° , $\Delta\theta_2 = -6.621 \sim -6.901^{\circ}$ for Fe³⁺ replacing Li⁺ in the LiTaO₃ system are determined. The results show that there exist two opposite effects in the MO₆:Fe³⁺ system. The first is that the local structures of Fe³⁺ replacing Mg²⁺ in MgTiO₃ and replacing Li⁺ in LiTaO3 exhibit compression distortions as shown in Figure 1. This tendency is mainly due to the fact that the effective charge of Fe³⁺ is larger than that of Mg²⁺ and Li⁺. The second result is that the local structure of Fe³⁺ replacing Ti⁴⁺ in MgTiO₃ exhibits an elongation distortion as shown in Figure 2. The physical reasons may be attributed to the fact that the radius and effective charge of Fe³⁺ are smaller than those of Ti^{4+} ($r_i = 0.68$ Å). Based on our calculated results, we may conclude that Fe3+ may occupy the Mg²⁺ or the Ti⁴⁺ site in the MgTiO₃:Fe³⁺ system, while Fe³⁺ will occupy the Li⁺ site rather than Ta⁵⁺ site in the LiTaO₃:Fe³⁺ system. The results

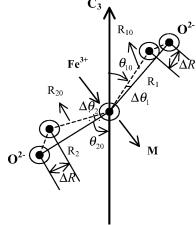


Fig. 2. Local structure distortion of an octahedral Fe³⁺ center in MgTiO₃. M represents the Ti⁴⁺ ion.

are in consistent with the ENDOR and EPR experiments.

4. Conclusion

The local structures when Fe³⁺ is doped in MgTiO₃ and LiTaO₃ have been studied by diagonalizing the complete energy matrices and considering the second- and fourth-order EPR parameters D and (a-F) simultaneously. It was shown that when Fe³⁺ replaces Mg²⁺ in MgTiO₃ and Li⁺ in LiTaO₃, the local lattice structure exhibits a compression; whereas, when Fe³⁺ replaces Ti⁴⁺ in MgTiO₃, the local lattice structure exhibits an extension. The local structure parameters $R_1 = 2.11 \sim 2.092$ Å, $R_2 = 1.96 \sim 1.942$ Å, $\theta_1 = 47.054 \sim 48.377^\circ$, $\theta_2 = 60.98 \sim 60.63^\circ$ for Fe³⁺ replacing Mg²⁺ and $R_1 = 2.16 \sim 2.14$ Å, $R_2 = 1.93 \sim 1.91$ Å, $\theta_1 = 51.02 \sim 51.747^\circ$, $\theta_2 = 59.02 \sim 58.73^\circ$ for Fe³⁺ replacing Ti⁴⁺ in MgTiO₃:Fe³⁺; $R_1 = 2.137 \sim 2.12$ Å, $R_2 = 1.871 \sim 1.854$ Å, $\theta_1 = 47.52 \sim 48.194^\circ$,

 $\theta_2 = 65.959 \sim 65.679^\circ$ for Fe³⁺ replacing Li⁺ in LiTaO₃:Fe³⁺ have been determined, respectively, and the EPR parameters D and (a-F) can get a reasonable explanation.

[1] V. A. Trepakov, V. S. Vikhnin, S. Kapphan, L. Jastra-

- bik, J. Licher, and P.P. Syrnikov, J. Lumin. 87 89, 1126 (2000).
 [2] R. I. Eglitis, E. A. Kotomin, G. Borstel, S. E. Kapphan,
- and V. S. Vikhnin, Compu. Mater. Sci. 27, 81 (2003).
 [3] P. Mialhe, A. Briguet, and A. Erbeia, Solid State Com-
- mun. 9, 775 (1971).[4] C. Vigreux, B. Deneuve, J. El Fallah, and J. M. Haussonne, J. Eur. Cera. Soc. 21, 1681 (2001).
- [5] A. F. M. Y. Haider and A. Edgar, J. Phys. C: Solid State Phys. 13, 6239 (1980).
- [6] H. Sothe, L. G. Rowan, and J. M. Spaeth, J. Phys.: Condens. Matter 1, 3591 (1989).
- [7] T.H. Yeom, J. Phys.: Condens. Matter 13, 10471 (2001).
- [8] W. C. Zheng, J. Phys. Chem. Solids **56**, 61 (1995).
- [9] E. L. Carranza and R. T. Cox, J. Phys. Chem. Solids 40, 413 (1979).
- [10] J. Lino Vega, E. Carranza Lopez, and A. Valera, Solid State Commun. 33, 729 (1980).
- [11] S. C. Abrahams and J. L. Bernstein, J. Phys. Chem. Solids 28, 1685 (1967).
- [12] S. C. Abrahams, E. Buehler, C. Hamilton, and S. J. Laplaga, J. Phys. Chem. Solids 34, 521 (1973).
- [13] V. A. Vazhenin, V. B. Guseva, M. Y. Artyomov, R. K. Route, M. M. Fejer, and R. L. Byer, J. Phys.: Condens. Matter 15, 275 (2003).
- [14] S. Q. Fang, D. C. Ma, T. Zhang, F. R. Ling, and B. Wang, Optik 117, 72 (2006).

Acknowledgements

This work was supported in part by the National Natural Science Foundation (No.10374068) and the Doctoral Education Fund of Education Ministry (No. 20050610011) of China.

- [15] M. Loyo Menoyo, D.J. Keeble, Y. Furukawa, and K. Kitamura, J. Phys.: Condens. Matter 16, 9047 (2004).
- [16] E. Kratzig and R. Orlowski, Appl. Phys. 15, 133 (1978).
- [17] X. Y. Kuang, Phys. Rev. B 36, 712 (1987).
- [18] R. Hsu, E. N. Maslen, D. du Boulay, and N. Ishizawa, Acta Crystallogr. B 53, 420 (1997).
- [19] J. H. Van Vleck, J. Chem. Phys. 1, 208 (1932).
- [20] X. Y. Kuang, Q. Q. Gou, and K. W. Zhou, Phys. Lett. A 293, 293 (2002).
- [21] D. M. Sherman, Phys. Chem. Minerals 12, 161 (1985).
- [22] R. W. Gwyckoff, Crystal Structures 2, Chapter V, Interscience Publishers LTD, London 1965, p. 4.
- [23] C. Legein, J. Y. Buzaré, and C. Jacoboni, J. Non-Cryst. Solids 184, 160 (1995).
- [24] C. Legein, J. Y. Buzaré, and C. Jacoboni, J. Solid State Chem. 121, 149 (1996).
- [25] H. H. Towner, Y. M. Kim, and H. S. Story, J. Chem. Phys. 56, 3676 (1972).
- [26] A. Darwish, D. Ila, D. B. Poker, and D. K. Hensley, Nucl. Instrum. Methods B 141, 679 (1998).
- [27] David M. Sherman, Phys. Chem. Minerals 12, 161 (1985).
- [28] L. A. Marusak, R. Messier, and W. B. White, J. Phys. Chem. Solids 41, 981 (1980).
- [29] X. Y. Kuang, W. Zhang, and I. Morgenstern-Badarau, Phys. Rev. B 45, 8104 (1992).