Infrared, ${}^{1}H$ and ${}^{13}C$ NMR Spectra of N,N-Dichloroarylsulphonamides, $4\text{-X-C}_{6}H_{4}SO_{2}NCl_{2}$ (X = H, CH₃, C₂H₅, F, Cl or Br) and *i*-X, $j\text{-YC}_{6}H_{3}SO_{2}NCl_{2}$ (*i*-X, *j*-Y = 2,3-(CH₃)₂, 2,4-(CH₃)₂, 2,5-(CH₃)₂, 2-CH₃, 4-Cl, 2-CH₃, 5-Cl, 3-CH₃, 4-Cl, 2,4-Cl₂ or 3,4-Cl₂)

B. Thimme Gowda, K. Jyothi, and N. Damodara

Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangotri- 574 199, Mangalore, India

Reprint requests to Prof. B. Th. G. Fax: 0091 824 287 367; E-mail: gowdabt@yahoo.com

Z. Naturforsch. **58a**, 563 – 568 (2003); received November 25, 2002

Several mono- and di-substituted N,N-dichloroarylsulphonamides of the configuration, 4-X- $C_6H_4SO_2NCl_2$ (where $X = H, CH_3, C_2H_5, F, Cl or Br) and <math>i-X, j-YC_6H_3SO_2NCl_2$ (where i-3,4-Cl₂), respectively, were prepared, characterised and their infrared spectra in the solid state and NMR spectra in solution state were measured and correlated. Comparison of the infrared spectra of the N,N-dichloroarylsulphonamides with the corresponding arylsulphonamides and Nchloroarylsulphonamides revealed that the infrared absorption bands in the ranges, 790 – 735 cm⁻¹ and 595 – 546 cm⁻¹ are due to N-Cl asymmetric and symmetric stretching vibrations, respectively, and that the effect of ring substitution on the N-Cl frequencies is not consistent. The frequencies in the ranges 1384 – 1333 cm⁻¹ and 1181 – 1143 cm⁻¹ are, respectively, assigned to S=O asymmetric and symmetric modes of vibration. The effect of substitution in the phenyl ring in terms of electron withdrawing and electron donating groups is non-systematic. Since the chemical shift depends on the electron density around the nucleus, empirical correlations relating the chemical shifts to the structures have been considered. The chemical shifts of aromatic protons and carbons in all the N,Ndichloroarylsulphonamides have been calculated by adding substituent contributions to the shift of benzene. Considering the approximation made, the agreement between the calculated and experimental chemical shifts is good.

Key words: Infrared; ¹H and ¹³C NMR Spectra; N, N-Dichloroarylsulphonamides.

1. Introduction

Sulphonamides are of fundamental chemical interest as they show distinct physical, chemical and biological properties. Many sulphonamides and their N-chloro compounds also exhibit pharmacological activity. This has stimulated recent interest in their chemistry. Further, many of these compounds exhibit fungicidal and herbicidal activities due to their oxidising action in aqueous, partial aqueous and non-aqueous media [1–6]. Therefore an understanding of the formation, properties and reactions of arylsulphonamides, their N-chloro and N,N-dichloro compounds is of interest in medicinal and redox chemistry. Thus a great deal of work on the spectroscopic and structural aspects of these compounds needs to be done to correlate their reactivities with the chemical bond parame-

ters. Thus we are interested in spectroscopic studies of ary lsulphonamides in particular and amides in general [6-13].

We have recently reported the spectroscopic studies on a number of arylsulphonamides [12] and their sodium salts of N-chloro compounds [13]. We report herein the infrared and NMR spectra of a number of mono- and di-substituted N,N-dichloroarylsulphonamides of the configuration, 4-X-C₆H₄SO₂NCl₂ (where X = H, CH₃, C₂H₅, F, Cl or Br) and *i*-X, *j*-YC₆H₃SO₂NCl₂ (where *i*-X, *j*-Y = 2,3-(CH₃)₂, 2,4-(CH₃)₂, 2,5-(CH₃)₂, 2-CH₃-4-Cl, 2-CH₃-5-Cl, 3-CH₃-4-Cl, 2,4-Cl₂ or 3,4-Cl₂). They are N,N-dichlorobenzenesulphonamide, N,N-dichloro-4-ethylbenzenesulphonamide, N,N-dichloro-4-ethylbenzenesulphonamide, N,N-dichloro-4-fluorobenzenesulphonamide, N,N-dichloro-4-chlorobenzenesulphonamide, N,N-dichloro-4-chlorobenzenesulphonamide, N,N-dichloro-4-chlorobenzenesulphonamide,

0932-0784 / 03 / 0900-0563 \$ 06.00 © 2003 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Sl.	Arylsulphonamides	m.p.(°C)	N,N-Dichloro-	m.p.(°C)
No.		obs (lit.)	arylsulphonamides	
1	4-C ₂ H ₅ C ₆ H ₄ SO ₂ NH ₂	99 – 101	4-C ₂ H ₅ C ₆ H ₄ SO ₂ NCl ₂	58
2	$4-FC_6H_4SO_2NH_2$	125 (124 – 125)	4-FC ₆ H ₄ SO ₂ NCl ₂	55 - 56
3	4-ClC ₆ H ₄ SO ₂ NH ₂	143 (142 – 143)	4-ClC ₆ H ₄ SO ₂ NCl ₂	81
4	4-BrC ₆ H ₄ SO ₂ NH ₂	162 (161.5)	4-BrC ₆ H ₄ SO ₂ NCl ₂	102
5	$2,3-(CH_3)_2C_6H_3SO_2NH_2$	138 - 140	$2,3-(CH_3)_2C_6H_3SO_2NCl_2$	58
6	$2,4-(CH_3)_2C_6H_3SO_2NH_2$	140 - 142	2,4-(CH ₃) ₂ C ₆ H ₃ SO ₂ NCl ₂	63
7	$2,5-(CH_3)_2C_6H_3SO_2NH_2$	149 - 151	$2,5-(CH_3)_2C_6H_3SO_2NCl_2$	68
8	2-CH ₃ ,4-ClC ₆ H ₃ SO ₂ NH ₂	180 - 182	2-CH ₃ ,4-ClC ₆ H ₃ SO ₂ NCl ₂	70
		(184 - 185)		
9	2-CH ₃ ,5-ClC ₆ H ₃ SO ₂ NH ₂	139 - 141	2-CH ₃ ,5-ClC ₆ H ₃ SO ₂ NCl ₂	66
		(142-143)		
10	$3-CH_3,4-ClC_6H_3SO_2NH_2$	132 – 134 (126)	3-CH ₃ ,4-ClC ₆ H ₃ SO ₂ NCl ₂	62
		(126)		
11	$2,4-\text{Cl}_2\text{C}_6\text{H}_3\text{SO}_2\text{NH}_2$	178 - 180	2,4-Cl ₂ C ₆ H ₃ SO ₂ NCl ₂	67
		(179 - 180)		
12	$3,4-Cl_2C_6H_3SO_2NH_2$	141 - 143	$3,4-Cl_2C_6H_3SO_2NCl_2$	55
		(134 - 135)		

Table 1. Melting points of Arylsulphonamides and N,N-dichloroarylsulphonamides.

Table 2. Infrared absorption frequencies (cm $^{-1}$) of N,N-dichloro-p-substitutedbenzenesulphonamides. s = strong, m = medium, w = weak.

Assignment		4-X-	$C_6H_4SO_2$	NCl2, X =	:	
Ü	H [18, 21]	CH ₃ [18, 21]		F	Cl	Br
С-Н						
(Ar sym str)	3054.7 w	3066.3 w	3054.7 w	3105.8 w	3095.2 s :	3090.4 w
С-Н		2997.5 w	2967.0 w			
(alk str)	-	2921.6 w	2931.3 w	_	_	-
combination		1924.6 w			1918.8 m	1915.0 m
bands		1810.8 w			1792.5 w	1792.5 w
C=C	1636.3 w	1627.6 m	1617.0 s		1624.7 m	1635.3 m
(Ar in-plane str)1582.3 w	1594.8 s	1597.7 s	1590.0 s	1582.3 s	1571.7 s
· -	1475.3 w	1490.7 w	1490.7 s	1538.9 m	1474.3 s	1470.5 s
	1447.3 m	1446.4 w		1490.7 s		
S=O						
(asym str)	1374.0 w	1373.1 s	1383.7 s	1379.8 m	1377.9 s	1376.9 s
(sym str)	1156.1 s	1157.1 s	1167.7 s	1142.6 s	1172.5 s	1172.5 s
C-X (str)	-	_	-	1240.0 s	1089.6 s	559.3 s
С-Н	1085.7 s	1083.8 s	1087.7 s	1088.6 s	1089.6 s	1081.9 s
(Ar in-plane bend)	1024.0 w	1017.2 m	1015.3 w	1014.4 w	1013.4 s	1010.5 m
S-N (sym str)	827.3 s	_	862.0 w	834.1 s	826.4 s	910.2 m
N-Cl (asym str)	785.9 s	761.7 s	768.5 s	789.7 s	770.4 s	776.2 s
C-S (str)	749.2 s	813.8 s	803.2 s	_	752.1 s	816.7 s
С-Н	720.3 m		736.7 s	727.0 m	702.9 s	737.6 s
(Ar out of- plane bend)		665.3 s	716.4 s	681.7 s		698.1 m
N-Cl (sym str)	557.3 s	547.7 s	560.2 s	545.8 s	559.3 s	559.3 s
C=C (Ar out of- plane bend)	468.6 m	487.9 w	459.9 m	453.2 m	483.1 m	421.4 m

N,N-dichloro-4-bromobenzenesulphonamide, N,N-dichloro-2,3-dimethylbenzenesulphonamide, N,N-dichloro-2,4-dimethylbenzenesulphonamide, N,N-dichloro-2,5-dimethylbenzenesulphonamide, N,N-dichloro-2-methyl-4-chlorobenzene-sulphonamide, N,N-dichloro-2-methyl-5-chlorobenzenesulphonamide, N,N-dichloro-3-methyl-4-chlorobenzenesulphonamide, N,N-dichloro-2,4-dichlorobenzenesulphonamide and N,N-dichloro-3,4-dichlorobenzenesulphonamide.

2. Experimental

2.1. Materials and Methods

N,N-dichloroarylsulphonamides were prepared as follows:

- i) Preparation of arylsulphonamides and N-chloroarylsulphonamides: The arylsulphonamides were prepared and N-chlorinated to get N-chloroarylsulphonamides by the procedures reported in [12–18] (Table 1).
- *ii)* Further N-chlorination of N-chloroarylsulphonamides: Pure chlorine gas was bubbled through clear aqueous solutions of the sodium salts of N-chloroarylsulphonamides for about 1 h. The precipitated N,N-dichloroarylsulphonamides were filtered, washed, dried and recrystallised from acetic acid. The purity of all reagents was checked by determining the melting points [13 18] (Table 1), and by estimating iodometrically the amounts of active chlorine present in them. All other reagents employed were of analytical grade.

Table 3. Infrared absorption frequencies (cm⁻¹) of N,N-dichloro-disubstitutedbenzenesulphonamides. s = strong, m = medium, w = weak.

Table 4. The observed and calculated 1H chemical shifts $(\delta, \text{ ppm})$ of N,N-dichloro-p-substitutedbenzenesulphonamides (4-X C $_6H_4SO_2NCl_2$).

	δ (in ppm)							
X	$H_{\rm o}$ (2	H_0 (2,6)		3,5)	alkyl H			
	Obs.	Calc.	Obs.	Calc.				
H	8.10 d	_	7.82 m	-				
CH_3	7.95 d	8.00	7.46 d	7.67	2.45 m			
C_2H_5	7.88 d	8.00	7.53 d	7.67	2.72 m			
					1.85 m			
F	8.16 m	8.12	7.39 m	8.12	_			
Cl	8.05 m	8.10	7.67 m	7.82	-			
Br	7.96 d	8.10	7.83 m	7.82	_			

s = singlet, d = doublet, t = triplet and m = multiplet.

2.2. Infrared Absorption Frequency Measurements

Infrared absorption frequency measurements were made on a JASCO-430 (Japan) FT/IR spectrometer. The resolution was set to 2 cm $^{-1}$ and the scanning range was from 400 to 4000 cm $^{-1}$. The spectra were

measured in the solid state as pressed KBr pellets (13 mm).

2.3. NMR Spectral Measurements

The proton and carbon-13 NMR spectra of the compounds were measured on a BRUKER Ac 300F, 300MHz FT-NMR spectrometer. The spectra were recorded in CDCl₃ and DMSO with tetramethylsilane (Me₄Si) as internal standard. The experimental conditions employed for ¹H NMR spectra were as follows. The spectral frequency (SF) was kept at 300.134 MHz, sweep width (SW) at 6024.096, pulse width (PW) at 8.0, relaxation delay (RD) of 1.0 (sec), acquisition time (AQ) was 1.360 (sec), receiver gain (RG) 10, decoupling power (DP) was 63L CPD, filter to suppress noise(LB) 0.0, reference value (SR) was set at 4125.36 ppm for H₂O internally. For ¹³C NMR spectra, the spectral frequency (SF) was

-	δ (in ppm)										
i-X, j-Y	2-H		3-H		4-H		5-H		6-H		alkyl H
	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	
2,3-(CH ₃) ₂	_	_	_	_	7.42	7.42	7.69	7.62	7.80	7.90	2.59
											2.41
$2,4-(CH_3)_2$	_	_	7.30	7.52	_	_	7.56	7.57	8.50	7.90	3.26
											2.57
$2,5-(CH_3)_2$	-	-	7.70	7.57	7.43	7.42	-	-	7.99	7.85	2.62
											2.39
2-CH ₃ , 4-Cl	-	-	7.42	7.67	_	-	7.45	7.72	8.08	8.00	2.68
2-CH ₃ , 5-Cl	_	_	7.63	7.67	7.48	7.57	-	-	8.04	8.00	2.67
											2.47
3-CH ₃ , 4-Cl	7.89	7.95	-	_	_	-	7.65	7.72	8.01	8.00	2.46
2,4-Cl ₂	_	-	7.52	7.82	-	-	7.67	7.82	8.17	8.10	-
$3,4-Cl_2$	8.17	8.10	-	-	-	-	7.81	7.82	7.97	8.10	-

Table 5. The observed and calculated 1H chemical shifts (δ , ppm) of di-substituted N,N-di-chlorobenzenesulphonamides (i-X, j-YC $_6H_3SO_2NCl_2$).

Table 6. Shifts in the position of benzene protons (δ 7.27) caused by the substituents.

Substituent	ortho	meta	para
-CH ₃ , -R	-0.15	-0.10	-0.10
-COOH, -COOR	+0.80	+0.15	+0.20
-CN	+0.30	+0.30	+0.30
-CONH ₂	+0.50	+0.20	+0.20
-COR	+0.60	+0.30	+0.30
-SR	+0.10	-0.10	-0.20
$-NH_2$, $-NHR$	-0.80	-0.15	-0.40
$-N(CH_3)_2$	-0.50	-0.20	-0.50
-I	+0.30	-0.20	-0.10
-СНО	+0.70	+0.20	+0.40
-Br	0.00	0.00	0.00
-NHCOR	+0.40	-0.20	-0.30
-Cl	0.00	0.00	0.00
-F	+0.30	+0.02	+0.22
-NH ₃ ⁺	+0.40	+0.20	+0.20
-OR	-0.20	-0.20	-0.20
-OH	-0.40	-0.40	-0.40
-OCOR	+0.20	-0.10	-0.20
$-NO_2$	+1.00	+0.30	+0.40
-SO ₃ H, -SO ₂ NH ₂	+0.40	+0.10	+0.10

kept at 75.469 MHz, sweep width (SW) at 22727.273, pulse width (PW) at 5.0, relaxation delay (RD) of 1.0 (sec), acquisition time (AQ) was 0.360 (sec), receiver gain (RG) 400, decoupling power (DP) was 14H CPD, filter to suppress noise (LB) 6.0, reference value (SR) was set at 701.89 ppm for DMSO at 39.5 ppm externally.

3. Results and Discussion

3.1. Infrared Spectra

The infrared absorption frequencies of the twelve N,N-dichloroarylsulphonamides, are listed in Tables 2 and 3. The general assignments of the important frequencies to various modes are also indicated in

the tables. The infrared absorption frequencies of other reported N,N-dichloroarylsulphonamides were also measured under identical conditions and included for comparison.

The assignment of various bands in various compounds has been done in detail in [19, 20]. A table of characteristic group absorptions is also given there. The range of group absorptions has been assigned based on many compounds in which the groups occur. Although the ranges are quite well defined, the precise frequency or wavelength at which a specific group absorbs is dependent on its environment within the molecule and on its physical state.

Comparison of the infrared spectra of the N,N-dichloroarylsulphonamides with the corresponding arylsulphonamides and N-chloroarylsulphonamides revealed that the infrared absorption bands in the ranges, 790-735 cm⁻¹ and 595-546 cm⁻¹ are due to N-Cl asymmetric and symmetric stretching vibrations, respectively. The effect of ring substitution on the N-Cl frequencies is not systematic. The frequencies in the ranges, 1384-1333 cm⁻¹ and 1181-1143 cm⁻¹ are, respectively, assigned to S=O asymmetric and symmetric modes of vibrations. This agrees with the assignments of bands in Nsubstitutedarylsulphonamides[21]. Similarly, IR bands in the ranges, $910-826 \text{ cm}^{-1}$ and $829-749 \text{ cm}^{-1}$ are assigned to S-N and C-S modes of vibrations, respectively.

The other frequencies are assigned to various other vibrations of the ring (Tables 2 and 3). The discussions are similar to those of other organic aromatic compounds and not reported here. There is no regular trend in the variation of the frequencies on substitution either with electron-withdrawing or electron-donating groups.

					δ (in ppn	1)			
X	C_1		C	$C_{2,6}$		$C_{3,5}$		C_4	
	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.	Calc.	
Н	136.0	_	131.5	-	129.3	_	127.8	_	_
$CHCH_3$	131.4	133.1	126.2	127.7	129.4	130.0	147.8	140.8	21.7
C_2H_5	132.1	133.1	126.9	127.8	129.0	128.8	147.7	147.1	26.4
									15.2
F	134.6	131.5	124.7	128.7	116.9	115.0	167.4	166.6	_
Cl	132.8	134.0	127.6	128.8	129.6	129.5	143.3	137.9	_
Br	132.8	135.0	130.4	130.0	132.2	132.7	128.2	126.1	_

Table 7. The observed and calculated 13 C chemical shifts (δ , ppm) of N,N-dichloro-p-substituted benzenesulphonamides (4-X, $C_6H_4SO_2NCl_2$).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
2.3 (CH ₂) ₂ 138.4 136.6 132.0 137.8 146.7 130.3 130.4 132.1 120.3 126.3 125.7 124.8	
2,4-(CH ₃) ₂ 136.8 133.8 138.5 137.0 133.8 130.7 149.4 140.7 127.5 127.1 128.0 129.0	21.3
2,5-(CH ₃) ₂ 141.8 136.6 136.0 134.2 129.5 129.9 132.4 132.1 138.6 135.7 128.1 128.4	20.4
	16.5
2-CH ₃ , 4-Cl 135.0 134.7 143.2 138.1 133.2 130.2 142.6 137.8 127.0 126.6 128.0 128.7	21.0
2-CH ₃ , 5-Cl 139.7 137.7 137.9 135.1 132.6 131.0 134.4 131.6 135.7 132.8 130.0 127.9	20.4
3-CH ₃ , 4-Cl 133.2 133.9 131.5 129.5 143.2 138.8 137.9 138.6 129.7 129.4 126.7 125.9	20.3
2,4-Cl ₂ 136.1 134.2 136.5 135.2 132.9 129.7 143.4 138.9 127.2 127.5 127.9 129.8	_
3,4-Cl ₂ 132.8 135.0 130.3 129.0 134.2 135.9 141.5 138.1 131.3 130.5 128.2 126.8	

Table 8. The observed and calculated ^{13}C chemical shifts (δ , ppm) of N,N-dichloro-disubstitutedbenzenesulphonamides (i-X, j-YC $_6$ H $_3$ SO $_2$ NCl $_2$).

Table 9. Incremental shifts of the aromatic carbon atoms of monosubstituted benzenes (ppm from benzene at 128.5 ppm, +downfield, -upfield).

• •			•		
Sub-	C-1	C-2	C-3	C-4	C of substituent
stituent	(Attachment)				(ppm from TMS)
H	0.0	0.0	0.0	0.0	_
CH_3	+9.3	+0.7	-0.1	-2.9	21.3
CH_2CH_3	+15.6	-0.5	0.0	-2.6	29.2 (CH ₂), 15.8 (CH ₃)
CH(CH ₃)	2 +20.1	-2.0	0.0	-2.5	34.4 (CH), 24.1 (CH ₃)
C_6H_5	+12.1	-1.8	-0.1	-1.6	
OH	+26.6	-12.7	+1.6	-7.3	
OCH_3	+31.4	-14.4	+1.0	-7.7	54.1
COOH	+2.9	+1.3	+0.4	+4.3	168.0
NH_2	+19.2	-12.4	+1.3	-9.5	
NO_2	+19.6	-5.3	+0.9	+6.0	
F	+35.1	-14.3	+0.9	-4.5	
Cl	+6.4	+0.2	+1.0	-2.0	
Br	-5.4	+3.4	+2.2	-1.0	_
I	-32.2	+9.9	+2.6	-7.3	
SO ₂ NH-	2 +15.3	-2.9	+0.4	+3.3	_

3.2. ¹H and ¹³C NMR Spectra

The ¹H chemical shifts of the twelve N,N-dichloroarylsulphonamides are listed in Tables 4 and 5. The ¹H chemical shifts of N,N-dichlorobenzenesulphonamide and N,N-dichloro-4-methylbenzene-sulphonamide reported earlier [18] were also obtained under identical conditions and included in the tables for comparison.

The chemical shift depends on the electron density around the nucleus. Thus the chemical shifts of aromatic protons in all the N,N-dichloroarylsul-

phonamides have been calculated by adding substituent contributions (Table 6) to the shift of benzene (7.27 ppm), as per the principle of substituent addition.

The incremental shifts of the aromatic protons (ppm from that of the benzene proton of 7.27) for different substituents are listed in Table 6 and are used in the calculations. The shifts in aromatic protons due to $-SO_2NCl_2$ were calculated comparing the values of N,N-dichlorobenzenesulphonamide (8.10, 7.82) with those of the benzene proton of 7.27 ppm. The values are $H_o(2,6) = +0.83$ and $H_m(3,4,5) = +0.55$.

The calculated chemical shift for different protons compared with the experimental values are given in Tables 4 and 5. Considering the approximation used, the agreement between the calculated and experimental chemical shifts is reasonably good.

The ¹³C chemical shifts are tabulated in Tables 7 and 8. Since the chemical shifts of aromatic carbon are also dependent on the electron density around the nucleus, the chemical shifts of aromatic carbons in all the N,N-dichloroarylsulphonamides have been calculated by adding the substituent contributions (Table 9) to the

shift of benzene (128.5 ppm), similar to the procedure employed for aromatic protons. The shifts in aromatic protons due to $-\mathrm{SO}_2\mathrm{NCl}_2$ were calculated comparing the values of N,N-dichlorobenzenesulphonamide with that of benzene carbon-13 of 128.5 ppm [19, 22]. The values are $^{13}\mathrm{C}\text{-}1 = +7.473$, $^{13}\mathrm{C}\text{-}4 = +3.022$, $^{13}\mathrm{C}\text{-}3$ or 5 = +0.814 and $^{13}\mathrm{C}\text{-}2$ or 6 = -0.656.

The calculated chemical shifts for different aromatic carbons compared with the experimental values are

- [1] M. M. Campbell and G. Johnson, Chem. Rev. **78**, 65 (1978).
- [2] B. T. Gowda and D. S. Mahadevappa, Talanta 30, 359 (1983).
- [3] B. T. Gowda and D. S. Mahadevappa, J. Chem. Soc., Perkin Trans. 2, 323 (1983).
- [4] B. T. Gowda, B. S. Sherigara, and D. S. Mahadevappa, Microchem. J. 34, 103 (1986).
- [5] K. K. Banerji, B. Jayaram, and D. S. Mahadevappa, J. Sci. Ind. Res. 46, 65 (1987).
- [6] M. C. Agrawal and S. K. Upadhyay, J. Sci. Ind. Res. 49, 13 (1990).
- [7] B. T. Gowda and Al. Weiss, Z. Naturforsch. 49a, 695 (1994).
- [8] B. T. Gowda, S. Dou, and Al. Weiss, Z. Naturforsch. 51a, 627 (1996).
- [9] B. T. Gowda, D. K. Bhat, H. Fuess, and Al. Weiss, Z. Naturforsch. 54a, 261, 679 (1999).
- [10] B. T.Gowda, H. Paulus, and H Fuess, Z. Naturforsch. 55a, 711, 791(2000); 56, 386 (2001).
- [11] B. T. Gowda, B. H. A. Kumar, and H. Fuess, Z. Naturforsch. 55a, 721 (2000).

listed in Tables 7 and 8. The agreement between the calculated and experimental chemical shift values is reasonably good. The ¹H and ¹³C chemical shifts are also compared with those of the corresponding aryl-sulphonamides and sodium salts of N-chloroarylsulphonamides. The effect of substitution in the phenyl ring in terms of electron-withdrawing and electron-donating groups could not be generalised, as the effect is non-systematic.

- [12] B. T. Gowda, K. Jyothi, and J. D. D'Souza, Z. Naturforsch. 57a, 967 (2002).
- [13] B. T. Gowda, J. D. D'Souza, and B. H. A. Kumar, Z. Naturforsch. 58a, 51 (2003).
- [14] F. D. Chattway, J. Chem. Soc. 87, 145 (1905).
- [15] H. D. Dakin, J. B. Cohen, M. Dufrence, and Kenyon, J. Proc. Roy Soc. (B) 89, 232 (1917).
- [16] A. I. Vogel, Quantitative Organic Analysis; Longman, London 1958.
- [17] R.B. Baxter and F.D. Chattway, J. Chem. Soc. 107, 1814 (1915).
- [18] B. T. Gowda and D. S. Mahadevappa, Microchem. J. 28, 374 (1983).
- [19] R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds; John Wiley and Sons, New York 1991.
- [20] W. Kemp, Organic Spectroscopy; MacMillan, London 1996
- [21] R. Minkwitz, P. Garzarek, and H. Preut, Z. Naturforsch. 52b, 88 (1997).
- [22] D. E. Ewing, Org. Magn. Reson. 12, 499 (1979).