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This paper deals with the theoretical investigation of the effect of dust particles on the thermal
convection in a ferromagnetic fluid subjected to a transverse uniform magnetic field. For a flat ferro-
magnetic fluid layer contained between two free boundaries, the exact solution is obtained, using a
linear stability analysis. For the case of stationary convection, dust particles and non-buoyancy mag-
netization have always a destabilizing effect. The critical wavenumber and critical magnetic thermal
Rayleigh number for the onset of instability are also determined numerically for sufficiently large
values of the buoyancy magnetization parameter M1. The results are depicted graphically. It is ob-
served that the critical magnetic thermal Rayleigh number is reduced because the heat capacity of the
clean fluid is supplemented by that of the dust particles. The principle of exchange of stabilities is
found to hold true for the ferromagnetic fluid heated from below in the absence of dust particles. The
oscillatory modes are introduced by the dust particles. A sufficient condition for the non-existence of
overstability is also obtained.
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1. Introduction

Ferrohydrodynamics (FHD) deals with fluid mo-
tions influenced by strong forces of magnetic polar-
ization. It concerns usually non-conducting liquids
with magnetic properties and constitutes an entire field
of physics close to magnetohydrodynamics, but still
different. The major perspectives are connected with
massive shocks and oscillation damping (earthquake,
airbags), but the contemporary application concerned
mostly seals and cooling of loudspeakers. Strong ef-
forts have been made to synthesize stable suspensions
of magnetic particles with different performances.

Experimental and theoretical physicists and engi-
neers gave significant contributions to ferrohydrody-
namics and its applications [1 – 7]. An authoritative in-
troduction to the research on magnetic liquids has been
discussed in the monograph by Rosensweig [8], which
reviews several applications of heat transfer through
ferrofluids, such as enhanced convective cooling hav-
ing a temperature-dependent magnetic moment due
to magnetization of the fluid. This magnetization, de-
pends on the magnetic field, temperature and density of
the fluid. Any variation of these quantities can induce a
change of the force distribution in the fluid. This mech-
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anism is known as ferroconvection, which is similar to
Bénard convection [9]. Convective instability of a fer-
romagnetic fluid for a fluid layer heated from below in
the presence of an uniform vertical magnetic field has
been considered by Finlayson [10]. He explained the
concept of thermo-mechanical interaction on ferroflu-
ids. Thermoconvective stability of ferrofluids without
considering buoyancy effects has been investigated by
Lalas and Carmi [11], whereas Shliomis [12] analyzed
the linearized relation for magnetized perturbed quan-
tities at the limit of instability. Schwab et al. [13] inves-
tigated experimentally Finlayson’s problem in the case
of a strong magnetic field and detected the onset of
convection by plotting the Nusselt number versus the
Rayleigh number. Then, the critical Rayleigh number
corresponds to a discontinuity in the slope. Later, Stiles
and Kagan [14] examined the experimental problem
reported in [13] and generalized Finlayson’s model as-
suming that under a strong magnetic field, the rota-
tional viscosity augments the shear viscosity. The ther-
mal convection in a ferrofluid has been considered by
Zebib [15], whereas the stability of a static ferrofluid
under the action of an external pressure drop has been
studied by Polevikov [16]. The thermal convection in
a cylindrical layer of magnetic fluid has been studied
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Fig. 1. Geometrical configuration.

by Lange [17]. A detailed account of magnetoviscous
effects in ferrofluids has been given in a monograph by
Odenbach [7].

The Bénard convection in ferromagnetic fluids has
been considered by many authors [18 – 28]. The fer-
romagnetic fluid has been considered to be clean in
all the above studies. In many situations the fluid
is not pure but contains suspended dust particles.
Saffman [29] has considered the stability of laminar
flow of a dusty gas. Scanlon and Segel [30] have con-
sidered the effects of suspended particles on the onset
of Bénard convection, whereas Sharma et al. [31] have
studied the effect of suspended particles on the onset of
Bénard convection in hydromagnetics and found that
the critical Rayleigh number is reduced because of the
heat capacity of the particles. The separate effects of
suspended particles, rotation and solute gradient on the
thermal instability of fluids through a porous medium
have been discussed by Sharma and Sharma [32]. The
suspended particles were thus found to destabilize the
layer. Palaniswamy and Purushotham [33] have stud-
ied the stability of shear flow of stratified fluids with
fine dust and found the fine dust increases the region
of instability. On the other hand, the multiphase fluid
systems are concerned with the motion of a liquid or
gas containing inmiscible inert identical particles. Of
all multiphase fluid systems observed in nature, blood
flows in arteries, flow in rocket tubes, dust in gas cool-
ing systems to enhance the heat transfer, movement of
inert solid particles in the atmosphere, sand or other
particles in sea or ocean beaches are the most common
examples of multiphase fluid systems. Naturally stud-
ies of these systems are mathematically interesting and

physically useful for various good reasons. The effect
of dust particles on non-magnetic fluids has been in-
vestigated by many authors [34 – 37]. The main result
of all these studies is that dust particles are destabiliz-
ing and the specific heat of fluid being greater than the
specific heat of particles is a sufficient condition for the
non-existence of overstability.

In view of the above investigations, and keeping in
mind the importance of ferromagnetic fluids, it is at-
tempted to discuss the effect of dust particles on ther-
mal convection in a ferromagnetic fluid subjected to a
vertical magnetic field. This problem has, to the best of
our knowledge, not been investigated yet. The present
study can serve as a theoretical support for experimen-
tal investigations, e.g. evaluating the influence of im-
purifications in a ferromagnetic fluid on thermal con-
vection phenomena.

2. Mathematical Formulation of the Problem

We consider an infinite, horizontal layer of thickness
d of an electrically non-conducting incompressible fer-
romagnetic fluid with dust particles heated and soluted
from below. A uniform magnetic field H0 acts along the
vertical z-axis. The temperature at the bottom and top
surfaces z =∓d/2 are T0 and T1, and a uniform temper-
ature gradient β = |dT/dz| is maintained (see Fig. 1).
Both the boundaries are taken to be perfect conductors
of heat. A gravitational field g = (0,0,−g) pervades
the system.

The mathematical equations governing the motion
of a ferromagnetic fluid are as follows:
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Continuity equation for an incompressible ferro-
magnetic fluid:

·q = 0. (1)

Momentum equation:

ρ0

[
∂
∂t

+(q· )
]

q = − p+ ρg+ KN(qd −q)

+ ·(HB)+ µ 2q,
(2)

where ρ , ρ0, q, µ and p are the fluid density, ref-
erence density, velocity, dynamic viscosity (constant)
and pressure of ferromagnetic fluid, respectively; t,
H, B and M denote, respectively, the time, magnetic
field, magnetic induction and magnetization. q

d
(x, t)

and N(x, t) denote the velocity and number density of
the dust particles, respectively. x = (x,y,z) and K =
6πµη , η being the particle radius, is the Stokes drag
coefficient. Assuming a uniform particle size, a spher-
ical shape, and small relative velocities between the
fluid and dust particles, the presence of dust particles
adds an extra force term in the equations of motion (2),
proportional to the velocity difference between the dust
particles and the fluid. Two additional simplifications
are assumed in (2): we assume that the viscosity is
isotropic and independent of the magnetic field. Both
approximations simplify the analysis without changing
the ultimate conclusion. We also use the Boussinesq
approximation, which means that density changes are
disregarded in all terms except the gravitational body
force term.

Density equation of state:

ρ = ρ0[1−α(T −Ta)], (3)

where α is the thermal expansion coefficient, Ta is the
average temperature given by Ta = (T0 + T1)/2, where
T0 and T1 are the constant average temperatures of the
lower and upper surfaces of the ferromagnetic fluid
layer.

Since the force exerted by the fluid on the particles
is equal and opposite to that exerted by the particles
on the fluid, there must be an extra force term, equal
in magnitude but opposite in sign, in the equations of
motion for the particles. The buoyancy force on the
particles is neglected. Inter-particle reactions are also
ignored since we assume that the distances between
particles are quite large compared with their diameters.
The effects due to pressure and gravity on the particles

are negligibly small and therefore ignored. If mN is the
mass of particles per unit volume, then the equations of
motion and continuity of the dust particles, under the
above assumptions, are

mN

[
∂qd

∂t
+(q·d )qd

]
= KN(q−qd), (4)

∂N
∂t

+ ·(Nqd) = 0. (5)

The temperature equation for an incompressible ferro-
magnetic fluid in the presence of dust particles is[

ρ0CV,H − µ0H ·
(

∂M
∂T

)
V,HHH

]
DT
Dt

+µ0T

(
∂M
∂T

)
V,HHH

DH
Dt

+mNCpt

(
∂
∂t

+ qd·
)

T = K1
2T,

(6)

where CV,H , Cpt, K1, T and µ0 are the specific heat at
constant volume and magnetic field, specific heat of
dust particles, thermal conductivity, temperature and
magnetic permeability, respectively.

Maxwell’s equations, simplified for a non-
conducting fluid with no displacement currents,
become

·B = 0, ×H = 0. (7)

In the Chu formulation of electrodynamics [38], the
magnetic field H, magnetization M and the magnetic
induction B are related by

B = µ0(H + M). (8)

We assume that the magnetization is aligned with
the magnetic field, but allow a dependence on the mag-
nitude of the magnetic field as well as the temperature

M =
H
H

M(H,T ). (9)

The magnetic equation of state is linearized about
the magnetic field, H0, and an average temperature, Ta,
to become

M = M0 + χ(H −H0)−K2(T −Ta), (10)

where H0 is the uniform magnetic field of the fluid
layer when placed in an external magnetic field H =
k̂Hext

0 , k̂ is the unit vector in the z-direction, χ =(
∂M
∂H

)
H0,Ta

the magnetic susceptibility, K2 =



Sunil et al. · Effect of Dust Particles on Thermal Convection in a Ferromagnetic Fluid 497

−
(

∂M
∂T

)
H0,Ta

the pyromagnetic coefficient, H magni-

tude of H and M0 = M(H0,Ta).
The basic state is assumed to be quiescent and is

given by

q = qb = 0, qd = (qd)b = 0, ρ = ρb(z),

p = pb(z), T = Tb(z) = −β z+ Ta,

β =
T1 −T0

d
, Hb =

[
H0 +

K2(Tb −Ta)
1+ χ

]
k,

Mb =
[

M0 − K2(Tb −Ta)
1+ χ

]
k, N = N0,

H0 + M0 = Hext
0 . (11)

Only the spatially varying parts of H0 and M0 con-
tribute to the analysis, so that the direction of the exter-
nal magnetic field is unimportant and the convection is

the same whether the external magnetic field is parallel
or antiparallel to the gravitational force.

3. The Perturbation Equations and Normal Mode
Analysis Method

We shall analyze the stability of the basic state by
introducing the following perturbations:

q = qb +q′, qd = (qd)b +q′1, p = pb(z)+ p′,

ρ = ρb +ρ ′, T = Tb(z)+θ , H = Hb(z)+H′,

M = Mb(z)+ M′, (12)

where q′ = (u,v,w), q′1 = (�,r,s), p′, ρ ′, θ , H′ and M′
are perturbations in the ferromagnetic fluid velocity,
particle velocity, pressure, density, temperature, mag-
netic field and magnetization. These perturbations are
assumed to be small. Then the linearized perturbation
equations become

L1ρ0
∂u
∂t

= L1

[
−∂p′

∂x
+ µ0(M0 + H0)

∂H ′
1

∂z
+ µ 2u

]
−mN0

∂u
∂t

, (13)

L1ρ0
∂v
∂t

= L1

[
−∂p′

∂y
+ µ0(M0 + H0)

∂H ′
2

∂z
+ µ 2v

]
−mN0

∂v
∂t

, (14)

L1ρ0
∂w
∂t

= L1

[
−∂p′

∂z
+ µ0(M0 + H0)

∂H ′
3

∂z
+ µ 2w− µ0K2β H ′

3 +
µ0K2

2 β
(1+ χ)

θ + gαρ0θ
]
−mN0

∂w
∂t

, (15)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (16)

L1

[{
ρC1 + mN0Cpt

} ∂θ
∂t

− µ0T0K2
∂
∂t

(
∂Φ ′

∂z

)]

= L1

[
K1

2θ +
{

ρC1β − µ0T0K2
2 β

(1+ χ)

}
w

]

+ mN0βCptw, (17)

where

ρC1 = ρ0CV,H + µ0K2H0, L1 =
(

m
K

∂

∂t
+ 1

)
. (18)

Equations (9) and (10) yield

H ′
3 + M′

3 = (1+ χ)H ′
3−K2θ

H ′
i + M′

i =
(

1+
M0

H0

)
H ′

i , (i = 1,2)


 , (19)

where we have assumed K2β d � (1 + χ)H0, as the
analysis is restricted to a physical situation in which
the magnetization induced by temperature variations is
small compared to that induced by the external mag-
netic field. Equation (7b) means we can write H ′ =

Φ ′, where Φ ′ is the perturbed magnetic potential.
Eliminating u, v, p′ in (13), (14), and (15), us-

ing (16), we obtain{(
ρ0

∂
∂t

− µ 2
)

L1 + mN0
∂
∂t

}
2w =

L1

{
−µ0K2β

(
2
1

∂Φ ′

∂z

)
+ ρ0gα( 2

1θ )

+
µ0K2

2 β
(1+ χ)

( 2
1θ )
}

.

(20)

From (19), we have

(1+χ)
∂2Φ ′

∂z2 +
(

1+
M0

H0

)
2
1Φ ′ −K2

∂θ
∂z

= 0. (21)
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The normal mode solution of all dynamical vari-
ables can be written as

f ′(x,y,z, t) = f (z,t)exp i(kxx+ kyy), (22)

where kx, ky are the wavenumbers along the x- and

y-directions, respectively, and k =
√

(k2
x + k2

y) is the

resultant wavenumber. For functions with this depen-

dence on x, y, and t, ∂2

∂x2 + ∂2

∂y2 = −k2 and 2 = ∂2

∂z2 −
k2.

Equations (20), (17), and (21), using (22), become[{
ρ0

∂
∂t

− µ

(
∂2

∂z2 − k2

)}
L1 + mN0

∂
∂t

]

·
(

∂2

∂z2 − k2

)
W =

L1

[
µ0K2β
(1+ χ)

{
(1+ χ)

∂Φ
∂z

−K2Θ
}

k2−ρ0gαk2Θ
]
,

(23)

L1

[
(ρC1 + mN0Cpt)

∂Θ
∂t

− µ0T0K2
∂
∂t

(
∂Φ
∂z

)]
=

L1

[
K1

(
∂2

∂z2 −k2

)
Θ +

(
ρC1β− µ0T0K2

2 β
1+χ

)
W

]

+mN0CptβW, (24)

(1+ χ)
∂2Φ
∂z2 −

(
1+

M0

H0

)
k2Φ −K2

∂Θ
∂z

= 0. (25)

Equations (23) – (25) give the following dimensionless
equations[

L∗
1

(
∂

∂t∗
− (D2 −a2)

)
+ f

∂
∂t∗

]
(D2 −a2)W ∗

= aR1/2L∗
1[M1DΦ∗ − (1+ M1)T ∗], (26)

L∗
1Pr

[
(1+ h)

∂T ∗

∂t∗
−M2

∂
∂t∗

(DΦ∗)
]

=

L∗
1(D

2 −a2)T ∗ + aR1/2[L∗
1(1−M2)+ h]W∗,

(27)

D2Φ∗ −a2M3Φ∗ −DT ∗ = 0, (28)

where the following non-dimensional parameters are
introduced:

t∗ =
νt
d2 , W ∗ =

d
ν

W, Φ∗ =
(1+ χ)K1aR1/2

K2ρC1β νd2 Φ,

R =
gαβ d4ρC1

νK1
, T ∗ =

K1aR1/2

ρC1β νd
Θ ,

a = kd, z∗ =
z
d

, D =
∂

∂z∗
, Pr =

ν
K1

ρC1,

M1 =
µ0K2

2 β
(1+ χ)αρ0g

, M2 =
µ0T0K2

2

(1+ χ)ρC1
,

M3 =

(
1+ M0

H0

)
(1+ χ)

, τ =
mν
Kd2 , L∗

1 =
(

τ
∂

∂t∗
+ 1

)
,

f =
mN0

ρ0
, h =

mN0Cpt

ρC1
. (29)

Here M3 and h denote, respectively, non-buoyancy
magnetization and dust particle parameters. The pa-
rameter M3 measures the departure of linearity in the
magnetic equation of state. Values from one (M0 =
χH0) to higher values are possible for the usual equa-
tions of state.

4. Exact Solution for Free Boundaries

We consider the case where both boundaries are
free, as well as perfect conductors of heat. The case
of two free boundaries is of little physical interest, but
it is mathematically important because one can derive
an exact solution, whose properties guide our present
analysis. Here we consider the case of an infinite mag-
netic susceptibility χ and we neglect the deformability
of the horizontal surfaces. Thus the exact solution of
the system (26) – (28), subject to the boundary condi-
tions

W ∗ = D2W ∗ = T ∗ = DΦ∗ = 0 at z = ±1
2
, (30)

is written in the form

W ∗ = A1eσt∗ cosπz∗, T ∗ = B1eσt∗ cosπz∗,

DΦ∗ = C1eσt∗ cosπz∗, Φ∗ =
(C1

π

)
eσt∗ sinπz∗,

(31)

where A1, B1, C1 are constants and σ is the growth rate
which is, in general, a complex constant.

Substituting (31) in (26) – (28) and dropping aster-
isks for convenience, we get the equations⌊{(

σ +(π2 + a2)
)
(1+ τσ)+ f σ

}
(π2 + a2)

⌋
A1

−
⌊

aR1/2(1+ τσ)(1+ M1)
⌋

B1

+
⌊

aR1/2M1(1+ τσ)
⌋

C1 = 0, (32)
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aR1/2{h+(1−M2)(1+ τσ)}

⌋
A1

−⌊{(π2 + a2)+ Pr(1+ h)σ}((1+ τσ)
⌋

B1

+[PrM2σ(1+ τσ)]C1 = 0, (33)

−π2B1 +(π2 + a2M3)C1 = 0. (34)

For the existence of non-trivial solutions of the
above equations, the determinant of the coefficients of
A1, B1, C1 in (32) – (34) must vanish. This determinant
on simplification yields

−iT3σ3
1 −T2σ2

1 + iT1σ1 + T0 = 0. (35)

Here

T3 = τ1bL2, (36)

T2 = b{τ1b(L0 + L2)+ (1+ f )L2}, (37)

T1 =
{

b2{L2 + L0(bτ1 + 1+ f )}
− τ1x1R1(1−M2)L3

}
,

(38)

T0 =
⌊
b3l0 − x1R1L3{h+(1−M2)}

⌋
, (39)

where

R1 =
R
π4 , x1 =

a2

π2 , iσ1 =
σ
π2 , τ1 = τπ2,

b = (1+ x1), L0 = (1+ x1M3),

L2 = Pr[{(1−M2)+ x1M3}+ L0h], and

L3 = (1+ x1M3 + x1M3M1). (40)

5. The Case of Stationary Convection

When the instability begins as stationary convection
(and M2

∼= 0), the marginal state will be characterized
by σ1 = 0. Then the Rayleigh number is given by

R1 =
(1+ x1)3(1+ x1M3)

x1h1{1+ x1(1+ M1)M3} , (41)

which expresses the modified Rayleigh number R1 as
a function of the dimensionless wavenumber x1, the
non-buoyancy magnetization parameter M3, the buoy-
ancy magnetization parameter M1 and the dust parti-
cles parameter h1. Here we put h1 = (1+h). In the ab-
sence of dust particles, the value of h1 is one. Since
the marginal state dividing stability from instability
is stationary, this means that at the onset of instabil-
ity there is no relative velocity between particles and

fluid and hence no particle drag on the fluid. Therefore
the critical Rayleigh number is reduced solely because
the heat capacity of the clean fluid is supplemented by
that of the suspended (dust) particles. This explains the
physics and the role of dust parameter.

To investigate the effects of non-buoyancy magneti-
zation and dust particles, we examine the behaviour of
dR1
dM3

and dR1
dh1

analytically. Equation (41) yields

dR1

dM3
=

M1(1+ x1)3

h1{1+ x1M3(1+ M1)}2 , (42)

dR1

dh1
=

(1+ x1)3(1+ x1M3)
x1h2

1{1+ x1(1+ M1)M3}
. (43)

This shows that, for a stationary convection, the
non-buoyancy magnetization and dust particles are
found to have destabilizing effects on the system.

For M1 sufficiently large, we obtain the results for
the magnetic mechanism

N = R1M1 =
(1+ x1)3(1+ x1M3)

x2
1h1M3

, (44)

where N is the magnetic thermal Rayleigh number.
For very large values of M3, (44) reduces to

N =
(1+ x1)3

x1h1
= R1

(in the absence of
magnetic parameters).

Thus for stationary convection, the ferromagnetic fluid
behaves like an ordinary fluid for very large values of
the magnetic parameters M3 and M1.

As a function of x1, N, given by (44), attains its min-
imum when

2M3x2
1 − (M3 −1)x1 −2 = 0. (45)

The values of critical wavenumber for the onset
of instability are determined numerically, using the
Newton-Raphson method, by the condition dN

dx1
= 0.

With x1 determined as a solution of (45), (44) will give
the required critical magnetic thermal Rayleigh num-
ber Nc. The critical magnetic thermal Rayleigh number
depends on the magnetization parameter M3 and dust
particles parameter h1. Values of Nc determined in this
way for various values of M3 and h1 are given in Ta-
ble 1, and the results are illustrated in Figs. 2 and 3.

Figures 2 and 3 represent plots of the critical mag-
netic thermal Rayleigh number (Nc) versus M3 (for var-
ious values of h1), and h1 (for various values of M3),
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Fig. 2. The variation of the crit-
ical magnetic Rayleigh num-
ber (Nc) with the non-buoyancy
magnetization parameter (M3).

Fig. 3. The variation of the crit-
ical magnetic Rayleigh number
(Nc) with the dust particles pa-
rameter (h1).

Table 1. Critical thermal Rayleigh numbers and wavenum-
bers of the unstable modes at marginal stability for the onset
of stationary convection.

M3 xc h1 = 1 h1 = 3 h1 = 5 h1 = 7 h1 = 9
Nc Nc Nc Nc Nc

1 1.00 16.00 5.33 3.20 2.29 1.78
3 0.77 10.32 3.44 2.06 1.47 1.15
5 0.69 9.02 3.01 1.80 1.29 1.00
7 0.65 8.43 2.81 1.69 1.20 0.94
9 0.62 8.09 2.70 1.62 1.16 0.90

11 0.60 7.86 2.62 1.57 1.12 0.87
13 0.59 7.70 2.57 1.54 1.10 0.86
15 0.58 7.58 2.53 1.52 1.08 0.84

respectively. Figures 2 and 3 illustrate that as magne-
tization parameter M3 and dust particle parameter h1
increase, the critical magnetic Rayleigh number Nc de-
creases. Therefore lower values of Nc are needed for

onset of convection with an increase in M3 and h1,
hence justifying the destabilizing effects of magnetiza-
tion and dust particles. It is also observed from Table 1
and Figs. 2 and 3 that in the absence of dust particles
(h1 = 1), the critical magnetic thermal Rayleigh num-
ber is very high, however in the presence of dust par-
ticles (h1 > 1), the critical magnetic thermal Rayleigh
number is reduced, because of the specific heat of the
dust particles. Also, it is clear from Table 1 and Fig. 2
that, as M3 becomes large, it has less influence on the
value of Nc.

6. The Case of Oscillatory Modes

Here we examine the possibility of oscillatory
modes, if any, on the stability problem due to the pres-
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ence of dust particles and the magnetization parameter.
Equating the imaginary parts of (35), we obtain

σ1{b2L2 + b2L0(bτ1 + 1+ f )

−τ1x1R1(1−M2)L3 −σ2
1 bτ1L2} = 0.

(46)

It is evident from (46) that σ1 may be either zero or
non-zero, meaning that the modes may be either non-
oscillatory or oscillatory. In the absence of dust parti-
cles we obtain the above result as

σ1[{Pr[(1−M2)+x1M3]+(1+x1M3)}] = 0. (47)

Here the quantity inside the brackets is positive defi-
nite because the typical values of M2 are +10−6 [10].
Hence

σ1 = 0, (48)

which means that oscillatory modes are not allowed
and the principle of exchange of stabilities is satisfied
in the absence of dust particles. Thus from (46), we
conclude that the oscillatory modes are introduced due
to the presence of the dust particles.

7. The Case of Overstability

The present section is devoted to find the possibil-
ity that instability may occur as overstability. Since we
wish to determine the Rayleigh number for the onset
of instability via a state of pure oscillations, it suffices
to find conditions for which (35) will admit solutions
with real σ1.

Equating real and imaginary parts of (35) and elim-
inating R1 between them, we obtain

A1σ2
1 + A0 = 0, (49)

where

A1 = τ1[τ1bL0(1−M2)+ bτ1(1−M2)L2

+ L2{ f (1−M2)−h}], (50)

A0 = 
τ1b2L0h+ bL2{h+(1−M2)}
+ bL0{h+(1−M2)}
+ bL0 f{h+(1−M2)}�.

(51)

Since σ1 is real for overstability, both values of σ1 are
positive. But σ 2

1 is always negative if A1 is positive (be-
cause A0 > 0). It is clear from (50) that A1 is positive if

f (1−M2) > h, (52)

which implies that

(ρ0CV,H + µ0K2H0)(1−M2) > ρ0Cpt. (53)

Thus, for (ρ0CV,H + µ0K2H0)(1−M2) > ρ0Cpt, over-
stability cannot occur and the principle of the exchange
of stabilities is valid. Hence the above condition is
a sufficient condition for the non-existence of over-
stability, the violation of which does not necessarily
imply the occurrence of overstability. Thus the pyro-
magnetic coefficient K2 has a significant role in devel-
oping a sufficient condition for the non-existence of
overstability. In the absence of a magnetic field (and
hence in the absence of magnetic parameters. i.e. a
non-magnetic fluid) the above condition, as expected,
reduces to CV > Cpt, i.e. the specific heat of a fluid at
constant volume is greater than the specific heat of dust
particles, which agrees well with the results obtained
earlier [34 – 37].

8. Discussion of Results and Conclusions

The effect of dust particles on a ferromagnetic fluid
heated from below in the presence of an uniform ver-
tical magnetic field has been studied. We have investi-
gated the effects of magnetization and dust particles on
the onset of instability. The principal conclusions from
the analysis of this paper are as under:

(i) For the case of stationary convection, the magne-
tization and dust particles hasten the onset of convec-
tion as is evident from (42) and (43).

(ii) Thus for stationary convection, the ferromag-
netic fluid behaves like an ordinary fluid with very
large values of the magnetic parameters M3 and M1.

(iii) The critical wavenumbers and critical magnetic
thermal Rayleigh numbers for the onset of instability
are also determined numerically for sufficiently large
values of the buoyancy magnetic parameter M1, and
the results are depicted graphically. The effects of gov-
erning parameters on the stability of the system are dis-
cussed below.

• Table 1, Figs. 2 and 3 also lead to the conclu-
sion that magnetization and dust particles have always
a destabilizing effect. Therefore, lower values of Nc are
needed for onset of convection with an increase in M3
and h1.

• We see that the critical stability parameter, Nc is
reduced in the presence of dust particles because the
heat capacity of the clean fluid is supplemented by that
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of the suspended (dust) particles. Also, it is clear from
Table 1 and Fig. 2 that as M3 becomes large it has less
influence on the value of Nc. The destabilizing effect
of dust particles on non-magnetic fluid is accounted by
many authors [30 – 37] and is found to be valid for a
ferromagnetic fluid also.

(iv) The principle of exchange of stabilities is found
to hold true for the ferromagnetic fluid heated from be-
low in the absence of dust particles. The oscillatory
modes are introduced due to the presence of the dust
particles, which were non-existent in their absence.

(v) The condition (ρ0CV,H + µ0K2H0)(1 − M2) >
ρ0Cpt is sufficient for the non-existence of overstabil-
ity. In a non-magnetic fluid, the above condition, as ex-

pected, reduces to CV > Cpt, i.e. the specific heat of the
fluid at constant volume is greater than the specific heat
of the dust particles.
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