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Based on the modified extended tanh-function method, we consider the continuum problem of the
driven diffusive flow of particles behind an impenetrable obstacle (rod) of the length L. The results
show that the presence of an obstacle, whether stationary or moving, in a driven diffusive flow with
nonlinear drift will distort the local concentration profile to a state which divided the (x,y)-plane
into two regions. The concentration is relatively higher in one side than the other side, apart from the
value of D

vL , where D is the diffusion coefficient and v is the drift velocity. This problem has relevance
for the size segregation of particulate matter which results from the relative motion of different-size
paricles induced by shaking. The obtained soultions include soliton, periodical, rational and singular
solutions.
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1. Introduction

As is well-known, many important phenomena and
dynamical processes in physics and related sciences
are described by nonlinear partial differential equa-
tions (NPDEs). One of these phenomena is the size
segregation of particulate matter produced by shak-
ing, which is important in many industrial situations
such as in powder separation by the vibration of a non-
uniform mixture [1].

In an effort to better understand the dynamics of
the segregation process, the dynamical picture of this
phenomena was modeled by Rosato et al. [1, 2] where
they considered a two-dimensional system of large
and small disks of equal masses. The disks were sub-
jected to a gravitational force in the vertical direc-
tion and interact with each other and with the walls
of their container through a hard-core potential. Com-
puter simulations gave results consistent with the ex-
periments; after many shakes, the larger disks lie on
the top of smaller ones in a nonequilibrium station-
ary state. Later, Alexander and Lebowitz [3] investi-
gated the driven diffusive motion of a polymer in a
sea of monomers where the particles move on a lattice
subjected to a driving field that biases jump rates in
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a direction perpendicular to the polymer which occu-
pies L sites (monomers occupy one sites). Then, com-
puter simulations of a two-dimensional square lattice
of a polymer-monomer lattice system showed the un-
expected behavior that the polymer velocity v(L) (as
a function of its length L) first decreases and then
increases. Also, in [4] a model consists of a gas of
monomers and a single rod on a lattice was considered.
A monomer occupies one site and the rod more than
one site. The computer simulations in [4] showed a sur-
prising relationship between the rod’s velocity and its
length in the stationary state; beyond a certain length,
the longer rods moved faster, although more sites need
to be empty in order for longer rods to move. This un-
expected behavior led Alexander and Lebowitz [4] to
study the probability that all of the sites next to the
right of the rod were simultaneously unoccupied. Then
they showed that the long rods, whether stationary or
moving, distort the local monomer profile to a state
which is independent of the monomer density and cre-
ate a larger depletion region to the right of them.

For the seek of a better understanding of the asym-
metrical interacting particle model with two kinds of
particles, Alexander and Lebowitz [4] have presented a
detailed description of some related continuum models
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Fig. 1. An obstacle (rod), of
length L, parallel to the z-axis.
The rod intersects the (x,y)-
plane along the interval y =
−L/2 to y = L/2 on the axis.
The direction of advection is
parallel to the x-axis from left
to right (the moving fram of
the rod).

whose behavior is quite similar to that of the particle
model. They introduced the continuum model

ut = D(uxx + uyy)− vux, (1)

where the flux of particles in the fluid consists of a dif-
fusive part−Du(x,y,t) and a linear drift part vu(x,y, t),
where u(x,y, t) is the particle concentration, D the dif-
fusion coefficient, and v the drift velocity. In the steady
state, (1) was studied by Philip et al. [5], who were
considering the flow of ground water around a cylin-
drical obstacle. They obtained an exact solution in the
form of an infinite series. In [4], it was stated that the
solution given in [5] has the qualitative features of the
density profile and resembles at observed in the com-
puter simulations of monomer flow behind a stationary
obstacle. The same problem was cosidered by Knessl
and Keller [6]. They considered the effect of an impen-
etrable obstacle upon the concentration of the particles
in a fluid when the particles moved by diffusion and
linear advection.

In [7], the classical Lie group method was used for
studying another model of the driven diffusive flow
whose behaviour is quite similar to that of a rod in a
lattice fluid given in [4]. Following [4, 7] and using
the modified extended tanh-function (METF) method
[8 – 10], we will consider the continuum problem of
the driven diffusive flow of particles behind an impen-
etrable strip of the length L which is parallel to the
z-axis. The strip is centered in the origin and normal
to the incident flow which takes the direction parallel
to the x-axis from left to right (as shown in Fig. 1). The
flux of particles in the fluid is composed of row tends:
a linear diffusive term −Duy perpendicular to the non-
linear drift tend vLk(u), where u(x,y,t) is the particle
concentration, D the diffusion coefficient, v the drift
velocity, and k(u) a nonlinear function of the particle

concentration. We further impose that there can be no
flux through the length L of the strip. The velocity v
may result from the motion of the fluid (advection), or
from the gravitional field acting on the particles (drift).
Conservation of particles implies that the divergence
of the flux equals to −ut . Therefore, when D and v
are constants, u(x,y, t) satisfies the nonlinear diffusion-
advection equation in (2+1) dimension

ut = Duyy − vL [K(u)]x. (2)

In fact, when K(u) equals 1
L u(1 − u), then (2)

reduces to the continuum model suggested in [4]
[i. e. (16)], while for the case K(u) = u(1− u), (2) re-
duces to the case studied in [7] using the classical Lie
group method which is a very complicated mathemat-
ical technique see for example [7, 11 – 13]. In (2), we
will examine (analytically) the existence of travelling
wave solutions for the following two cases: (i) K(u) =
um, where m �= 0,1 (i.e. the fact that m is an arbitrary
will enable us to see the effect of the nonlinear drift),
and (ii) K(u) = u(1−u) .

This paper is organized as follows. In Section 2, a
summary of the METF method is introduced. In Sec-
tion 3, the METF method is applied to (2), where the
above two cases are considered. A discussion will be
presented in Section 4.

2. Summary of the METF Method

Consider a given NPDE with one physical field
u(x,y, t) in three variables x, y and t:

H(u,ut ,ux,uy,uxt ,uyt ,uxy,uxx,uxy,uyy, . . .) = 0. (3)

We seek its special solution, i. e. travelling wave solu-
tion, in the form

u(x, t) = u(ζ ), ζ = x+ y−λ t,

where λ is a constant to be determined later. Then,
(3) will be reduced to a nonlinear ordinary differen-
tial equation. The next crucial step is that the solution
we are looking for is expressed in the form

u(ζ ) =
n

∑
i=0

aiω i +
n

∑
i=1

biω−i, (4)

and

ω ′ = k + ω2, (5)
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where k is a parameter to be determined, ω = ω(ζ ),
ω ′ = dω

dζ . Since, the underlying mechanism for solitary
wave solutions to occur is the fact that different effects
(such as dispersion, dissipation, and nonlinearity) that
act to change the wave forms in many nonlinear phys-
ical equations have to balance out. Therefore, one may
use the above fact to determine the parameter n which
must be a positive integer and can be found by bal-
ancing the highest-order linear term with the nonlinear
terms [14 – 17]. Substitution of (4) and (5) into the rel-
evant ordinary differential equation will yield a system
of algebraic equations with respect to a0, ai, bi, k, and
λ (where i = 1, . . . ,m) because all the coefficients of
ω j (where j = 0,1, . . . ,m) have to vanish. With the aid
of Mathematica, one can determine ai, bi, k and λ . The
Riccati equation (5) has the general solutions

ω =

{
−√−k tanh[

√−kζ ], with k < 0,

−√−kcoth[
√−kζ ], with k < 0,

(6)

ω = − 1
ζ

, with k = 0, (7)

and

ω =

{ √
k tan[

√
kζ ], with k > 0,

−√
k cot[

√
kζ ], with k > 0.

(8)

In fact, the METF method is limited to certain
classes of NPDEs. However, it is an easy and direct
method to obtain travelling wave solutions. Since, in-
stead of solving a NPDE we will deal with a system
of algebraic equations which can be handled by sym-
bolic computation packages like Maple or Mathemat-
ica. It is clear that the METF method permits the fol-
lowing types of solutions: rational, triangular, singular
and solitary wave solutions.

3. Explicit Exact Solutions for the Nonlinear
Diffusion-Advection Equation in (2+1)
Dimensions

Two cases of K(u) will be considered.
Case (i): K(u) = um where m �= 0,1.
Then, (2) reduces to

ut = Duyy − vLmum−1 ux. (9)

Introducing the transformation u(x,y,t) = u(ζ ),
where ζ = x+y+λ t into (9) leads to the ordinary dif-
ferential equation

−λ u′ + Du′′ −α mum−1 u′ = 0, (10)

where α = vL. Balancing u′′ with um−1 u
′

leads to n =
1

m−1 . Hence, we use the transformation

u = ϑ
1

m−1 . (11)

Substituting (11) into (10), we get

α m(m−1)ϑ 2ϑ ′ + D(m−2)(ϑ ′)2

+(m−1)(λ ϑ ′ −Dϑ ′′)ϑ = 0.
(12)

Again, using the balance concept leads to

ϑ(ζ ) = a0 + ω(a1 + b1ω−2). (13)

Substituting (13) into (12) and making use of (5),
we get a system of algebraic equations for a0, a1, b1,
k, m, and λ :

(m−1)(k a1−b1)
(
α ma2

0 + λ a0
)− (m−2)Db2

1

+k a2
1[Dk (m−2)+ m(m−1)α b1]−mα (m−1)a1 b2

1
−4(2m−3)Dk b1a1 = 0,

k (m−1)[λ a1 −2(D−mα a1)(a0)]a1 = 0,

−2Dk a2
1 + 6Db1a1 + m [−4D+(m−1)α a1]b1 a1

(m−1)[mα a2
0 + k mα a2

1 + a0λ ]a1 = 0,

(m−1)[λ a1 −2(D−mα a1)a0]a1 = 0,

m [−D+(m−1)α a1]a2
1 = 0,

(m−1)[λ b1 + 2a0(Dk + mα b1)]b1 = 0,

b1 k [α m(m−1)a2
0 + 2Dk (2m−3)a1

+(m−1)λ a0]+ [2D+ α m(m−1)a1]k b2
1

+α m(m−1) b3
1 = 0,

k (m−1)[λ b1 + 2a0 (Dk + mα b1)]b1 = 0,

and

k m [Dk + α (m−1)b1]b2
1 = 0.

Solving, with the aid of Mathematica, the above sys-
tem of algebraic equations then nine different cases are
obtained.

Case 1:

m = 2, D = α a1, λ = −2α a0,

k = −b1

a1
, where α �= 0 and a1 �= 0.

(14)

Case 2:

m = 2, D = α a1, λ = −2α a0,

b1 = 0, where α �= 0 and a1 �= 0.
(15)
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Case 3:

m =
4
3
, D =

α a1

3
, b1 = 0, λ = ∓2i

√
k α a1,

a0 = ±i
√

ka1, where α �= 0 and a1 �= 0.
(16)

Case 4:

m = 2, D = −α b1

k
, λ = −2α a0,

a1 = 0, where α �= 0,b1 �= 0, and k �= 0.
(17)

Case 5:

m =
4
3
, D =

α a1

3
, k = −b1

a1
, λ = ∓4α

√
a1 b1,

a0 = ±2
√

a1b1, where α �= 0,a1 �= 0, and b1 �= 0.

(18)

Case 6:

m =
4
3
, D = −α b1

3k
, a1 = 0, λ = ∓2iα b1√

k
,

a0 = ±i
b1√

k
, where α �= 0,k �= 0, and b1 �= 0.

(19)

Case 7:

D = (m−1)α a1, a0 = ±i
√

ka1, λ = ∓2i
√

k α a1,

b1 = 0, where m �= 0, 1, 2,
4
3
,α �= 0, and a1 �= 0.

(20)

Case 8:

D = (m−1)α a1, a0 = ±2
√

a1b1,

λ = ∓4α
√

a1b1, k = −b1

a1
, where

m �= 0, 1, 2,
4
3
,α �= 0,a1 �= 0, and b1 �= 0.

(21)

Case 9:

D = −α (m−1)b1

k
, a0 = ±i

b1√
k
,

λ = ∓2iα b1√
k

, a1 = 0, where

m �= 0, 1, 2,
4
3
,α �= 0,k �= 0, and b1 �= 0.

(22)

Using the above 9 cases and making use of (13) and
(11), one gets the correponding solutions for (9).

According to case 1, we have three different types
of travelling wave solutions for u:

Type 1: for k = 0

u(x,y, t) = a0 − D
vL ζ

, ζ = x+ y+ λ t,

where λ = −2vLa0.
(23)

Type 2: for k < 0

u(x,y, t)=a0 − D
√−k
vL

{tanh[
√−kζ ]+ coth[

√−kζ ]},
where ζ = x+ y+ λ t and λ = −2vLa0.

(24)
Type 3: for k > 0

u(x,y, t) = a0 +
D
√

k
vL

{tan[
√

kζ ]− cot[
√

kζ ]},
where ζ = x+ y+ λ t and λ = −2vLa0.

(25)

In solutions (23) – (25), m = 2, vL �= 0, D �= 0, and a 0
is an arbitrary constant.

Case 2 leads to the following three different types:
Type 1: for k = 0

u(x,y, t) = a0 − D
vL ζ

, ζ = x+ y+ λ t,

where λ = −2vLa0.
(26)

Type 2: for k < 0

u(x,y, t) = a0 − D
√−k
vL

tanh[
√−kζ ],

where ζ = x+ y+ λ t and λ = −2vLa0.
(27)

Type 3: for k > 0

u(x,y, t) = a0 +
D
√

k
vL

tan[
√

kζ ],

where ζ = x+ y+ λ t and λ = −2vLa0.

(28)

In solutions (26) – (28), m = 2, vL �= 0, and D �= 0.
Case 3 results in:
Type 1: for k = 0

u(x,y, t) = −
[

3D
vL (x+ y)

]3

. (29)

Type 2: for k < 0

u(x,y, t) =
[
±i

3D
√−k
vL

− 3D
√−k
vL

tanh[
√−kζ ]

]3

,

where ζ = x+ y+ λ t and λ = ∓6D
√−k.

(30)
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Type 3: for k > 0

u(x,y, t) =

[
±i

3D
√

k
vL

+
3D

√
k

vL
tan[

√
kζ ]

]3

,

where ζ = x+ y+ λ t and λ = ∓6iD
√

k.

(31)

In solutions (29) – (31), m = 4
3 , vL �= 0, and D �= 0.

Case 4 yields two different types:

Type 1: for k < 0

u(x,y, t) = a0 − D
√−k
vL

coth[
√−kζ ],

where ζ = x+ y+ λ t and λ = −2vLa0.

(32)

Type 2: for k > 0

u(x,y, t) = a0 − D
√

k
vL

cot[
√

kζ ],

where ζ = x+ y+ λ t, and λ = −2vLa0.

(33)

In solutions (32) and (33), m = 2, vL �= 0, and D �= 0.

Case 5 yields two different types:

Type 1: for k < 0

u(x,y, t) =[
3D

√−k
vL

(
±2 − coth[

√−kζ ]− tanh[
√−kζ

)]3

,

where ζ = x+ y+ λ t and λ = ∓12D
√−k.

(34)

Type 2: for k > 0

u(x,y, t) =

[
3D

√
k

vL

(
±2i− cot[

√
kζ ]+ tan[

√
kζ

)]3

,

where ζ = x+ y+ λ t and λ = ∓12D
√−k.

(35)

Case 6 leads to:

Type 1: for k < 0

u(x,y, t) =
[

3D
√−k

vL

(
∓1 − coth[

√−kζ ]
)]3

,

where ζ = x+ y+ λ t and λ = ±6D
√−k.

(36)

Type 2: for k > 0

u(x,y, t) =

[
3D

√
k

vL

(
∓i− cot[

√
kζ ]

)]3

,

where ζ = x+ y+ λ t and λ = ±6iD
√

k.

(37)

Solutions (34) – (37) are applicable for m = 4
3 , vL �=

0 and D �= 0.
Case 7 leads to:
Type 1: for k < 0

u(x,y, t) =
[ D

√−k
vL(m−1)

(
±1− tanh[

√−kζ ]
)]

1
m−1 ,

where ζ = x+ y+ λ t and λ =
∓2D

√−k
m−1

.

(38)

Type 2: for k > 0

u(x,y, t) =

[
D
√

k
vL(m−1)

(
±i+ tan[

√
kζ ]

)] 1
m−1

,

where ζ = x+ y+ λ t and λ =
∓2iD

√
k

m−1
.

(39)

Type 3: for k = 0

u(x,y, t) =
[ −D

vL(m−1)(x+ y)

] 1
m−1

. (40)

Case 8 yields two different types:
Type 1: for k < 0

u(x,y, t) =[ D
√−k

vL(m−1)

(
±2− coth[

√−kζ ]− tanh[
√−kζ ]

)] 1
m−1

,

where ζ = x+ y+ λ t and λ = ∓4
D
√−k

(m−1)
.

(41)

Type 2: for k > 0

u(x,y, t) =[
D
√

k
vL(m−1)

(
±2i− cot[

√
kζ ]+ tan[

√
kζ

)] 1
m−1

,

where ζ = x+ y+ λ t and λ = ∓4i
D
√

k
(m−1)

.

(42)



S. A. Elwakil et al. · An Asymmetric Model of a Rod in a Lattice Fluid 435

Fig. 2. Plot of the concentration u(x,y,t) for t =
0.001, D = 0.25, L = 0.1, v = 0.5, k =−0.1, and
m = 3/2.

Finally, case 9 leads to:
Type 1: for k < 0

u(x,y, t) =[
D
√−k

vL(m−1)

(
∓1− coth[

√−kζ ]
)] 1

m−1

,

where ζ = x+ y+ λ t and λ = ±2
D
√−k

(m−1)
.

(43)

Type 2: for k > 0

u(x,y, t) =[
D
√

k
vL(m−1)

(
∓i− cot[

√
kζ ]

)] 1
m−1

,

where ζ = x+ y+ λ t and λ = ±2i
D
√

k
(m−1)

.

(44)

Solutions (38) – (44) are valid under the conditions that
vL �= 0, D �= 0 and m �= 0, 1, 2, 4

3 .
Case (ii): K(u) = u(1−u).
Then, (2) reduces to

ut = Duyy − vL [u(1−u)]x. (45)

Introducing the transformation u(x,y,t) = u(ζ ), where
ζ = x+ y+λ t into (45) leads to the ordinary differen-
tial equation

−λ u′ + Du′′ − vL(1−2u)u′ = 0. (46)

Balancing the highest-order linear terms and nonlinear
terms leads to

u(ζ ) = a0 + ω(a1 + b1ω−2). (47)

Substituting (47) into (45) and making use of (5), a
system of algebraic equations for a0, a1, b1, k, and λ is
obtained:

(k a1 −b1)(λ + Lv−2Lva0) = 0,

k a1(D+ Lva1) = 0,

a1(λ + Lv−2Lva0) = 0,

a1(D+ Lva1) = 0,

b1(Dk−Lvb1) = 0,

k b1(λ + Lv−2Lva0) = 0,

and

k b1 (Dk−Lvb1) = 0,

from which, we find

D =−Lva1, λ = Lv(−1+2a0), b1 = 0, (48)

D =
Lvb1

k
, λ = Lv(−1+ 2a0),

a1 = 0, k �= 0,
(49)

and

D =
Lvb1

k
, λ = Lv(−1+ 2a0),

a1 = −b1

k
, k �= 0, L �= 0, v �= 0.

(50)

Due to (48), for k < 0 the solution to (45) reads

u(x,y, t) = a0 +
D
Lv

√−k tanh[
√−kζ ],

where ζ = x+ y+ λ t and λ = Lv(−1+ 2a0),
(51)
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(a)

(b)

Fig. 3. Density plot of the concentration
u(x,y,t), where regions in white mean u =
0, while for black regions u �= 0 and u in-
creases as the black gets darker, for t =
0.001, D = 0.25, L = 0.1, v = 0.5, k =
−0.1, and (a) m = 3/2 and (b) m = 10.

while for k > 0 it is

u(x,y, t) = a0 − D
Lv

√
k tan[

√
kζ ],

where ζ = x+y+λ t and λ = Lv(−1+2a0),
(52)

and k and a0 are arbitrary constants. In the case k = 0,
(48) leads to

u(x,y, t) = a0 +
D
Lv

1
ζ

,

where ζ = x+ y+ λ t and λ = Lv(−1+ 2a0).
(53)
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(a)

(b)

Fig. 4. (a) Plot of the concentration
u(x,y), where a0 + b0 = 1/2, for D =
0.25, L = 0.1, v = 0.5, and k = −0.1.
(b) Density plot of the concentration
u(x,y), where a0 + b0 = 1/2, for D =
0.25, L = 0.1, v = 0.5, and k = −0.1.

From (49), it is clear that for the case k < 0 we get

u(x,y, t) = a0 +
D
Lv

√−k coth[
√−kζ ],

where ζ = x+ y+ λ t and λ = Lv(−1+ 2a0),
(54)

while for k > 0 it is

u(x,y, t) = a0 − D
Lv

√
k cot[

√
kζ ],

where ζ = x+ y+ λ t and λ = Lv(−1+ 2a0),
(55)
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and k and a0 are arbitrary constants. Finally, (50) leads
for k < 0 to

u(x, t) = a0 +
D
Lv

√−k{coth[
√−kζ ]+ tanh[

√−kζ ]},
where ζ = x+ y+ λ t and λ = Lv(−1+ 2a0),

(56)

and

u(x, t) = a0 +
D
Lv

√
k{cot[

√
kζ ]− tan[

√
kζ ]},

where ζ = x+ y+ λ t and λ = Lv(−1+ 2a0),
(57)

for k > 0, where a0 is an arbitrary constant.

4. Discussion

The travelling wave solutions derived in this paper
include soliton, periodical, rational and singular solu-
tions. Now, let us consider certain interesting types of
the obtained solutions. An interesting solution for the
case (i) is given by (38):

u(x,y, t) =
[

D
√−k

vL(m−1)

(
±1 − tanh[

√−kζ ]
)] 1

m−1

,

where ζ = x+ y+ λ t and λ =
∓2D

√−k
m−1

,

which is applicable for any value of m where m �= 0

and 1. This solution is a kink-type solitary wave so-
lution and its typical behavior is depicted in Figure 2.
As shown from the density plot in Fig. 3, it is obvious
that the presence of an obstacle, whether stationary or
moving, in a driven diffusive flow with nonlinear drift
will distort the local concentration profile to a state
which divides the (x,y)-plane into two regions about
the straight line x + y+ λ t = 0 (not as expected about
the strip axis x = 0). The concentration is relatively
higher at one side than at the other side, apart from
the value of D

vL . Also, it is clear that the concentration
u(L) (for m > 1) as a function of the obstacle length
L approaches zero as L approaches infinity. Also, an-
other interesting solution for the case (ii) is given by
(51) which in the stationary state (taking a0 + b0 = 1

2 )
becomes

u(x,y) =
1
2

+
D
Lv

√−k tanh[
√−k(x+ y)].

It is also a kink-type solitary wave solution and resem-
bles the same characterisics as the previous one but
in this case the presence of the obstacle will divide
the (x,y)-plane into two regions about the straight line
x+ y = 0.

Finally, solutions of the type (56) develope a singu-
larity at a finite point and in such a case the concentra-
tion profile is nonuniform as depicted in Figure 4.

[1] A. Rosato, F. Prinz, K. J. Strandburg, and R. H. Swend-
sen, Powder Technol. 49, 59 (1986).

[2] A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swend-
sen, Phys. Rev. Lett. 58, 1038 (1987).

[3] F. J. Alexander and J. L. Lebowitz, J. Phys. A: Math.
Gen. 23, L375 (1990).

[4] F. J. Alexander and J. L. Lebowitz, J. Phys. A: Math.
Gen. 27, 683 (1994).

[5] J. R. Philip, J. H. Knight, and R. T. Waechter, Water Re-
sources Res. 25, 16 (1989).

[6] C. Knessl and J. B. Keller, J. Math. Phys. 38, 267
(1997).

[7] E. A. Saied and R. G. Abd El-Rahman, J. Stat. Phys.
94, 2253 (1999).

[8] S. A. Elwakil, S. K. El-Labany, M. A. Zahran, and
R. Sabry, Phys. Lett. A 299, 179 (2002).

[9] S. A. Elwakil, S. K. El-Labany, M. A. Zahran, and
R. Sabry, Chaos, Solitons, Fractals 17, 121 (2003).

[10] S. A. Elwakil, S. K. El-Labany, M. A. Zahran, and
R. Sabry, Z. Naturforsch. 58a, 39 (2003).

[11] P. J. Olver, Applications of Lie Groups to Differential
Equations, Springer, Berlin 1986.

[12] G. W. Bluman and S. Kumei, Symmetries and Differ-
ential Equations, Springer, Berlin 1989.

[13] S. K. El-Labany, A. M. Elhanbaly, and R. Sabry,
J. Phys. A: Math. Gen. 35, 8055 (2002).

[14] V. V. Gudkov, J. Math. Phys. 38, 4794 (1997).
[15] E. Fan, Phys. Lett. A 282, 18 (2001).
[16] E. Fan, J. Phys. A: Math. Gen. 35, 6853 (2002).
[17] B. Li, Y. Chen, and H. Zhang, J. Phys. A: Math. Gen.

35, 8253 (2002).


