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We consider the blow-up of solutions as a function of time to the initial boundary value problem for
the damped Boussinesq equation. Under some assumptions we prove that the solutions with vanishing
initial energy blow up in finite time.
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1. Introduction

In this paper, we study the blow-up of solutions in
the course of time for the following initial boundary
value problem of the damped Boussinesq equation

utt −buxx + δuxxxx − ruxxt = ( f (u))xx,

(x, t) ∈ (0,1)× (0,+∞),
(1)

u(0, t) = u(1,t) = uxx(0,t) = uxx(1,t) = 0,

t > 0,
(2)

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈ (0,1), (3)

where b, δ , r ≥ 0 are constants and f is a given nonlin-
ear function with f (0) = 0.

Scott Russell’s study [1] of solitary water waves mo-
tivated to analyse the development of nonlinear partial
differential equations for modeling wave phenomena
in fluids, plasmas, elastic bodies, etc. Especially, when
r = 0, b = 1 and f (u) = u2, (1) becomes the Boussi-
nesq equation

utt −uxx + δuxxxx = (u2)xx,

which is an important model which approximately de-
scribes the propagation of long waves on shallow water
like the other Boussinesq equations (with uxxtt , instead
of uxxxx). This equation was first deduced by Boussi-
nesq [2]. In the case δ > 0 this equation is linearly sta-
ble and allows small nonlinear transverse oscillations
of an elastic beam (see [3] and references therein). It is
called the “good” Boussinesq equation, while the equa-
tion with δ < 0 received the name of the “bad” Boussi-
nesq equation since it possesses a linear instability.
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There is considerable mathematical interest in the
Boussinesq equations which have been studied from
various aspects (see [4 – 6] and references therein).
Much efforts have been made to establish sufficient
conditions for the nonexistence of global solutions to
various associated boundary value problems [5, 7].

Levine and Sleeman [7] studied the global nonexis-
tence of solutions for the equation

utt −uxx −3uxxxx + 12(u2)xx = 0,

with periodic boundary conditions. Turitsyn [5] proved
the blow-up in the Boussinesq equations

utt −uxx + uxxxx +(u2)xx = 0

and

utt −uxx −uxxtt +(u2)xx = 0

for the case of periodic boundary conditions and ob-
tained exact sufficient criteria of the collapse dynam-
ics. The generalization of Boussinesq equation

utt −uxx + αuxxxx + f (u)xx = 0

was studied in numerous papers [8 – 15].
Liu [12, 13] studied the instability of solitary waves

for a generalized Boussinesq type equation

utt −uxx +( f (u)+ uxx)xx = 0,

and established some blow-up results for a nonlinear
Pochhammer-Chree equation

utt −uxxtt − f (u)xx = 0.
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Zhijian [14, 15] studied the blow-up of solutions to
the initial boundary value problems for the Boussinesq
equations

utt −uxx −buxxxx = σ(u)xx

and

utt −uxx −uxxtt = σ(u)xx.

Godefroy [8] showed the blow-up of the solutions for
the following problem

utt = f (u)xx + uxxtt , x ∈ R, t ≥ 0,

u(x,0) = u0(x), ut(x,0) = u1(x),

u(+∞, t) = u(−∞,t) = 0,

where f : R → R, C∞, f (0) = 0.
In the Boussinesq equations, the effect of small non-

linearity and dispersion is considered, but in many
real situations, the damping effect is strong compared
with the nonlinear and dispersive one. Therefore the
damped Boussinesq equation

utt −2butxx = −αuxxxx + uxx + β (u2)xx

is considered as well, where utxx is the damping term
and α , b = const > 0, β = const ∈ R, (see [3, 4, 6, 16]
and references therein).

Varlamov [3, 6] investigated the long-time behav-
ior of solutions with given initial value, spatially peri-
odic, and also initial-boundary value problems for the
damped Boussinesq equation in two space dimensions.

In this paper, we establish a blow-up result for solu-
tions with vanishing initial energy of the initial bound-
ary value problem for the damped Boussinesq equa-
tion (1) – (3).

2. Blow-up of Solution

We first prove the following lemma.

Lemma. If there exist functions υ0(x), w0(x) ∈ H2

such that the initial values u0(x) and ut(x,0) satisfy the
relations

u(x,0) = (w0(x))x, ut(x,0) = (υ0(x))x

then for all t ∈ T , the solution u(x,t) of (1) – (3) satis-
fies u(x, t) = (w(x,t))x, with a corresponding evolution
of w(x, t), υ(x, t) satisfying the system

wt = υ , υt = υxx +wxx −wxxxx +( f (wx))x. (4)

Proof. Writing (1) in the form

ut = zx, zt − rzxx = (bu− δuxx + f (u))x (5)

and integrating the first of these equations, we ob-
tain u(x, t) = u(x,0) +

∫ t
0 zx(x,s)ds. The term u(x,0)

is an x-derivative by hypothesis and
∫ t

0 zx(x,s)ds is an
x-derivative. Therefore there exists a w(x, t) such that
u(x, t) = (w(x, t))x, which gives, from (1),

u = wx, wtt −bwxx +δwxxxx−rwxxt = ( f (wx))x. (6)

Hence we easily obtain the system (4).

By the Lemma the initial boundary value problem
(1) – (3) corresponds the following problem

wtt −bwxx + δwxxxx − rwxxt = ( f (wx))x,

(x, t) ∈ (0,1)× (0,+∞),
(7)

wx(0, t) = wx(1, t) = wxxx(0, t) = wxxx(1, t) = 0,

t > 0,
(8)

w(x,0) = w0(x), wt(x,0) = w1(x), x ∈ (0,1). (9)

Theorem. Let u be the solution of the problem (1) –
(3). Assume that the following conditions are valid:

(i) f (s) ∈ C(R), f (s)s ≤ k
∫ s

0 f (τ)dτ ≤ −kβ |s|m+1,
s ∈ R, where k > 2 and β > 0 are constants, also 1 <
m ≤ 3.

(ii) u(x,0) = (w0(x))x, ut(x,0) = (υ0(x))x for some
w0 ∈ H2

0 (0,1) and υ0 ∈ L2(0,1) such that

E(0) =
1
2
‖υ(0)‖2

2 +
b
2
‖wx(0)‖2

2 +
δ
2
‖wxx(0)‖2

2

+
∫ 1

0

∫ w0x

0
f (s)dsdx ≤ 0.

Then the solution u blows up in finite time

T ≤



[
t

3−m
2

1 +
3−m

2C5(α −1)yα−1(t1)

] 2
3−m

, m < 3,

t1 exp
1

C5(α −1)yα−1(t1)
, m = 3,

where t1 and y will be defined respectively by (22)
and (23), C8 and α > 1 are constants to be defined later.

Proof. By multiplying (7) by wt and integrating the
new equation in the interval (0,1) then we obtain∫ 1

0
wt wtt dx−b

∫ 1

0
wtwxxdx+ δ

∫ 1

0
wtwxxxxdx

−r
∫ 1

0
wt wxxt dx =

∫ 1

0
wt ( f (wx))xdx,

E ′(t)+ r‖wxt(t)‖2
2 = 0, E(t) ≤ E(0) ≤ 0, t≥ 0,

(10)
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where

E(t) =
1
2
‖wt(t)‖2

2 +
b
2
‖wx(t)‖2

2 +
δ
2
‖wxx(t)‖2

2

+
∫ 1

0

∫ wx

0
f (s)dsdx, t ≥ 0.

(11)

Let

F(t) = ‖w(t)‖2
2 +

∫ t

0
‖wx(τ)‖2

2dτ, (12)

then

F ′(t) = 2(w,wt)+ r‖wx(t)‖2
2, (13)

F ′′(t) = 2
(
‖wt(t)‖2

2 −b‖wx(t)‖2
2 − δ‖wxx(t)‖2

2 −
∫ 1

0
wx f (wx)dx

)

≥ 2
(
‖wt(t)‖2

2 −b‖wx(t)‖2
2 − δ‖wxx(t)‖2

2 − k
∫ 1

0

∫ wx

0
f (s)dsdx

)

≥ 2
(

2‖wt(t)‖2
2 − (k−2)

∫ 1

0

∫ wx

0
f (s)dsdx−2E(0)

)
≥ 2

(
2‖wt(t)‖2

2 +(k−2)β‖wx(t)‖m+1
m+1 −2E(0)

)
, t > 0,

(14)

where the assumption (i) of the Theorem and the fact that

k
∫ 1

0

∫ wx

0
f (s)dsdx ≤ 2E(0)−‖wt(t)‖2

2 −b‖wx(t)‖2
2 − δ‖wxx(t)‖2

2 +(k−2)
∫ 1

0

∫ wx

0
f (s)dsdx

have been used. Taking the inequality (14) and integrating this, we obtain

F ′(t) ≥ 2(k−2)β
∫ t

0
‖wx(τ)‖m+1

m+1dτ −4E(0)t + F ′(0), t > 0. (15)

After this calculation, we could add the inequalities (14) with (15). We then get

F ′′(t)+ F ′(t) ≥ 4‖wt(t)‖2
2 + 2(k−2)β

(
‖wx(t)‖m+1

m+1 +
∫ t

0
‖wx(τ)‖m+1

m+1dτ
)
−4E(0)(1+ t)+ F′(0)

= g(t), t > 0.
(16)

Take p = m+3
2 , obviously 2 < p < m + 1 and p ′ =

m+3
m+1(< 2). By using the Young inequality and the
Sobolev-Poincaré inequality, we get

|(w,wt)| ≤ 1
p
‖w(t)‖p

p +
1
p′
‖w(t)‖p′

p′

≤C1

[(‖wx(t)‖m+1
m+1

)µ
+
(‖wt(t)‖2

2

)µ
]
,

|(w,wt)|
1
µ ≤C2

[‖wx(t)‖m+1
m+1 +‖wt(t)‖2

2

]
, t > 0,

(17)

where in this inequality and in the sequel Ci (i = 1,

2, . . .) denote positive constants independent of t, µ =
m+3

2(m+1) (< 1). By the Sobolev-Poincaré inequality and
the Hölder inequality

‖wx(t)‖m+1
m+1 ≥

(‖w(t)‖2
2

)m+1
2 , t > 0, (18)

‖wx(t)‖m+1
m+1 ≥

(‖wx(t)‖2
2

)m+1
2 , t > 0, (19)

∫ t

0
‖wx(τ)‖m+1

m+1dτ ≥ t
1−m

2

(∫ t

0
‖wx(τ)‖2

2dτ
)m+1

2

,

t > 0,

(20)

By using the inequalities (17) – (20), we obtain

g(t) ≥C3

(
3‖wx(t)‖m+1

m+1 +‖wt(t)‖2
2 +

∫ t

0
‖wx(τ)‖m+1

m+1dτ
)
−4E(0)t + F ′(0)

≥C4

(
|(w,wt )|

1
µ +

(‖w(t)‖2
2

)m+1
2 +

(‖wx(t)‖2
2

)m+1
2 + t

1−m
2

(∫ t

0
‖wx(τ)‖2

2dτ
)m+1

2
)
−4E(0)t + F ′(0)

≥C5t
1−m

2

(
|(w,wt)|α +

(‖w(t)‖2
2

)α
+
(‖wx(t)‖2

2

)α
+
(∫ t

0
‖wx(τ)‖2

2dτ
)α)

−4E(0)t + F ′(0)−C5t
1−m

2 ,

t ≥ 1,

(21)



476 N. Polat et al. · Blow-up of Solutions for the Damped Boussinesq Equation

where in this inequality and in the following α = 1
µ

> 1. Since −4E(0)t + F ′(0)−C5t
1−m

2 → ∞ as t → ∞,
there must be a t1 ≥ 1 such that

−4E(0)t + F ′(0)−C5t
1−m

2 ≥ 0 as t ≥ t1. (22)

Let

y(t) = F ′(t)+ F(t), (23)

then from the inequality (15) and the equality (12) we
obtain y(t) > 0 as t ≥ t1. By using the inequality,

(a1 + . . .+ al)n ≤ 2(n−1)(l−1)(an
1 + . . .+ an

l ),

where ai ≥ 0 (i = 1, . . . , l) and n > 1 are reel numbers.
Using the inequalities (22) and (21), we get

g(t) ≥C5t
1−m

2 yα(t), t ≥ t1. (24)

So combining (16) with (24) gives

y′(t) ≥C5t
1−m

2 yα(t), t ≥ t1. (25)

Therefore there exists a positive constant

T ≤
[
t

3−m
2

1 +
3−m

2C5(α −1)yα−1(t1)

] 2
3−m

, for m < 3,

and

T ≤ t1 exp
1

C5(α −1)yα−1(t1)
, for m = 3, (26)

such that

y(t) → ∞ as t → T−. (27)

By using (12), (13) and (27), we find

2‖w(t)‖2
2 +‖wt(t)‖2

2 +‖wx(t)‖2
2

+
∫ t

0
‖wx(τ)‖2

2dτ
≥ F ′(t)+ F(t) → ∞ as t → T−.

(28)

So (28) implies

‖w(t)‖2
2 +‖wt(t)‖2

2 +
∫ t

0
‖wx(τ)‖2

2dτ →∞ as t → T−.

This completes the proof.
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