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A function projective synchronization is defined to synchronize two different systems up to a scal-
ing function matrix f with different initial values. The function projective synchronization is more
general than the complete synchronization, the generalized projective synchronization and the modi-
fied projective synchronization. The corresponding framework of synchronization is set up and used
to achieve a function projective synchronization design of two different chaotic systems: the uni-
fied chaotic system and the Rossler system. Feasibility of the proposed control scheme is illustrated

through the numerical simulation.
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1. Introduction

Research on controlling chaotic systems has seen
remarkable growth in a short time span, with “early”
studies in the field appearing less than twenty years
ago. In 1990, Ott, Grebogy, and Yorke [1] introduced a
linear feedback (OGY) method for stabilizing unstable
periodic orbits in chaotic systems, which did not re-
quire knowledge of the governing equations. The OGY
method generated widespread interest, and various
modifications and reductions of the scheme quickly
followed, in particular, Pyragas [2] presented the time-
delay autosynchronization (TDAS) method that has
the great advantage of being easily implementable on
various experimental systems. Methods for synchro-
nizing chaotic systems developed virtually simultane-
ously with the developments in chaos control. Pec-
ora and Carroll [3] presented the chaos synchroniza-
tion method to synchronize two identical chaotic sys-
tems with different initial values. Since the pioneering
works of these scientists, chaos control and chaos syn-
chronization have received a significant attention in the
last few years [4 —9 and the references therein].

Then different types of synchronization behaviors
have been discovered because of potential applications
in secure communications. Projective synchronization

has been first reported by Mainieri and Rehacek [10] in
partially linear systems that the drive and response vec-
tors evolve in a proportional scale — the vectors became
proportional. The early projective synchronization is
usually observable only in a class of systems with
partial-linearity [11]. Then some researchers [12, 13]
have achieved control of the projective synchroniza-
tion in a general class of chaotic systems including
non-partially-linear systems, and termed this projec-
tive synchronization “generalized projective synchro-
nization” (GPS). Li [14] showed GPS between the
Lorenz system and Chen’s system. Recently, modifi-
cation of projective synchronization is proposed by Li
in [15] to synchronize two identical systems up to a
scaling constant matrix.

In this paper, we propose function projective syn-
chronization (FPS), where the response of the syn-
chronized dynamical states synchronize up to a scal-
ing function matrix f. We synchronize two different
chaotic systems (the unified chaotic system [16] and
the Rossler system) up to a scaling function matrix.
Some numerical simulations are given to show the
global synchronization. Here we use the active control
method [17] to investigate the function projective syn-
chronization between the unified chaotic system and
the Rossler system via u; (i = 1,2, 3).
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The paper is organized as follows: The function pro-
jective synchronization of two different chaotic sys-
tems is analyzed in Section 2, some numerical simula-
tions are given to verify the effectiveness of our method
in Section 3, and finally, some summary and conclu-
sions are given in Section 4.

2. Design of Two Different Chaotic Systems

Recently, based on the previous projective synchro-
nization, we extend the modified projective synchro-
nization proposed by Li [15] and the function pro-
jective synchronization, that we propose between two
identical chaotic systems, to synchronize two different
chaotic systems up to a scaling function matrix. Sim-
ilarly, the function projective synchronization is char-
acterized by a scaling function matrix:

Definition. Let x = F(x,¢) is the drive chaotic sys-
tem, y = G(y,t) + U is the response system, where x =
(10, 520,50 ()T 3 = (31 (1), 92(0), - oY)
and U = (uy(x,y),u2(x,y), ..., um(x,y))T is a con-
troller to be determined later. Denote e; = x; — fi(x)y;
(i=1,2,...,m), fi(x) (i =1,2,...,m) are functions
of x. If lim;_ |le]| =0, e = (e1,e2,...,em), we call
these two different chaotic systems “function projec-
tive synchronization (FPS)”, and we call f a “scaling
function matrix”.

Consider the drive system in the form
X=Ax+hi(x,t). (D
Assume that the response system is
y=Ay+mh(yt)+U, 2)

where x,y € R", A|, Ay are m X m constant matrixes,
hi,hy : R™ — R™ are nonlinear function vectors, and
U is a controller to be determined later.

Theorem. For an invertible diagonal function ma-
trix f, function projective synchronization between the
two systems (1) and (2) will occur, if the following
conditions are satisfied:

(i) U=f"mx)+(fAf—A)y+f'Blx—
1Y) = ha(y,t) — f~' gy, where g = diag(f1, f2,- .., fin)s
and B € R™*™,

(ii) The real parts of all the eigenvalues of (A| — B)
are negative.

Proof. From e = x— fy in the definition of FPS, one
can get

e=x—fy—gy
= Ax+hi(x,t) = f(Asy +ha(y,1) +U) — gy
=Ax+hi(x,1) — fAyy — fha(y,1) — gy 3)
—hi(x,t) = A1 fy+ fAzy
—B(x— fy) + fha(y,1) + gy
= (A; —B)e.

With regards the Lyapnov stability theory and for a
feasible control, the feedback B must be selected such
that all the eigenvalues of (A; — B) have negative real
parts. Thus, if the controllability matrix (A; — B) is in
full rank, the system (3) is asymptotically stable at the
origin, which implies that (1) and (2) are in the state of
function projective synchronization.

In this letter, the active control method [17] is
adopted to obtain the gain matrix B for any specified
eigenvalues of (A; — B).

It is necessary to point out that the scaling func-
tion matrix f has also no effect on the eigenvalues
of (A} — B) like the modified projective synchroniza-
tion. Thus one can adjust the scaling matrix arbitrar-
ily during control without worrying about the con-
trol robustness. The FPS is more general: When f| =
Lh=..=fm=Lfi=f=...=fau=aand fi =
ai, fr = ,...,fm = Oy, the complete synchroniza-
tion, the projective synchronization and the modified
projective synchronization will appear, respectively.

3. FPS between the Unified Chaotic System and
the Rossler System

The drive system — the unified chaotic system — is
presented as follows:

xp=25a+ 10)()62—)61),

Xy = (28 — 3506))61 —X1Xx3 + (2906 - 1))62, (4)

3+a
3

X3 =X1X — X3,

and the response system - the Rossler system — is
given by

Y1 = —y2—y3+u,
Yo =y1+ayr+uy, (5)
Y3 =b+y1y3 —cyz+us.
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In [18], Yan explored the two chaotic systems based  form
on the backstepping design method and Lyapunov the- (25a+ 10)x; — (250 +9)x;
ory. Here by means of the active control method [17]  #1 = —Y1+y2+ys3,

and feedback stepping method, we can choose f(x) = my —my

) 28 — — 2 h?
diag(m; —my,m; —mstanh(xs),m; —mstanh(xz)). We = u, = (28 — 3500)x) — 105 + 290, + m3ys tanh”(x3)
set my —mj3tanh(x3)

—yi—(a+1)ys, (6)
a — X1X2 +m3y3 tanh? (X3)
3 m —mstanh(x3)
- %(8 + at)y;.

—(250+9) 25a+10 0
—b—yiy3+cy3

B=| 28—-25a 290 0
0 0 0

It is easy to see that the controllability matrix
1o 0 Then we arbitrarily give the initial states of the two

A—B=|o0 -1 0 different chaotic systems — the unified chaotic system

0 0 _8ta and the Rossler system — (0.1, 0.5, 0.2) and (0.2, 0.3,

3 0.5), respectively, and choose @ =0.2,m; =0, mp =2,

has all eigenvalues with negative real parts. And there- m3 = 2. Therefore, the initial values of e are (0.5,
fore the three control functions u; (i = 1,2,3) areinthe  0.6184251921, 0.3973753202). Figure 1 displays the
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time response of the synchronization error e at the ini-
tial states above. Obviously, e converges to zero finally
after the controller is activated. This means, all the
state variables tend to be synchronized. From Fig. 2,
we can easily observe that the ratio of the amplitudes
of the two systems tends to the scaling function ma-
trix f. A natural problem is whether the two different
chaotic systems completely synchronize if we make
the response system multiplied by the scaling function
matrix f. Working under this idea, we can get the result
in Figure 3. In order to see clearly, we take y; — —yy,
which is presented in Figure 4.

One can properly choose the values of «, f to get
another better result. These figures above fully reveal
our results.

20 —20 9<[2]y[2]

response system in Fig. 3 with “y; — —y;”.

4. Summary and Conclusions

In summary, the more general definition of syn-
chronization, named function projective synchroniza-
tion, is presented. Based on the symbolic computa-
tion and active control method, we set up the cor-
responding scheme of function projective synchro-
nization and show how to synchronize two differ-
ent chaotic systems, the unified chaotic system and
the Rossler system, and make them globally syn-
chronized in one coordinate with a scaling func-
tion matrix f. Numerical experiments show that the
method we set up works well, and that it can be
used for other chaotic systems and hyperchaotic
systems.
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