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In this paper, we study the modified decomposition method (MDM) for solving nonlinear two-
point boundary value problems (BVPs) and show numerical experiments. The modified form of the
Adomian decomposition method which is more fast and accurate than the standard decomposition
method (SDM) was introduced by Wazwaz. In addition, we will compare the performance of the
MDM and the new nonlinear shooting method applied to the solutions of nonlinear two-point BVPs.
The comparison shows that the MDM is reliable, efficient and easy for solving the nonlinear two-
point BVPs.
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1. Introduction

In this paper, we consider examples of the nonlinear
two-point boundary value problems (BVPs)

y′′ = f (x,y,y′), a ≤ x ≤ b, (1)

with the boundary conditions

y(a) = α, y(b) = β . (2)

In general, by two-point BVPs, we mean problems
with the following characteristics [1]:

1. n first-order ordinary differential equations have
to be solved over the interval [a,b], where a is the initial
point and b is the final point;

2. r boundary conditions are specified at the initial
value a of the independent variable;

3. (n− r) boundary conditions are specified at the
terminal value b of the independent variable.

The following theorem gives general conditions that
ensure that the solution to a second-order BVP exists
and that it is unique [2].

Theorem. Suppose that the function f in the BVP
(1) is continuous on the set

D = {(x,y,y′)|a≤ x≤ b,−∞ < y < ∞,−∞ < y′ < ∞},
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and that ∂ f/∂x and ∂ f/∂y′ are also continuous on D.
If

1.
∂ f
∂y

(x,y,y′) > 0 for all (x,y,y′) ∈ D,

and

2.

∣∣∣∣ ∂ f
∂y′

(x,y,y′)
∣∣∣∣< M for all (x,y,y′) ∈ D,

then the BVP has a unique solution.

Proof. See [2].

The nonlinear two-point BVPs occur in applied
mathematics, theoretical physics, engineering, con-
trol and optimization theory. If the two-point BVPs
can’t be solved analytically, which is the usual
case, then recourse must be made to numerical
methods which are the shooting method, Ritz’s
method, finite-difference method and Green func-
tions. In recent years, the standard decomposition
(SDM) and modified decomposition methods (MDM)
have been used by Wazwaz for solving this type of
problems.

In this paper, the modified decomposition method is
used to investigate the numerical and analytic solutions
of the nonlinear two-point BVPs. The modified decom-
position method was introduced by Wazwaz [3, 4].
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2. The Reliable Method

In the following, we introduce the main features of
the standard decomposition and the modified decom-
position methods [5].

The principal algorithm of the Adomian decomposi-
tion method when applied to a general nonlinear equa-
tion is given in the form

Lu + Ru + Nu = g. (3)

The linear terms are decomposed into L+ R, while the
nonlinear terms are represented by Nu. L is taken as
the highest-order derivative to avoid difficult integra-
tion involving the complicated Green’s functions, and
R is the remainder of the linear operator. L−1 is re-
garded as the inverse operator of L and is defined by
a definite integration from 0 to t, i. e.,

L−1(.) =
∫ t

0

∫ t

0
(.) dt dt. (4)

If L is a second-order operator, L−1 is a two-fold indef-
inite integral:

L−1Lu = u(x,t)−u(x,0)− t
∂u(x,1)

∂t
|t=0. (5)

Operating on both sides of (3) with L−1 yields

L−1Lu = L−1g−L−1Ru−L−1Nu, (6)

and gives

u(x, t) = u(x,0)+ t ut(x,0)

+ L−1g−L−1Ru−L−1Nu.
(7)

The decomposition method represents the solution
of (7) as a series as follows:

u(x, t) =
∞

∑
n=0

un(x,t). (8)

The nonlinear operator Nu is decomposed:

Nu =
∞

∑
n=0

An. (9)

Substituting (8) and (9) into (7), we obtain

∞

∑
n=0

un(x, t) = u0 −L−1R
∞

∑
n=0

un −L−1
∞

∑
n=0

An, (10)

where

u0 = u(x,0)+ t ut(x,0)+ L−1g. (11)

Consequently, it can be written as

u1 = −L−1Ru0 −L−1A0,

u2 = −L−1Ru1 −L−1A1,
...

un+1 = −L−1Run −L−1An,n ≥ 0,

(12)

where An are Adomian polynomials of u0,u1, . . . ,un
obtained from the formula

An =
1
n!

[
dn

dλ n F

(
∞

∑
i=0

λ iui

)]
λ=0

, n = 0,1,2, . . . (13)

Equation (13) gives

A0 = N(u0),

A1 = u1
d

du0
N(u0),

A2 = u2
d

du0
N(u0)+

u2
1

2!
d2

du2
0

N(u0), (14)

A3 = u3
d

du0
N(u0)+ u1u2

d2

du2
0

N(u0)+
u3

1
3!

d3

du3
0

N(u0),

...

Recently, Wazwaz [3, 4] defined the zeroth compo-
nent in a slightly different way. He assumed that u0 = g
and the function g can be divided into two parts, such
as g1 and g2, where a modified recursive scheme can
be given as follows:

u0 = g1,

u1 = g2 −L−1Ru0 −L−1A0,
...

un+1 = −L−1Run −L−1An, n ≥ 0.

(15)

This type of modification gives more flexibility to
the standard decomposition method in order to solve
complicated nonlinear differential equations. In many
cases the modified scheme avoids unnecessary compu-
tations, especially in the calculation of Adomian poly-
nomials.

The n-term approximant

ϕn =
n−1

∑
k=0

uk(x) (16)
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can be used to approximate the solution. For illustra-
tion purposes we will consider the nonlinear two-point
BVPs in the following section.

3. Three Examples

In this section, three nonlinear two-point BVPs will
be solved by using the modified decomposition method
discussed above. In addition, we will present a compar-
ison between our present results and results of Ha [1].

3.1. Example 1

We first consider the BVP

y′′(x) = y2(x)+ 2π2 cos(2πx)− sin4(πx)
for 0 < x < 1,

(17)

with the boundary conditions

y(0) = y(1) = 0. (18)

The problem has the exact solution

yE(x) = sin2(πx). (19)

We can write (17) in an operator form as follows:

Ly = y2(x)+ 2π2 cos(2πx)− sin4(πx),

0 < x < 1.
(20)

Operating with L−1 on both sides of (20), and using the
boundary condition at x = 0 yields

y(x) = αx + L−1(y2(x))

+ L−1(2π2 cos(2πx)− sin4(πx)),
(21)

where

L =
d2

dx2 , L−1(.) =
∫ x

0

∫ x′

0
(.)dxdx′,

and α = y′(0).
(22)

Substituting the decomposition series (8) for solu-
tion y(x) and the polynomial representation (9) for the
nonlinear term y2(x) into (21), we have

∞

∑
n=0

yn(x) = αx + L−1

(
∞

∑
n=0

An

)

+ L−1(2π2 cos(2πx)− sin4(πx)).

(23)

To determine the components yn(x) , n ≥ 0, we ob-
tain the recursive relation by the MDM:

y0(x) = αx,

y1(x) = L−1(2π2 cos(2πx)−sin4(πx))+L−1(A0),

yn+1(x) = L−1(An), n ≥ 0. (24)

Using the general formula (14), one can generate the
Adomian polynomials An for the nonlinear term y2(x)
as follows:

A0 = y2
0,

A1 = 2y0y1,

A2 = 2y0y2 + y2
1,

A3 = 2y1y2 + 2y0y3,

A4 = 2y1y3 + 2y0y4 + y2
2, · · · .

(25)

In view of the recursive relation (24) we obtain

y0 = αx,

y1 = − 1
16π2

[
8π2 cos(2πx)−1 + 5cos2(πx)

− cos4(πx)+ 3π2x2]+ 2α2 x4

4!
,

y2 =
1

645120π5

[−161280π2 sin(2πx)

+ 161280π3xcos(2πx)

+ 38640π3x3

− 40320sin(2πx)

+ 40320πxcos(2πx)+ · · ·].

(26)

Consequently, the approximate solution of y(x) is
given by

y(x) = αx− 1
16π2 (8π2 cos(2πx)−1

+ 5cos2(πx)− cos4(πx)+ 3π2x2)

+
1

645120π5 (−161280π2 sin(2πx)

+ 161280π3xcos(2πx)+ · · ·).

(27)

To determine the constant α , we write the boundary
condition at x = 1 on the ten-term approximant ϕ10.
Then we get

α = 0.000011. (28)

The numerical results are given in Table 1.
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Modified technique
k,n v0 = 0.25 v0 = 0.50 v0 = 1.0 v0 = 5.0 v0 = 10.0 ‖ϕn(x)− yE(x)‖∞

1 0.2500000 0.5000000 1.000000 5.000000 10.000000 0.0000114
3 0.0000008 0.0000108 0.0002951 0.1326154 1.2200974 0.0000631
5 0.0000008 0.0000008 0.0000000 0.0000000 0.0006724 0.0000035
7 0.0000000 0.0000000 0.0000000 0.0000009 0.0000008 0.0000000

Table 1. Comparison between ab-
solute errors with each initial ve-
locity obtained by the new non-
linear shooting method [3] and
by the modified decomposition
method for Example 1.

Modified technique
x v0 = 0.25 v0 = 0.50 v0 = 1.0 v0 = 5.0 v0 = 10.0 ‖ϕ20(x)− yE(x)‖∞

0.00 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000000
0.05 0.0000002 0.0000002 0.0000002 0.0000002 0.0000002 0.000000061
0.10 0.0000008 0.0000008 0.0000008 0.0000007 0.0000008 0.000000063
0.15 0.0000017 0.0000017 0.0000017 0.0000017 0.0000017 0.000000064
0.20 0.0000028 0.0000028 0.0000028 0.0000028 0.0000028 0.000000064
0.25 0.0000041 0.0000041 0.0000041 0.0000041 0.0000041 0.000000063
0.30 0.0000054 0.0000054 0.0000054 0.0000054 0.0000054 0.000000059
0.35 0.0000066 0.0000066 0.0000066 0.0000066 0.0000066 0.000000049
0.40 0.0000075 0.0000075 0.0000075 0.0000075 0.0000075 0.000000028
0.45 0.0000081 0.0000081 0.0000081 0.0000081 0.0000081 0.000000008
0.50 0.0000083 0.0000083 0.0000083 0.0000083 0.0000083 0.000000006
0.55 0.0000082 0.0000082 0.0000082 0.0000082 0.0000082 0.000000050
0.60 0.0000075 0.0000075 0.0000075 0.0000075 0.0000075 0.000000025
0.65 0.0000066 0.0000066 0.0000066 0.0000066 0.0000066 0.000000038
0.70 0.0000054 0.0000054 0.0000054 0.0000054 0.0000054 0.000000053
0.75 0.0000040 0.0000040 0.0000040 0.0000040 0.0000040 0.000000069
0.80 0.0000027 0.0000027 0.0000027 0.0000027 0.0000027 0.000000087
0.85 0.0000015 0.0000015 0.0000015 0.0000015 0.0000015 0.000000100
0.90 0.0000006 0.0000006 0.0000006 0.0000006 0.0000006 0.000000120
0.95 0.0000002 0.0000002 0.0000002 0.0000002 0.0000002 0.000000140
1.00 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.000000180

Table 2. Approximated errors
with each initial velocity for the
new nonlinear shooting method
[3] and the modified decomposi-
tion method (MDM) for Exam-
ple 1.

All calculations were performed for x =
0.00,0.05, . . . ,1.00 since the MDM gives good
results for small x. Tables 1 and 2 display comparisons
of the MDM solution of the nonlinear two-point BVPs
with the new shooting method [1] for some values of
the initial velocity v0. As seen in the tables the MDM
solutions show the correct physical properties of the
problem.

3.2. Example 2

Now we consider the BVP

y′′(x) =
3
2

y2 for 0 < x < 1, (29)

with the boundary conditions

y(0) = 4, y(1) = 1. (30)

Then the exact solution of (29) is

yE(x) =
4

(1 + x)2 . (31)

Proceeding as before, we obtain the recursive rela-
tions

y0 = 4,

y1 = β x +
3
2

L−1(A0),

yn+1 =
3
2

L−1(An), n ≥ 0.

(32)

In view of (32) we get

y0 = 4,

y1 = β x + 12x2,

y2 = 2β x3 + 12x4,
...

(33)

This gives the solution in the form of the series as fol-
lows:

y(x) = 4 + β x + 12x2 + 2β x3 + 12x4 + · · · , (34)

where β is a constant. To determine the constant β , we
use the boundary condition at x = 1 of the approximant
ϕ3; thus we get

β = −8.33. (35)
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To get a better approximation for the constant β , we
substitute the boundary condition at x = 1 on the Padé
approximant [3/5] of the resulting polynomial and ob-
tain

β = −8.00023. (36)

It is clear that we can obtain a sequence of approxima-
tions for β by constructing other Padé approximates of
other orders [6]. Thus we have

β = −8. (37)

Substituting (37) into (34), we get the solution in the
series form as follows:

y(x) = 4
(

1−2x + 24
x2

2!
−96

x3

3!
+ · · ·

)
, (38)

and in the closed form (31).

3.3. Example 3

Finally we consider the nonlinear BVP

y′′(x) = y3 − yy′ for 1 < x < 2, (39)

with the boundary conditions

y(0) = 1, y(1) =
1
2
. (40)

The exact solution of (39) is

yE(x) =
1

1 + x
. (41)

Equation (41) can be given in the operator form as

Ly = y3 − yy′ for 1 < x < 2. (42)

Operating with L−1 on (42), and using the boundary
condition at x = 0, we obtain

y(x) = 1 + γx + L−1(y3(x)− y(x)y′(x)), (43)

where the inverse operator L−1 is a two-fold integral
operator and the constant

γ = y′(0) (44)

must be determined. Substituting the decomposition
series (8) for y(x) and the series of polynomials (9)
gives

∞

∑
n=0

yn(x) = 1 + γx

+ L−1

(
∞

∑
n=0

Bn

)
−L−1

(
∞

∑
n=0

Cn

)
.

(45)

The first few Adomian polynomials Bn and Cn are
given by

B0 = y3
0,

B1 = 3y2
0y1,

B2 = 3y2
0y2 + 3y0y2

1,

B3 = y3
1 + 3y2

0y3 + 6y0y1y2,
...

(46)

C0 = y0y′0,
C1 = y1y′0 + y0y′1,
C2 = y2y′0 + y1y′1 + y0y′2,
C3 = y3y′0 + y2y′1 + y1y′2 + y0y′3,

...

(47)

Proceeding as before we get the recurrence relation

y0 = 1,

y1 = γx + L−1(B0)−L−1(C0),

yn+1 = L−1(Bn)−L−1(Cn), n ≥ 0.

(48)

Substituting (46) and (47) into (48), we have

y0 = 1,

y1 = γx +
x2

2!
,

y2 = −γ
x2

2!
+(3γ −1)

x3

3!
+ 3

x4

4!
,

y3 = (γ − γ2)
x3

3!
+(6γ2 −9γ + 1)

x4

4!

+(27γ −9)
x5

5!
+ 24

x6

6!
.

(49)

Other components can be determined in the same way.
This gives the solution in a series form:

y(x) = 1 + γx +(1− γ)
x2

2!
+(−γ2 + 4γ −1)

x3

3!

+(6γ2 −9γ + 4)
x4

4!
+(27γ −9)

x5

5!
+ 24

x6

6!
+ · · ·

(50)

To determine the constant γ , we write the boundary
condition at x = 1 on the four-term approximant ϕ4;
then we get

γ = −1.108. (51)
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Fig. 1. The ratio convergence test applied to
the series coefficients (54).

Fig. 2. Differences between the MDM solu-
tion and the exact solution of (39).

To determine a better approximation for the constant
γ , we substitute the boundary condition at x = 1 on
the Padé approximant [3/5] of the resulting polynomial
and obtain

γ = −1.0001. (52)

It is clear that we can obtain a sequence of approxima-
tions for γ by constructing other Padé approximates of
other orders [6]. Thus we have

γ = −1. (53)

Substituting (53) into (51), we get the solution in a
series form:

y(x) = 1− x + x2− x3 + x4 −·· · , (54)

and in the closed form (41).

4. Convergence of the Solution in Series Form

The decomposition method provides an analytic so-
lution in terms of an infinite power series. The analyti-
cal solution given in (38) and (54) can be expressed in
the series form

y(x) =
∞

∑
n=0

anxn. (55)

The series (55) consists of both positive and negative
terms, although not in a regular alternating fashion.
The ratio test was applied to the absolute values of
the series coefficient. This provides a sufficient con-
dition for convergence of the series for a space interval
∆x = xb − xa, which has the form

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣< 1
∆x

. (56)
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It is clear from Fig. 1 that the ratio
∣∣∣ an+1

an

∣∣∣ decayes as
n increases, obviously indicating that the series (55) is
convergent.

We can also draw (38) in a like manner. In order
to investigate the accuracy of the modified decomposi-
tion solution with a finite number of terms (see Fig. 2),
(17), (29) and (39) were also solved numerically by Ha
[1], and the corresponding results are compared with
the decomposition solution in Tables 1 and 2. The nu-
merical method adopted in [1] was the new nonlinear
shooting method, which was used in the fourth-order
Runge-Kutta method and Newton’s method with an er-
ror bound of 10−7. Ha obtained numerical solutions
with some initial velocities converging to an exact so-
lution, but his numerical solutions with some special
choice of initial velocities did not converge to an exact
solution. However, we obtained the exact solution for
(29) and (39) by our present method. The convergence

of the modified decomposition method is very rapidly.
Therefore, it may be concluded that the use of 15 terms
in the series yields sufficiently accurate solutions for
values close to zero.

5. Concluding Remarks

In this paper, we calculated the approximate so-
lutions of some nonlinear two-point boundary value
problems by using the modified decomposition method
(MDM). We demonstrated that the decomposition pro-
cedure is quite efficient in determining solutions in the
closed form by using boundary conditions. Our present
method avoids the tedious work needed by traditional
techniques. We got more accurate approximate solu-
tions by using the boundary conditions of the MDM in
Example 1 and we obtained the analytic solutions by
this method in Examples 2 and 3.
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