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We consider the blow-up of solutionsasafunction of timeto theinitial boundary value problem for
the damped Boussinesq equation. Under some assumptions we prove that the solutions with vanishing

initial energy blow up in finite time.
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1. Introduction

In this paper, we study the blow-up of solutions in
the course of time for the following initia boundary
value problem of the damped Boussinesg equation

Utt — By + S Uy — Mot = (F(U) ) xx,

(%,t) € (0,1) x (0, +o0), @)

:I(O,t) =u(1,t) = ux(0,t) = ux(1,t) =0, @
>0,

u(x,0) =up(x), w(x,0)=ui(x), xe€(0,1), (3

whereb, §, r > Oare constantsand f isagiven nonlin-
ear function with f(0) = 0.

Scott Russell’s study [1] of solitary water waves mo-
tivated to analyse the development of nonlinear partial
differential equations for modeling wave phenomena
in fluids, plasmas, elastic bodies, etc. Especially, when
r=0,b=1and f(u) = u? (1) becomes the Boussi-
nesq equation

Ut — Uyx + O Uoo = (U2)><><7

which is an important model which approximately de-
scribesthe propagation of long waves on shallow water
like the other Boussinesq eguations (with Uxt, instead
of Uxxx). This equation was first deduced by Boussi-
nesq [2]. Inthe case 6 > Othisequationislinearly sta-
ble and allows small nonlinear transverse oscillations
of an elastic beam (see[3] and referencestherein). Itis
called the* good” Boussinesq equation, while the equa-
tion with 6 < 0 received the name of the“bad” Boussi-
nesq equation since it possesses a linear instability.

There is considerable mathematical interest in the
Boussinesq equations which have been studied from
various aspects (see [4—6] and references therein).
Much efforts have been made to establish sufficient
conditions for the nonexistence of global solutions to
various associated boundary value problems[5, 7].

Levine and Sleeman [7] studied the global nonexis-
tence of solutions for the equation

Ukt — U — SUooox + 12(U2) = O,

with periodic boundary conditions. Turitsyn [5] proved
the blow-up in the Boussinesq equations

Utt —Uxx+U)oo(x+ (UZ)XX - 0
and
Ut — Uhox — Uogt + (U ) = O

for the case of periodic boundary conditions and ob-
tained exact sufficient criteria of the collapse dynam-
ics. The generalization of Boussinesq equation

Utt — Uk + Ollooox + F(U)xx =0

was studied in numerous papers [8—15].
Liu[12, 13] studied the instability of solitary waves
for a generalized Boussinesq type equation

Utt — U + (T (U) 4 Ux)sx = 0,

and established some blow-up results for a nonlinear
Pochhammer-Chree equation

Uit — Uogt — F(U)xx = 0.
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Zhijian [14,15] studied the blow-up of solutions to
theinitial boundary value problems for the Boussinesq
equations

and
Utt — Uk — Ut = O (U)xx-

Godefroy [8] showed the blow-up of the solutions for
the following problem

utt:f(u)XX+uX)(tta X€R7 tZOa

u(x,0) = uo(x), Uu(x,0) = uz(x),

U(4oo,t) = U(—oo,t) =0,

where f: R— R, C=, f(0) =0.

In the Boussinesg equations, the effect of small non-
linearity and dispersion is considered, but in many
real situations, the damping effect is strong compared
with the nonlinear and dispersive one. Therefore the
damped Boussinesq equation

Ut — 2DUtex = — Ol + Unx + B (U2) e

is considered as well, where Uik is the damping term
and o, b=const > 0, B = const € R, (see[3,4, 6, 16]
and references therein).

Varlamov [3, 6] investigated the long-time behav-
ior of solutions with given initial value, spatialy peri-
odic, and aso initia-boundary value problems for the
damped Boussinesq equation in two space dimensions.

In this paper, we establish a blow-up result for solu-
tionswith vanishinginitial energy of theinitial bound-
ary value problem for the damped Boussinesq equa-
tion (1) —(3).

2. Blow-up of Solution

We first prove the following lemma.

Lemma. If there exist functions vo(x), Wo(X) € H?
such that theinitial values up(x) and u (x,0) satisfy the
relations

u(x,0) = (Wo(X))x, U (x,0) = (vo(X))x

then for al t € T, the solution u(x,t) of (1)—(3) satis-
fiesu(x,t) = (w(x,t))x, with acorresponding evol ution
of w(x,t), v(x,t) satisfying the system

W=D, Ut = Uxx+ Wxx — Wy + (T (Wx))x- (4)
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Proof. Writing (1) in theform

Z — 12 = (bu—Suo+ F(U)x  (5)

and integrating the first of these equations, we ob-
tain u(x,t) = u(x,0) + f¢z(x,s)ds. The term u(x,0)
is an x-derivative by hypothesis and |3 z(x,s)ds is an
x-derivative. Therefore there exists a w(x,t) such that
u(x,t) = (w(x,t))x, which gives, from (1),

U'[:Zx,

U= Wy, Wit — BWyx + OWoorx — MWt = (T (W) )x- (6)
Hence we easily obtain the system (4).
By the Lemma the initial boundary value problem
(1) —(3) corresponds the following problem
Wt — Wi + SWhoooxk — Mot = ( (W) )x,
(%,t) € (0,1) x (0,+-o0),

WX(07t) = WX(lat) = WXXX(Oat) = WXXX(lat) = Oa (8)

t>0,

w(X,0) = wp(X), W (X,0) =wq(X), xe (0,1). (9)

Theorem. Let u be the solution of the problem (1) —
(3). Assume that the following conditions are valid:

(i) f(s) € C(R), f(s)s < ks f(r)dr < —KkB|g™,
se R wherek > 2 and 8 > 0 are constants, also 1 <
m<3.

(i) u(x,0) = (Wo(X))x, U (X,0) = (vo(X))x for some
Wo € HZ(0,1) and vg € L»(0,1) such that

1 b 0
E(0) = SI1v(0)[13+ 5 Iw(O)lI3 + 5 [we(0)]3

1 rwox
+/ / f(s)dsdx < O.
0 Jo

Then the solution u blows up in finite time

()

3—m
205(a1— Dy*=1(t1)

Cs(a—1)y*1(tg)’

where t; and y will be defined respectively by (22)
and (23), Cg and o > 1 are constantsto be defined | ater.

=
, m<3,

[32"“
t 2 4
T<{[?

tiexp m=3,

Proof. By multiplying (7) by w; and integrating the
new equation in the interval (0,1) then we obtain

1 1 1
/vvtvvttdx—b/ vvthxdx+6/ Wi Whooo dX
0 0 0

1 1
—r/o vvthxtdx:/o W (F (wy))xdx,

E'(t) +r|lwe (t)||2 =0, E(t) <E(0) <0,t>0,

(10)
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where Let
D o 0120 S ) 2 FO=IwOlB+ [ Im(lkds, 02
(1) = 1013+ DO+ 3 w3 : 7
Wx (11) then
+/0/0 f(sydsdx, t>0.

F/(t) = 2(wwe) +1[wa(t) 13, (13)

1
(1) = 2( k1) 13— Blws(0) [ — 8w 0) 5 — | i (wi)c)
> 2w (018~ (03~ Stk [ [ (5yas) "

> 22w ()2 — (k— 2// 5)dscx— 2E(0) )
> 22w ()7 + (k—=2)Bwe(t) [mi1 — 2E(0), t>0,
where the assumption (i) of the Theorem and the fact that
k/ [ F e < 26(0) - (1) 15— bl (03— 811w ) B+ (k—2) / [ tis)asax
have been used. Taking the inequality (14) and integrating this, we obtain
F'(t) 22(k—2)[3/0t Wy (7) ||t 1dT — 4E(0)t -+ F'(0),t > 0. (15)

After this calculation, we could add the inequalities (14) with (15). We then get

{0+ 0 > w0+ 20k~ 208 (IR + [ Iw(eRde ) ~4E0A+0+F O 4q
=gt), t>0.

Take p = ””73 obviously 2 < p<m+1and p’ = 2,...) denote positive constants independent of t, u =

mi3(< 2). By using the Young inequality and the  z(mj (< 1)- By the Sobolev-Poincaré inequality and
Sobolev-Poincaréinequality, we get the Holder inequality
1 p 1 o il 2%
[(wywt)| < I5||W(t)||p+HHW(I)Hpr Is() 11 > (IIw(t)]5) ‘., >0 (g
i 2) 5t
<Ca | (Iw®IR:D" + (I [3)"]. @) Ms®lmiz = (Iw(lz2) = t>0, (19
m+l
1 A
o)l < Co[Iws(lpd + Imlg) >0 [ Iwsolipriar =7 [ wolgee) L

t>0,
By using the inequalities (17) —(20), we obtain

where in this inequality and in the sequel C; (i =1,

C3<3||WX Iz + lwa ||2+/||Wx m“dr)—4E(0)t+F’(o)

>c ( I+ (018) ™ + (1) % 402" ([ >2dr)2)—4E<o>t+F'<o> -
> ™ ([l + (1) + ()B) + [ (o) ) ~4E(08+F'0) -t 2

t>1

)
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where in this inequality and in the following o = %
> 1. Since —4E(0)t + F/(0) — Cot™2" — oo ast — oo,
there must be at; > 1 such that

_AE(O)t+F'(0) —CstZ" >0ast > 1. (22)
Let
y(t) = F'(t) +F(t),

then from the inequality (15) and the equality (12) we
obtainy(t) > 0 ast > t;. By using the inequality,

(23)

(ar+...+a)" <2 V0=V 4a),

whereg; >0(i=1,...,1) and n > 1 arereel numbers.
Using the inequalities (22) and (21), we get

g(t) > Gst 2y (1), t>t. (24)
So combining (16) with (24) gives
Y(t) >Cst 2y (1), t>t. (25)
Therefore there exists a positive constant
3-m 3 3—2_m
T<|t,2 + _m , for m< 3,

2Cs(or — 1)y*1(ty)
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and
T <tiexp 1 for m=3, (26)
=G (e - 1ye i) ’
such that
y(t) > ecast—T . 27)

By using (12), (13) and (27), we find

2/|W() 13+ (1w ()13 + [w(t) 13

+ [ (o) @8

>F/(t)+F(t) > ast > T .

So (28) implies
t
Iw(t) |5+ vat(t)||§+/0 [W(7)[|5dT — oo @St — T

This completes the proof.
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