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An approach to the pendulum problem, which is an alternative to the well-known traditional
treatment of that problem, has been formulated. An advantage of the new approach is provided
by a full symmetry in the position and momentum variables of the Hamiltonian expression for the
energy of the system. A similar symmetry holds for the Hamilton equations describing the motion
of a pendulum-like point mass. Calculations of the action function for the two kinds of pendulum
Hamiltonians – the traditional one and the new one – are presented.
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1. Introduction. Traditional Treatment of the Phase
space of a Pendulum

The mathematical pendulum and its phase space is
still of vivid interest [1 – 6]. The dynamic moment in-
variants havebeen investigated for linearHamiltonian
systems and a non-linear Hamiltonian system like
that of a pendulum in [7] and [8], respectively. But a
thorough examination of the action function of a
pendulum considered as an adiabatic invariant of a
dynamical system (see e.g. [9]) seems to be lacking. In
general, the calculation of the action function is im-
portant because its properties are strictly related to the
distribution of the position-momentum variables pos-
sessedby the pendulumpointmass in the phase space.

The aim of the present paper is to present a new
Hamiltonian and the corresponding new set of the
Hamilton equations for the motion of a pendulum.
These equations have the advantage of being easily
integrated in the formofFourier expansions.Another
basic feature of this new set of equations of motion is
their full symmetry in the position-momentum
coordinates. This property enables an easily calcula-
tionof the action function and gives a full symmetry of
the phase-space diagrams plotted for some constant
energy. Furthermore, the action function provided by
the new Hamiltonian can be easily referred to that of
the traditional Hamiltonian. So both action functions
can readily be calculated. We give an outline of the
traditional theory before the presentation of the new
approach to the pendulum equations.

Usually the description of a pendulum, which is a
point-like mass m oscillating planarly at some
constant distance l from a fixed point, is done with
the angular momentum pf and the position angle f,
the latter being the angle of deviation from the
position of the pendulum at rest [9 – 14]. We have

pf¼ml2ḟ, (1)

and the Hamiltonian of the problem is

H f; pf

� �
¼

p2
f

2ml2
þmgl 1� cosfð Þ

¼ m
2
l2 _ff2 þmgl 1� cosfð Þ; (2Þ

g is the acceleration constant of gravity. One of the
Hamilton equations, viz.

_ppf ¼ ml2€ff ¼ � @H
@f

¼ �mgl sinf; (3Þ

leads to the fundamental equation of the pendulum
motion

€ff ¼ � g
l
sinf (4Þ

whereas the other Hamilton equation, namely

_ff ¼ @H
@pf

¼ pf

ml2
; (3aÞ

is equivalent to equation (1).
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In principle, (4) attains its readily solvable form
only for smallf, equivalent to the harmonic oscillator
equation for f. For larger f the solution of (4)
becomes a much more complicated task.

We can assume that the motion of the pendulum
begins at f¼f0, where

ḟ(f0)¼ ḟ0¼ 0. (5)

Because of the conservation of the pendulum
energy E f;pfð Þ, we have from (2) and (5)

E f;pfð Þ ¼ 1� cosf0 ¼ 2 sin2 f0=2ð Þ; (6Þ

where, for simplicity we have put

m¼g¼ l¼ 1. (7)

With (7) the pendulum oscillation frequency w for
small f takes the form

w0 ¼
g
l

� �1=2

¼ 1: (8Þ

Basing on (6), the pendulum energy is parameter-
ized by the variable f0. From (2) and the abbrevia-
tions in (7) we have

1� cosf0 ¼
1
2

df
dt

� �2

þ1� cosf; (9Þ

so

dt ¼ df

21=2 cosf� cosf0ð Þ1=2
: (10Þ

With the aid of substitutions

sin(f0/2)¼k (11)

and

sin f=2ð Þ¼ 1
2

� �1=2

1�cosfð Þ1=2¼ksinz; (11aÞ

(10) can be integrated giving the well-known combi-
nation of elliptic functions

t ¼
Zp=2
z

dz

1� k2 sin2 z
� �1=2 ¼ F k;p=2ð Þ � F k; zð Þ: (12Þ

The whole time period of the pendulum oscillation
is represented by the formula [9, 12, 14]

T ¼ 4ffiffiffi
2

p
Zf0

0

df

cos f�cos f0ð Þ1=2

¼ 4K sin f0=2ð Þ½ �

¼ 2p
	
1 þ 12

22
sin2 ðf0=2Þ þ

1232

2242
sin4 ðf0=2Þ

þ 123252

224262
sin6 ðf0=2Þ þ . . .



:

(13Þ

Ontheother hand, the timeperiodof thependulum
having the frequency w0 given in (8) is

T0¼ 2p. (13a)

The phase diagram for a pendulum is usually given
by a plot of the variable 21=2 _ff represented as a
function of f [12 – 14]. This plot can be done for
different values of ḟ0 and f0. Since in our case we
assume ḟ0¼ 0, see (5), the diagram obtained from
(9a) is given by a plot of the expression

_ff fð Þffiffiffi
2

p ¼ 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosf� cosf0

p
; (14Þ

considered as a function of the variable f. Different
values of f0 entering (14) are taken from the interval

0<f0<p. (15)

2. A Pendulum Hamiltonian being Symmetrical in
Position-momentum Coordinates

Evidently, H(f, pf) in (2) is not symmetrical in the
variables f, pf, and our first aim is to transform the
Hamiltonian (2) into a Hamiltonian H (x, px)
dependent symmetrically on x and px; here x and px

are Cartesian coordinates of position and momen-
tum, respectively. This symmetrical Hamiltonian is
postulated to have the form

H x; pxð Þ ¼ 1� cos x cos px ¼ E x;pxð Þ; (16)
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where the energyE x;pxð Þ is a constant independent of x
and px. A characteristic property of (16) is that for
small x and px the expression H(x, px) takes the form

H x; pxð Þ ffi p2
x

2
þ x2

2
; ð16aÞ

which is a typical harmonic-oscillator Hamiltonian.
Equations following from theHamiltonian (16) are

_xx ¼ @H x; pxð Þ
@px

¼ cos x sin px; (17Þ

_ppx ¼ � @H x; pxð Þ
@x

¼ � sin x cos px; (17a)

but the next time-differentiation of (17) gives

€xx � d _xx
dt

¼ d cos x sinpxð Þ
dt

¼ � sin x cos x sin2 px þ cos2 px � sin xð Þ cos x

¼ � 1
2

sin 2x sin2 px þ cos2 px

� �
¼ � 1

2
sin 2x; (18Þ

or

d2

dt2
2xð Þ ¼ � sin 2xð Þ: (18aÞ

A differential equation similar to that for x can be
derived also for px. This becomes evident from the
time differentiation of (17a):

€ppx ¼ � cos x cos px _xxþ sin x sin px _ppx

¼ � cos2 x cos px sinpx � sin2 x sinpx cos px

¼ � cospx sin px ¼ � 1
2

sin 2pxð Þ: (18bÞ

In the second step of (18b), (17) and (17a) are
applied.

Equations (18a) and (18b) are typical pendulum-
like formulae. They can be solved on the basis of
Fourier expansions in the form

x ¼ a1 coswt þ a3 cos 3wt þ a5 cos 5wt þ . . . ; (19)

px ¼ b1 sinwt þ b3 sin 3wt þ b5 sin 5wt þ . . . : (19a)

Here an opposite boundary condition for px to that
assumed for x, which is

x(t¼ 0)¼a0, (19b)

should be taken into account; see (21) below. The
procedure of solution done with the aid of the small-
parameter method [15] provides us also with w; the
details of the Fourier expansions – together with w –
are presented in Table 1. One of the properties of ai
and bi entering (19) and (19a) is that

bi ¼ �1ð Þ
1
2 iþ1ð Þai; (19cÞ

and another property is that

a1þ a3þ a5þ ...¼a0, (19d)

which is a consequence of (19) and (19b).
Evidently, on the basis of (7), (18a) is identical with

(4) if we put

f¼ 2x. (20)

In the next step, because of (1), (2), (7) and (20), we
obtain

H f; pf

� �
¼ 1

2
p2
f þ 1� cosf

¼ 1
2
_ff2 þ 1� cosf

¼ 2 _xx2 þ 1� cos 2xð Þ

¼ 2 _xx2 þ sin2 x
� �

¼ E f;pfð Þ: ð20aÞ

This formula is rather different form the Hamil-
tonian (16), which has the advantage of symmetry in
the coordinates x and px.

The boundary conditions for px are

px¼ 0 at x¼ x0¼ a0, (21)

where a0, the largest value attained by x, is called the
amplitude of the motion of the pendulum particle.
From the property of symmetry ofH in the variables x
and px we have also

px¼ a0 at x¼ 0; (21a)
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in this case, a0 is a maximum value (amplitude) of the
momentum. In both cases, represented by (21) and
(21a), the Hamiltonian attains the same value

H x; pxð Þ ¼ 1� cos a0 ¼ E x;pxð Þ: (22Þ

Evidently, (22) is the energy of system in course of
the whole oscillatory motion because of the energy
conservation.

The energy (22) can be readily referred to the
energy of (20a). For, from (17a)

_xx2 ¼ cos2 x sin2 px ¼ cos2 x 1 � cos2 px

� �
; (23Þ

and from (16) and (22):

cosxcospx¼ cosa0. (24)

In effect, from (23):

_xx2 ¼ cos2x� cos2a0. (23a)

This result, when substituted into (20a), gives on
the basis is of (22)

H f; pf

� �
¼ 2 cos2 x� cos2 a0 þ sin2 x

� �
¼ 2 sin2 a0 ¼ 2 1þ cos a0ð ÞH x; pxð Þ:

(25Þ

The second step obtained in (25) remains in
accordance with (6), provided that we take into
account (20) at f¼f0 and (21); let us note that ḟ0¼ 0
is coincident with the condition that px¼ 0. We
summarize Section 2 by stating that the pendulum
motion considered in (f, pf)-coordinates can be
replaced by a similar one-dimensional oscillatory
motion in (x, px)-coordinates, but x and px build
up a symmetrical position-momentum Hamiltonian
H (x, px). The ratio of the Hamiltonians,

H f; pf

� �
H x; pxð Þ ¼ 2 1þ cos a0ð Þ; (26Þ

remains a constant number in the course of the whole
oscillatory motion depending solely on the amplitude
a0 ¼ f0=2.

3. Symmetrical Phase Diagram for a Pendulum and
its Properties

The phase diagram in the space of (x, px) can be
readily obtained when px of (18b) is plotted as a
functionofx taken from (18), or (18a). InSection 3we
examine the general properties of that plot which is
represented by a closed curve on the condition that
the curvature

Table 1. Fourier-like solutions of (18a) and (18b).

x tð Þ ¼ cos wtð Þ a0 þ
1
48

a3
0 þ

17
3840

a5
0 þ

1487
1290240

a7
0 þ

30901
743178240

a9
0 þ . . .

� �

þ cos 3wtð Þ � 1
48

a3
0 �

1
192

a5
0 �

133
92160

a7
0 �

16027
37158912

a9
0 þ . . .

� �
þ cos 5wtð Þ 1

1280
a5

0 þ
1

3072
a7

0 þ
1211

10321920
a9

0 þ . . .

� �

þ cos 7wtð Þ � 1
28672

a7
0 �

1
49152

a9
0 þ . . .

� �
þ cos 9wtð Þ 1

589824
a9

0 þ . . .

� �
þ . . . :

px tð Þ ¼ sin wtð Þ �a0 �
1
48

a3
0 �

17
3840

a5
0 �

1487
1290240

a7
0 �

30901
743178240

a9
0 � . . .

� �

þ sin 3wtð Þ � 1
48

a3
0 �

1
192

a5
0 �

133
92160

a7
0 �

16027
37158912

a9
0 þ . . .

� �
þ sin 5wtð Þ � 1

1280
a5

0 �
1

3072
a7

0 �
1211

10321920
a9

0 � . . .

� �

þ sin 7wtð Þ � 1
28672

a7
0 �

1
49152

a9
0 þ . . .

� �
þ sin 9wtð Þ � 1

589824
a9

0 � . . .

� �
þ . . . :

w ¼ 1 � 1
4
a2

0 þ
1

192
a4

0 �
23

11520
a6

0 �
2519

5160960
a8

0 þ . . . :
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c ¼
d2px

dx2

1þ dpx

dx

� �2
" #3=2 (27Þ

remains a positive number. Since from (16) we have

cos px ¼
1� E x;pxð Þ

cos x
; ð16bÞ

the curvature becomes

c ¼
1� E x;pxð Þ½ � sin2 xþ sin2 px

� �
cos2 x sin2 px þ sin2 x cos2 px

� ��3=2 (27aÞ

By taking solely into account thatE x;pxð Þ > 0 we see
that c is a positive number on the condition that

0 < E x;pxð Þ < 1: (28Þ

Phase diagrams of px versus x, plotted for different
E x;pxð Þ; are presented in Figure 1.

4. Action Functions for a Pendulum and their
Properties

Since the calculation of the action function for the
pendulum problem, described with the aid of the
Hamiltonian H f; pf

� �
, seems to be rather difficult

[9], we begin with the calculation of a similar action
function for the Hamiltonian H x; pxð Þ. We have

J x;pxð Þ ¼
I

pxdx

¼
ZT

0

px
dx
dt

dt ¼ �
ZT

0

x
dpx

dt
dt: (29Þ

This integral, calculated on the basis of x¼ x(t) and
px¼px(t) given in Table 1, is presented in Table 2;T is
the time period of the pendulum oscillation, see (13).

The validity of the result obtained for J x;pxð Þ can be
checkedwhen this function – togetherwith the energy
(22) – is applied to the calculation of the frequency:

w ¼ 2p
T

¼ @J x;pxð Þ a0ð Þ
@E x;pxð Þ a0ð Þ

	 
�1

¼ @J x;pxð Þ=@a0

@E x;pxð Þ=@a0

	 
�1

: (30Þ

Equation (30) holds, in fact, on condition we put in
(13)

f0

2
¼ a0; (31Þ

see (20) and (21). But the same w should be obtained
also on the basis of the expression H f; pf

� �
and the

Fig. 1. One-fourth of the phase diagrams of px versus x
calculated from solutions of (18a) and (18b) for different
E x;pxð Þ of (16) (full diagrams are symmetrical to the axes x
and px). For details of x and px see Table 1.

Table 2. Action functions J (and their derivatives) calcu-
lated in terms of the power series of the amplitude a0. A
reference between two kinds of derivatives of J descend-
ing, respectively, from two kinds of the Hamiltonians, is
given in (32a).

J x;pxð Þ ¼ 2p
1
2
a2

0 þ
1
48

a4
0 þ

23
5760

a6
0 þ

593
645120

a8
0 þ . . .

� �
:

@J x;pxð Þ

@a0
¼ 2p a0 þ

1
12

a3
0 þ

23
960

a5
0 þ

593
80640

a7
0 þ . . .

� �
:

J f;pfð Þ ¼ 8p
1
2
a2

0 �
5
48

a4
0 þ

23
5760

a6
0 �

41
129024

a8
0 þ . . .

� �
:

@J f;pfð Þ
@a0

¼ 8p a0 �
5
12

a3
0 þ

23
960

a5
0 �

41
16128

a7
0 þ . . .

� �
:
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corresponding action function J f;pfð Þ, on the condi-
tion that H x; pxð Þ in (30) is replaced by H f; pf

� �
and

the action function J x;pxð Þ is replaced by J f;pfð Þ.
Therefore we have the relation

@H x; pxð Þ
@a0

@J x;pxð Þ

@a0

¼

@H f; pf

� �
@a0

@Jðf;pfÞ

@a0

; (32Þ

from which we obtain

@J f;pfð Þ
@a0

¼ @J x;pxð Þ

@a0

@H f; pf

� �
@a0

@H x; pxð Þ
@a0

¼ 4 cos a0
@J x;pxð Þ

@a0
: (32aÞ

The right-hand side of (32a), which is easy to
calculate on the basis of (22), (25) and J x;pxð Þ from
Table 2, can be readily integrated over the parameter
a0 giving Jðf;pfÞ as a function of a0; see Table 2. The
plots of the functions J x;pxð Þ and Jðf;pfÞ, done versus a0,
are compared in Figure 2.

5. Verification of some Results of Section 4

The validity of the result obtained in (32a) and
Table 2 can be verified: From relations (6) and (9) we
have

_ff2

2
¼ E f;pfð Þ � 1þ cosf ¼ E f;pfð Þ � 2 sin2 f

2

¼ 2 sin2 f0

2

� �
� sin2 f

2

� �h i
; (33Þ

therefore

J f;pfð Þ ¼
I

pfdf ¼
I

_ffdf

¼ 21=2

I
E f;pfð Þ � 2 sin2 f

2

� �1=2

df

¼ 25=2

Zf0

0

E f;pfð Þ � 2 sin2 f

2

� �1=2

df

¼ 27=2

Zu0

0

2 sin2 u0 � 2 sin2 u
� �1=2

du

¼ 24 sinu0

Zu0

0

1 � sin2 u

sin2 u0

� �1=2

du ð34Þ

Here we have put f=2 ¼ u, f0=2 ¼ u0 and
E f;pfð Þ ¼ 2 sin2 u0 because of (33). In the next step
we put

sinu
sin u0

¼ z;
cos u
cosu0

du ¼ dz: (35Þ

Since from (35) follows

cos u ¼ 1� sin2 u0z
2

� �1=2
; (35aÞ

we obtain for the integral J f;pfð Þ

J f;pfð Þ¼24sinu0

Z1

0

1�z2ð Þ1=2dz
1�sin2u0z2
� �1=2¼24sinu0

Z1

0

1�z2ð Þ1=2dz
1

sin2u0

�z2

¼24 �cos2u0F
p

2
;sinu0

� �
þE

p

2
;sinu0

� �h i
: (36Þ

Fig. 2. Plots of the action functions J x;pxð Þ and 1
4 J

f;pfð Þ
compared for two kinds of the pendulum Hamiltonians:
H(x, px) and H(f, pf).
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The functions F
p

2
; sin u0

� �
� K sinu0ð Þ and

E
p

2
; sin u0

� �
� E sin u0ð Þ are the elliptic integrals of

the first kind and the second kind, respectively [16].
A derivative of the expression (36) calculated with

respect of the variable

u0¼ a0 (37)

[see (31)] gives [17]

@J f;pfð Þ
@a0

¼24

�
sin 2a0ð ÞK sina0ð Þ

�cos2a0 ctga0

	
E sina0ð Þ
cos2a0

�K sina0ð Þ



þctga0 E sina0ð Þ�K sina0ð Þ

	 �

¼24fsin 2a0ð ÞK sina0ð Þþcos2a0 ctga0


Kðsina0Þ�ctga0K sina0ð Þg
¼24 sina0 cosa0K sina0ð Þ: (38Þ

Evidently, this expression tends to zeroboth ata0¼0
and a0 ¼ p=2.

Our idea is now to apply (32a) and (38) to the

calculation of the function
@J x;pxð Þ

@a0
. In the first step we

demonstrate that a fundamental relation for w�1,
being a reciprocal formula to that presented in (30)
for the case of the variables x and px, holds also for the
case of f and pf [see (32)]:

2pw�1 ¼ @J f;pfð Þ

@E f;pfð Þ ¼

@J f;pfð Þ
@a0

@E f;pfð Þ
@a0

¼ 24 sin a0 cos a0K sin a0ð Þ
22 sin a0 cos a0

¼ 22K sin a0ð Þ ¼ T: (39Þ

This result is obtainedon thebasis of (38), (31), (25)
and (13). In the next step, because of the relation [see
(22) and (25)]

@E x;pxð Þ

@a0

@E f;pfð Þ
@a0

¼

@ 1� cos a0ð Þ
@a0

2
@

@a0
1 � cos2 a0

� �

¼ sin a0

22 cos a0 sin a0
¼ 1

4 cos a0
; (40Þ

we have from (32a), (38) and (40)

@J x;pxð Þ

@a0
¼

@J f;pfð Þ
@a0

@E f;pfð Þ
@a0

@E x;pxð Þ

@a0
¼ 4K sin a0ð Þ sin a0: (41Þ

The same expansion can be readily obtained from
the derivative of the a0-dependent expression calcu-
lated for J x;pxð Þ in (29); see Table 2.

6. The Non-linearity Parameter for the Pendulum
and the Change of T with the Pendulum Energy

The non-linearity parameter a for the pendulum
can be calculated on the basis of expressions depend-
ing on a0 ¼ f0=2 and the fundamental formula

a ¼ J
w

dw
dJ

¼ J a0ð Þ@w=@a0

w a0ð Þ@J=@a0
: (42Þ

This expansion, absent in numerous text-books, is
presented for the case of J ¼ J f;pfð Þ and J ¼ J x;pxð Þ in
Table 3; the plots of both aIs, taken as functions of a0,
are given in Figure 3.

A difference existing between the two kinds of the
energy expression, E f;pfð Þ and E x;pxð Þ, implies a
difference in the behaviour of the change of the
oscillation period T attained with the change of
energy of the oscillating system. Because of (13), (25)
and (31) we have

@T

@E f;pfð Þ ¼
@T=@ f0=2ð Þ

@E f;pfð Þ
.
@ f0=2ð Þ

¼ @T=@a0

@E f;pfð Þ=@a0

¼ p

2

	
12

2
þ 1232

224
sin2 a0 þ

123252

22426
sin4 a0

þ 12325272

2242628
sin6 a0 þ . . .



(43Þ
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whereas

@T
@E x;pxð Þ ¼

@T=@a0

@E x;pxð Þ=@a0
¼ 4 cos a0

@T

@E f;pfð Þ (43aÞ

Equation (43a) holds because of the relation

@E f;pfð Þ
@a0

¼ 4 cos a0
@E x;pxð Þ

@a0
: (44Þ

Plots of the formulae (43) and (43a) presented as
functions of a0 are given in Figure 4.

7. Summary

Weobtained aHamiltonianwhich is symmetrical in
the canonically conjugated coordinates of position and
momentum,xandpx. TheHamiltonian leads – for both
kinds of coordinates – to equations of motion which
are identical to that characteristic for the angular
coordinate of f of the mathematical pendulum. The
symmetry of the Hamiltonian becomes a symmetry of
the phase-space plots of px versus x absent in traditional
plots of the momentum pf versus f. The new Ham-
iltonian can easily be referred to the exact pendulum
Hamiltonian, and the derived equations of motion
can easily be solved with the aid of Fourier series.

The action functions of both Hamiltonians are
calculated andmutually compared. Similar calculations
are done for the parameter of non-linearity which
characterizes the two pendulum systems, and the rate
of change of the oscillation period obtained with the
change of the pendulum energy is also computed.

Table 3. Non-linearity parameter a for two kinds of the
pendulum Hamiltonian, calculated in terms of the power
series of the parameter a0; see (42) and inferences given
below that formula.

a x;pxð Þ ¼ � 1
4
a2

0 �
1
24

a4
0 �

143
11520

a6
0 �

1403
322560

a8
0 þ . . .

a f;pfð Þ ¼ � 1
4
a2

0 �
5
48

a4
0 �

533
11520

a6
0 �

2657
129024

a8
0 þ . . .

Fig. 3. The non-linearity parameter a [see (42)] plotted
versus amplitude a0 for two kinds of the pendulum
Hamiltonian: H(f, pf) from (2) and H(x, px) from (16).

Fig. 4. The rates of change of the oscillation period Twith
the energy E f;pfð Þ [see (2), (6) and (43)] and the energy
4E x;pxð Þ [see (16), (22), and (43a)] plotted as functions of a0.
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