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Applying a symmetry group theorem on a two-straight-line soliton, some types of new localized
multiply curved line excitations including the plateau-basin type ring solitons are obtained.
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1. Introduction

The symmetry study plays a very important role in
almost all scientific fields, especially in the soliton the-
ory because of the existence of infinitely many symme-
tries for integrable systems. The classical and the non-
classical Lie group approaches are two famous meth-
ods of deriving symmetries and conditional symme-
tries of differential equations. In 1974, Bluman and
Cole [1] and later Olver and Rosenau [2] generalized
the Lie approach to encompass symmetry transforma-
tions so that the invariants become a subset of the pos-
sible solutions of the PDE. Later, a new, say, direct
method was developed by Clarkson and Kruskal [3, 4]
in 1989 to obtain the similarity reductions of the PDE
without using group theory.

On the other hand, Lax pairs have founded out to be
very important in the study of integrable PDEs since
Lax introduced them in 1968 [5]. Especially, it is an
important method of determining the integrals of a
PDE. It is also known that the Lax pairs can be used
to find infinitesimal transformation invariances (sym-
metries) [6]. Very recently, we noticed that the Lax pair
method can be directly used to obtain finite transforma-
tion invariances (groups) of integrable models [7]. In
this short paper, the (2 + 1)-dimensional sine-Gordon
system is discussed by using a new simple method to
get both its Lie point symmetry group, the related (in-
finitesimal) symmetry algebra and then the exact solu-
tions.

2. Results and Discussion

A (2 + 1)-dimensional master soliton system had
been constructed by Konopelchenko and Rogers [8] in
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1991 via a reinterpretation, and Loewner [9] general-
ized a class of infinitesimal Bäklund transformations
originally in a gas dynamics context. A particular re-
duction leads to a symmetric integrable extension of
the classical sine-Gordon equation, namely,(
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where θt = φ + φ ′. After that the model has been
widely studied by many authors [10 – 15].

In [16], the similarity reductions of (1) have been
given by one of the present authors. In [17], an equiv-
alent group analysis for a gauge equivalent form of the
system had also been given.

The (2 + 1)-dimensional sine-Gordon (2DsG) sys-
tem (1) is generated as the compatibility condition of
the particular Loewner Konopelchenko Rogers (LKR)
triad [18][
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It is also known that the (2 + 1)-dimensional sine-
Gordon system (1) is equivalent to the following com-
pact version [15]

uξ ηt + uηvξ t + uξ vηt = 0, vξ η = uξ uη , (3)

where
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1
2
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1
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2
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and v is determined by
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The corresponding Lax pair of the representation (3)
reads (
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The component form of (4) reads

Φ1ξ + uξ Φ2 = 0, (5a)

−uηΦ1 + Φ2η = 0, (5b)

Φ1ηt + vηtΦ1 + uηΦ2t = 0, (5c)

−uξ Φ2t + Φ2ξ t + vξ tΦ2 = 0. (5d)

Now let

Φ = gΨ , (6)
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is a matrix function of ξ , η , t while Ψ is a function of
the new variables ξ1 ≡ ξ1(ξ , η , t), η1 ≡ η1(ξ , η , t)
and τ ≡ τ(ξ , η , t). Substituting (6) into the first equa-
tion of (5) we have

g11(Ψ1ξ1
ξξ +Ψ1η1ηξ +Ψ1ττξ )

+g12(Ψ2ξ1
ξξ +Ψ2η1ηξ +Ψ2ττξ )

+uξ g21Ψ1 + uξ g22Ψ2 = 0.

(7)

Requiring that Ψ satisfies the same Lax equations (5)
but with new variables, i.e.,

Ψ1ξ1
+ u1ξ1

(ξ1,η1,τ)Ψ2 = 0, (8a)

−u1η1(ξ1,η1,τ)Ψ1 +Ψ2η1 = 0, (8b)

Ψ1η1τ + v1η1τΨ1 + u1η1Ψ2τ = 0, (8c)

−u1ξ1
Ψ2τ +Ψ2ξ1τ + v1ξ1τΨ2 = 0, (8d)

the substitution of (8) into (7) and the comparison of
the different derivatives of Ψ yield

τξ = 0, η1ξ = 0, g12 = 0, (9)

and

(uξ g22 −g11u1ξ1
ξ1ξ )Ψ2 + uξ g21Ψ1 = 0,

from which we can get

uξ =
g11u1ξ1

ξ1ξ

g22
, g21 = 0. (10)

In the same way the substitution of (6) into the second
equation of (5) leads to

g21(Ψ1ξ1
ξη +Ψ1η1ηη +Ψ1ττη )

+g22(Ψ2ξ1
ξη +Ψ2η1ηη +Ψ2ττη )

−uηg11Ψ1 −uηg12Ψ2 = 0.

(11)

Applying (8) and (9) to (11) and comparing the differ-
ent derivative of Ψ , we have

τη = 0, ξ1η = 0, (12)

and

uη =
g22u1η1η1η

g11
. (13)

Finally, substituting (8) – (12) into the other two equa-
tions of (5), we get

ξ1t = 0, η1t = 0, (14)

uη =
g11u1η1η1η

g22
, uξ =

g22u1ξ1
ξ1ξ

g11
, (15)

vξ t = τtξ1ξ v1ξ1t , vηt = τtη1η v1η1t . (16)

From (9), (12) and (14) one can find that

ξ1 = ξ1(ξ ), η1 = η1(η), τ = τ(t), g12 = g21 = 0, (17)
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and from (10), (13), (15) and (16) one can obtain

u1 = u(ξ1,η1,τ)+ m(t),
v1 = v(ξ1,η1,τ)+ n(t)+ k(ξ )+ l(η).

(18)

where ξ1(ξ ), η1(η), τ(t), m(t), k(ξ ), l(η) and n(t)
are arbitrary functions of the indicated variables while
g11 = g22 are arbitrary constants.

In summary, the following theorem is assured:

Theorem 1. If {u = u(ξ , η , t), v = v(ξ , η , t)} is
a solution of the sine-Gordon system (3) then {u1 ≡
u1(ξ , η , t), v1 ≡ v1(ξ , η , t)} is expressed by (17)
and (18).

Theorem 1 can also be easily verified by the direct
substitution of (18) with (17) into (3).

Furthermore, by restricting the arbitrary functions of
the theorem as

ξ1 = ξ + εg(ξ ), η1 = η + εh(η), τ = t + ε f (t),
m(t) = ε p(t), n(t) = εq(t),
k(ξ ) = εr(ξ ), l(η) = εs(η),

we can reobtain the general Lie point symmetries
which are linear combinations of the following gen-
erators,

σ1(g) = g(ξ )
(

u
v

)
ξ
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(
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)
η
,
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t
,

(19)
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and the Lie algebra constituted by σ1(g), σ2(h), σ3( f ),

σ4(p), and σ5(q) reads

[σ1(g1), σ1(g2)] = σ1(g1g2ξ −g2g1ξ ), (21)

[σ2(h1), σ2(h2)] = σ2(h1h2η −h2h1η), (22)

[σ3( f1), σ3( f2)] = σ3( f1 f2t − f2 f1t), (23)

[σ3( f ), σ4(p)] = σ4( f pt ), (24)

[σ3( f ), σ5( f2)] = σ5( f qt), (25)

[σ1(g1), σ6(r)] = σ6(g1rξ ), (26)
[σ2(h1), σ7(s)] = σ7(h1qη), (27)

while other commutators are all identically zero.
Applying the above symmetry group Theorem 1

on some trivial known exact solutions, one can ob-
tain many kinds of interesting new exact localized ex-
citations. Since the discovery of the two-dimensional
sine-Gordon system, the exact solutions of the model
have been investigated by many authors. A Bäcklund
transformation was constructed in [10] and certain co-
herent solitonic solutions thereby derived. Solitonic
solutions of an important reduction of the (2 + 1)-
dimensional sine-Gordon system have been investi-
gated by Nimmo [11]. Doubly periodic wave solu-
tions have been constructed by Chow [19]. Local-
ized solutions of the two-dimensional sine-Gordon
system were constructed via a binary Darboux trans-
formation by Schief et al. [10]. In [12], Nimmo and
Schief constructed nonlinear superposition principles
and an associated integrable discretization of the two-
dimensional sine-Gordon system. Localized solutions
of a model with nontrivial boundaries have been con-
structed by Dubrovsky and Konopelchenko [20] and
Dubrovsky and Formusatik [21]. Radha and Laksh-
manan [22] studied the Painlevé property for the two-
dimensional sine-Gordon system and have constructed
dromion solutions. In [15] many kinds of localized ex-
citations have been given by the multi-linear variable
separation approach.

In this paper, we only apply the symmetry group Theorem 1 on the following two-straight-line soliton solution
(ϕ1 ≡ k1ξ + l1η + ω1t, ϕ2 ≡ k2ξ + l2η + ω2t)

u = −2arctan
(k1 + k2)(l1 + l2)(eϕ1 + beϕ2)

(k1 + k2)(l1 + l2)+ b(k2− k1)(l1 − l2)eϕ1+ϕ2
, (28)

v = ln

[(
1+

b(k2 − k1)(l1 − l2)eϕ1+ϕ2

(k1 + k2)(l1 + l2)

)2

+(eϕ1 + beϕ2)2

]
+

k1k2(l2ω2 − l1ω1)tξ
l1k2 − l2k1

+
l1l2(k2ω2 − k1ω1)tη

k1l2 − k2l1
, (29)
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Fig. 1. A typical straight-line soliton solution of the (2 +1)-
dimensional sine-Gordon equation (top) and its special ring
shape group deformation (bottom).

where l1, k1, l2, k2, ω1, ω2 and b are all arbitrary con-
stants.

When we take b = 0, (28) and (29) become a single
straight-line soliton, say, for the field u. We have

u = −2arctanek1ξ+l1η+ω1t . (30)

Fig. 1a shows a typical structure of the single straight-

line kink soliton (30) with

k1 = 2, l1 = −20, ω1 = 3

at time t = 0. Applying the symmetry group Theorem 1
on (30) yields a curved-line soliton

u = −2arctaneξ1(ξ )+η1(η)+τ(t) + m(t) (31)

with an arbitrary time-dependent background m(t) and
the time-dependent curve is determined by

ξ1(ξ )+ η1(η)+ τ(t) = 0. (32)

Furthermore, if the curve given by (32) is closed,
then (30) becomes a so-called plateau type ring soliton
solution and the density of the potential energy quan-
tity

1− cosθ ≡−w (33)

denotes the bowl type ring soliton structure [15].
Fig. 1b exhibits a typical plateau type ring soli-

ton (31) with

ξ1(ξ ) = 8ξ 2, η1(η) = 20η2,

τ(t) = 6cos(t), m(t) = 0.

For a two-straight-line soliton solution (28), to avoid
the singularity, the constant b should be selected appro-
priately such that

A12 ≡ b(k2
2 − k2

1)(l
2
1 − l2

2) ≥ 0.

A12 = 0 is related to the resonant soliton case
(“Y” shape soliton or three soliton solution).

Applying Theorem 1 to the two-straight-line soliton solution (28), we have

u = −2arctan
(k1 + k2)(l1 + l2)(eΦ1 + beΦ2)

(k1 + k2)(l1 + l2)+ b(k2− k1)(l1 − l2)eΦ1+Φ2
+ m(t), (34)

with

Φ1 ≡ k1ξ1(ξ )+ l1η1(η)+ ω1τ(t),

Φ2 ≡ k2ξ1(ξ )+ l2η1(η)+ ω2τ(t).
(35)

Usually, (34) denotes a special two sets of time-
dependent curved line soliton interaction solution.

Figure 2 displays two special structures of the two-
straight-line soliton solution expressed by (28) with
different parameter selections:

(a)

k1 = 2, l1 = −20, ω1 = 3,

k2 = 1, l2 = 2, ω2 = 4, b = −27,
(36)

and (b)

k1 = 2, l1 = 15, ω1 = 3,

k2 = 1, l2 = 2, ω2 = 4, b = −27.
(37)
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Fig. 2. Two special examples of two-straight-line soliton so-
lutions expressed by (28) at time t = 0 with the parameter
selections (36) (top) and (37) (bottom) respectively.

Fig. 3a. t = −π .

Fig. 3b. t = − 29
30 π .

Fig. 3c. t = − 14
15 π .

Fig. 3d. t = − 13
15 π .

Fig. 3e. t = − 2
3 π .

Fig. 3f. t = − 1
20 π .
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Fig. 3g. t = 0.

Fig. 3h. t = 1
20 π .

Fig. 3i. t = 1
8 π .

Fig. 3. The time evolution plot of the elliptic-hyperbolic pair
curved line solitons of the (2 + 1)-dimensional sine-Gordon
equation expressed by (34) with (35), (36) and (38) at the
specified times.

Fig. 4a. t = ∓π .

Fig. 4b. The parameters are the same as in (1) but for the
quantity w instead of u.

Fig. 4c. t = ∓ 2
3 π .

Fig. 4d. t = ∓ 115
200 π .

Fig. 4e. t = ∓ 11
20 π .
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Fig. 4f. t = ∓ 105
200 π .

Fig. 4g. t = ∓ 1
2 .

Applying the group Theorem 1 to Fig. 2a with

ξ1(ξ ) = ξ 2, η1(η) = −η2 + 1,

τ(t) = 10sin(t), m(t) = 0
(38)

yields an elliptic-hyperbolic pair curved line soliton so-
lution as shown in Figure 3.

Differently, the application of Theorem 1 to Fig. 2b
and the special selections

ξ1(ξ ) = 4ξ 2, η1(η) = η2,

τ(t) = 8cos(t), m(t) = 0
(39)

results in an elliptic-elliptic pair ring soliton solution
as exhibited in Figure 4.

3. Conclusion

In summary, starting from the Lax expression of the
(2+ 1)-dimensional sine-Gordon system, the symme-
try group and then the Lie symmetries and the related
algebra can be reobtained via a simple combination of
a gauge transformation of the spectral function and the
transformations of the space time variables.

Because many kinds of special solutions of the
(2+ 1)-dimensional sine-Gordon system have been
given by many authors, one can find many kinds of
more general exact solutions by applying the group
transformation theorem on the known ones.

Fig. 4h. t = ∓ 2
5 π .

Fig. 4i. t = 0.

Fig. 4. The time evolution plot of the elliptic-elliptic pair ring
solitons of the (2+1)-dimensional sine-Gordon equation ex-
pressed by (34) with (35), (37) and (39) at the specified times.

Especially, applying the group transformation theo-
rem on the multiple straight line soliton solutions, one
can obtain various types of multiple curved line exci-
tations. A special single plateau type ring soliton, an
elliptic-hyperbolic pair curved line soliton solution and
an elliptic-elliptic pair ring soliton solution are explic-
itly plotted in Figs. 1, 3 and 4.

In [15], one of the present authors has obtained
a special type of variable separation solutions. It is
straightforward to see that the variable separation solu-
tions of [15] are group transformation invariant under
the Theorem 1 (for m(t) = 0). On the other hand, the
group deformed solutions obtained in this paper, say,
the solutions expressed by (34) are beyond the variable
separation solutions of [15].
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