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An approach to the pendulum problem, which is an alternative to the well-known traditional
treatment of that problem, has been formulated. An advantage of the new approach is provided
by a full symmetry in the position and momentum variables of the Hamiltonian expression for the
energy of the system. A similar symmetry holds for the Hamilton equations describing the motion
of a pendulum-like point mass. Calculations of the action function for the two kinds of pendulum
Hamiltonians — the traditional one and the new one — are presented.
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1. Introduction. Traditional Treatment of the Phase
space of a Pendulum

The mathematical pendulum and its phase space is
still of vivid interest [1 - 6]. The dynamic moment in-
variants have been investigated for linear Hamiltonian
systems and a non-linear Hamiltonian system like
that of a pendulum in [7] and [8], respectively. But a
thorough examination of the action function of a
pendulum considered as an adiabatic invariant of a
dynamical system (see e.g. [9]) seems to be lacking. In
general, the calculation of the action function is im-
portant because its properties are strictly related to the
distribution of the position-momentum variables pos-
sessed by the pendulum point mass in the phase space.

The aim of the present paper is to present a new
Hamiltonian and the corresponding new set of the
Hamilton equations for the motion of a pendulum.
These equations have the advantage of being easily
integrated in the form of Fourier expansions. Another
basic feature of this new set of equations of motion is
their full symmetry in the position-momentum
coordinates. This property enables an easily calcula-
tion of the action function and gives a full symmetry of
the phase-space diagrams plotted for some constant
energy. Furthermore, the action function provided by
the new Hamiltonian can be easily referred to that of
the traditional Hamiltonian. So both action functions
can readily be calculated. We give an outline of the
traditional theory before the presentation of the new
approach to the pendulum equations.

Usually the description of a pendulum, which is a
point-like mass m oscillating planarly at some
constant distance / from a fixed point, is done with
the angular momentum p,, and the position angle ¢,
the latter being the angle of deviation from the
position of the pendulum at rest [9—14]. We have

py=mPg, ey
and the Hamiltonian of the problem is

2

p
H(p,p,) = Zn;plz +mgl(1 — cos )
=" 1¢? + mgl(1 — cos g); )

g is the acceleration constant of gravity. One of the
Hamilton equations, viz.

H
p, =ml’p = fg—(p = —mglsin g, (3)

leads to the fundamental equation of the pendulum
motion

G =—5sing “)
whereas the other Hamilton equation, namely
oH p,
==X 3
¢ op, " mi (3a)

is equivalent to equation (1).
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In principle, (4) attains its readily solvable form
only for small ¢, equivalent to the harmonic oscillator
equation for ¢. For larger ¢ the solution of (4)
becomes a much more complicated task.

We can assume that the motion of the pendulum
begins at ¢ = ¢,, where

@(@o) = @0 =0. &)

Because of the conservation of the pendulum
energy E (‘”"f), we have from (2) and (5)

EW?) =1 - cos @, = 2sin’ (¢,/2), (6)
where, for simplicity we have put
m=g=I[=1. (7)

With (7) the pendulum oscillation frequency w for
small ¢ takes the form

Wy = (%)1/2: 1. (8)

Basing on (6), the pendulum energy is parameter-
ized by the variable ¢,. From (2) and the abbrevia-
tions in (7) we have

1 —cos _1(de 2—}—l—cos 9)
o = 2 dt (28
o)
dg
R (10)

B 21/2(cos @ — cos @)
With the aid of substitutions

sin(@y/2)=k (11)

and

12
sin(qo/Z):(%) (1—cosg)’=ksinz, (11a)

(10) can be integrated giving the well-known combi-
nation of elliptic functions

/2

t—/ dz
(1— K> sin’z)"?

z

= Flk,m)2) — F(k,z). (12)

The whole time period of the pendulum oscillation
is represented by the formula [9, 12, 14]

Po
T_ 4 / de
V2 ) (cos g—cos @)

= 4K[sin(¢py/2)]
12, 1232 .,
=271+ 5 Sin (®0/2) + o0 S0 (90/2)
12 282

+m Sln6(§00/2)—|— .

(13)

On the other hand, the time period of the pendulum
having the frequency w, given in (8) is
Ty=2m. (13a)

The phase diagram for a pendulum is usually given
by a plot of the variable 2!/2¢ represented as a
function of ¢ [12-14]. This plot can be done for
different values of ¢, and ¢,. Since in our case we

assume ¢, =0, see (5), the diagram obtained from
(9a) is given by a plot of the expression

¢l¢) = +,/Cos ¢ — COSs @y, (14)

V2

considered as a function of the variable ¢. Different
values of ¢, entering (14) are taken from the interval

0< <. (15)

2. A Pendulum Hamiltonian being Symmetrical in
Position-momentum Coordinates

Evidently, H(g, p,) in (2) is not symmetrical in the
variables ¢, p,, and our first aim is to transform the
Hamiltonian (2) into a Hamiltonian H (x, p,)
dependent symmetrically on x and p,; here x and p,
are Cartesian coordinates of position and momen-
tum, respectively. This symmetrical Hamiltonian is
postulated to have the form

H(%Px) =1—-cosxcosp, = E(xm)’ (16)
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where the energy E¥?+) is a constant independent of x
and p,. A characteristic property of (16) is that for
small x and p, the expression H(x, p,) takes the form

=N

H(x,p,) = (16a)

TR

x2
+3

which is a typical harmonic-oscillator Hamiltonian.
Equations following from the Hamiltonian (16) are

OH .
X = % = cosxsinp,, (17)
H
D= — % = —sinxcosp,, (17a)
but the next time-differentiation of (17) gives
. _dx d(cosxsinp,)
Tdr dr
= —sinxcosxsin’® p, + cos’ p,(— sin x) cos x
1 . . o ) 1 .
= —5sin 2x(sin’ p, + cos’p,) = —5 sin 2x, (18)
or
d2
(2x) = —sin(2x). (18a)

de

A differential equation similar to that for x can be
derived also for p,. This becomes evident from the
time differentiation of (17a):

D = — COSXCOSp,X + sinxsinp,p,

= —cos?xcos p, sinp, — sin’ xsin p, cos p,

= —cosp,sinp, = —% sin(2p,). (18b)

In the second step of (18b), (17) and (17a) are
applied.

Equations (18a) and (18b) are typical pendulum-
like formulae. They can be solved on the basis of
Fourier expansions in the form

(19)
(19a)

X = a, cos wt + a; cos 3wt + ascosSwt + ...,

Py = by sinwt + by sin3wt + bssinSwt + . . ..

Here an opposite boundary condition for p, to that
assumed for x, which is
x(t=0)=a,, (19b)
should be taken into account; see (21) below. The
procedure of solution done with the aid of the small-
parameter method [15] provides us also with w; the
details of the Fourier expansions — together with @ —

are presented in Table 1. One of the properties of a;
and b, entering (19) and (19a) is that

b= (—1)""a, (19¢)
and another property is that
Lll +a3+05+...:a0, (19d)

which is a consequence of (19) and (19b).
Evidently, on the basis of (7), (18a) is identical with
(4) if we put
@ =2x. (20)

In the next step, because of (1), (2), (7) and (20), we
obtain

1
H((p,p¢) :ipi—l—l — Ccos @

1
:E(iyz—i—l—cosga

= 2%+ 1 — cos(2x)

—2(& +sin’x) = E(7) . (20a)
This formula is rather different form the Hamil-
tonian (16), which has the advantage of symmetry in
the coordinates x and p,.
The boundary conditions for p, are

p.=0at x=x,=a,, (21)
where a, the largest value attained by x, is called the
amplitude of the motion of the pendulum particle.
From the property of symmetry of H in the variables x
and p, we have also

Px=4a at x=0; (213.)
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Table 1. Fourier-like solutions of (18a) and (18b).
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1487, 30901

5
ay +

1, 17
x(t) = cos(wt) (aﬂ + 8% + 3840

L
48

1290240 %0

1 133, 16027

3
ay —

+ cos(3wt) (

T, 1,
+ cos(7wt) (—mao ~ 19153 % + .. > + cos(9wt) (

.17, 1487

g _ -
192% ~ 92160 37158912“”"') + cos(Swr) <1280”°+3072”°

30901

&
743178240 ° " 7

1 1,

Lot
103219207

Lo )+
58982410 T ) T

D (t) = sin(wr) (—ao - %a

1, 133, 16027

1
+ sin(3wt) ( 3

—_— — — 9 J—
073840 % 1290240 T 743178240 )

21,

1
[ —_— — — 1 —_ 5 —_— 7 N — —
8% 192% 9160% 371589127 ) +sin(Swr) ( 1280% ~3072% 10321920 )

, 1, , T,
+sm(7wt)( 28672 % 49152at]+...)+51n(9wt)< sgoma® +....
1,1, B, 2519
@ =1=38%%75% = 11520% ~ 5160060 % T

in this case, a, is a maximum value (amplitude) of the
momentum. In both cases, represented by (21) and
(21a), the Hamiltonian attains the same value
H(x,p,) =1 —cosa, = EX). (22)
Evidently, (22) is the energy of system in course of
the whole oscillatory motion because of the energy
conservation.

The energy (22) can be readily referred to the
energy of (20a). For, from (17a)

# = cos’xsin’ p, = cos’x(1 — cos’p,), (23)
and from (16) and (22):
COS X COS P, = COS dy. (24)
In effect, from (23):
X2 = cos?x — cos?ay. (23a)

This result, when substituted into (20a), gives on
the basis is of (22)

H(p,p,) = 2(cos*x — cos” a, + sin’ x)
= 2sin’ ay = 2(1 + cosay)H (x, p,).
(25)

The second step obtained in (25) remains in
accordance with (6), provided that we take into
account (20) at ¢ = ¢, and (21); let us note that ¢, =0
is coincident with the condition that p,=0. We
summarize Section 2 by stating that the pendulum
motion considered in (¢, p,)-coordinates can be
replaced by a similar one-dimensional oscillatory
motion in (x, p,)-coordinates, but x and p, build
up a symmetrical position-momentum Hamiltonian
H (x, p,). The ratio of the Hamiltonians,

H(g.p,)

H(x,p,)
remains a constant number in the course of the whole
oscillatory motion depending solely on the amplitude
ay = @o/2.

=2(1 4 cosay), (26)

3. Symmetrical Phase Diagram for a Pendulum and
its Properties

The phase diagram in the space of (x, p,) can be
readily obtained when p, of (18b) is plotted as a
function of x taken from (18), or (18a). In Section 3 we
examine the general properties of that plot which is
represented by a closed curve on the condition that
the curvature
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&’p,
2
r= @7)

32
dp,\’
1+<dx)]

remains a positive number. Since from (16) we have

1 — E&xpy)

COSPx = cos X

(16b)

the curvature becomes

. [l — E&)](sin x + sin’ p, ) (27a)

) ) 3
(cos? xsin’ p, + sin’ x cos? p, )

By taking solely into account that E&P) > 0 we see
that y is a positive number on the condition that
0< EXP) <1, (28)

Phase diagrams of p, versus x, plotted for different
E®rJ | are presented in Figure 1.

E*P¥=0.98

E®PY=0.7

08 1 E®PY=0.5

Fig. 1. One-fourth of the phase diagrams of p, versus x
calculated from solutions of (18a) and (18b) for different
Ex?9) of (16) (full diagrams are symmetrical to the axes x
and p,). For details of x and p, see Table 1.

4. Action Functions for a Pendulum and their
Properties

Since the calculation of the action function for the
pendulum problem, described with the aid of the
Hamiltonian H (¢,p,), seems to be rather difficult
[9], we begin with the calculation of a similar action
function for the Hamiltonian H (x, p,). We have

Jwps) — fpxdx
T

T
dx dp,
0 0

This integral, calculated on the basis of x = x(¢) and
p.=p.(¢) givenin Table 1, is presented in Table 2; T'is
the time period of the pendulum oscillation, see (13).

The validity of the result obtained for J&#¥) can be
checked when this function — together with the energy
(22) —is applied to the calculation of the frequency:

w =

2 [OI5)(ay) *1_ I /9ay] ! 30)
T N aE(x‘p") (ao) a 6E<X’p'“)/aa0 '

Equation (30) holds, in fact, on condition we put in

(13)
%o

-5 = o,

> (1)

see (20) and (21). But the same w should be obtained
also on the basis of the expression H(¢,p,) and the

Table2. Action functions J (and their derivatives) calcu-
lated in terms of the power series of the amplitude a,. A
reference between two kinds of derivatives of J descend-
ing, respectively, from two kinds of the Hamiltonians, is
given in (32a).

1, 1 23 593

(xpy) — =2 = a4 6 8
/ 2”(2“”48"0+5'760"°+645120“°+"')'
orer 27( a +ia3 + 2 s + 98 . +

day 71270 9600 T 80640 0 )

n) o (Lo 5, 23 4,
I 839 ~ 28% + 5760% ~ 120024 T+ )
RV , 23, 4

5
day 8”(“” “ 1% T 960% o128 T )
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corresponding action function J (¢’”¢), on the condi-
tion that H (x, p,) in (30) is replaced by H (¢, p, ) and
the action function J&72) is replaced by J\7%¢),
Therefore we have the relation

OH(x,p,) OH(¢,p,)
Jay Oa,
oJars) g Jlery) (32)
aao 800
from which we obtain
vor) OH (9,p,)
aslrre) a1 T ga, oJr)
9a~ oa OH(x.p) 4 cos a, aa, (32a)
Jda,

The right-hand side of (32a), which is easy to
calculate on the basis of (22), (25) and J®?9 from
Table 2, can be readily integrated over the parameter
a, giving J@rs) as a function of ay; see Table 2. The
plots of the functions J*») and J@#+), done versus a,
are compared in Figure 2.

14 4
a‘/("'vl’;)
12 J day
10 4
8 -
1aslore)
61 4  Oay
/ J(*"ny)
4
2 4
lJ(¢’pw)
4
0 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6

Fig.2. Plots of the action functions J®») and 1J (2y)
compared for two kinds of the pendulum Hamiltonians:
H(x, p,) and H(g, p,).

893

5. Verification of some Results of Section 4
The validity of the result obtained in (32a) and
Table 2 can be verified: From relations (6) and (9) we

have

2

% —Eln) 14 cos@ = E@?) —25in’ %
ol (P0) i (€
—2{sm (2) sin (2)}, (33)
therefore
Jlore) = }[ p,dgp = 7{ @de
— 1/2 (qc‘p ) 2 g 12
2 y{(E 2sin 2) do
=27 [ (E(""p“) 2sin’ gD)l/zd
) @
0
_ A2 .2 .2 1/2
=2 /(2s1n uy —2sin’u) du
0
7 sin® u 12
_24sinu0/(1— — > du (34)
) sin” i,

Here we have put ¢/2=u, ¢,/2=u, and
E(@20) = 2sin’ u, because of (33). In the next step
we put

sinu cosu

- =z, du = dz. (35)
sin u, cos i
Since from (35) follows
cosu = (1 —sin’ uozz)l/z, (35a)
we obtain for the integral J )
1 1
(1-22)'"*d
J(ory) s1nu0/ ) dz _24smu0/
1—sin’u, Z2
sin’u,

:24[ cos qu(z s1nu0) ( s1nu0)} (36)
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The functions F (g,sin uo) = K(siny,) and

E(g ,sin uo) = E(siny,) are the elliptic integrals of
the first kind and the second kind, respectively [16].

A derivative of the expression (36) calculated with
respect of the variable

Uy =ay (37)
[see (31)] gives [17]
o (vr) : .
o~ 2¢ { sin(2a,)K (sina,)
E(sinay) .
— cos? =)
cos”ayctgag [ cosay K(smao)]

+ctgay [E(sinao) - K(Sinaﬂ)] }

=2*{sin(2a,)K(sina,) +cos’ a, ctga,
x K(sinay) —ctga K (sinay) }

=2*sing,cosa,K (sinay). (38)

Evidently, this expression tends to zero both at a, =0
and a, = /2.
Our idea is now to apply (32a) and (38) to the

. . OJ xpx)
calculation of the function

. In the first step we
gy

demonstrate that a fundamental relation for w1,

being a reciprocal formula to that presented in (30)

for the case of the variables x and p,, holds also for the

case of @ and p,, [see (32)]:

oy (rre)
2nw71::81@m” __day _
oEWr)  gE(vre)

Oay,

_ 2*sina, cos a,K(sin ay)
22sin a, cos a,

=2?K(sinay) = T. (39)

This result is obtained on the basis of (38), (31), (25)
and (13). In the next step, because of the relation [see
(22) and (25)]

QEwP) (1 — cosay)
8[10 _ aao
gE(r:) 5 0 (1 —cos”ay)
oa, o
_ sin a, 1
~ 22cosaysing, 4cosa,’ (40)
we have from (32a), (38) and (40)
o7 (vee)
OJ xpx) da, O | (x:px) . .
da,  pplen) Oay 4K (sin ay) sin ay. 41)
Oay

The same expansion can be readily obtained from
the derivative of the a,-dependent expression calcu-
lated for J®7) in (29); see Table 2.

6. The Non-linearity Parameter for the Pendulum
and the Change of 7 with the Pendulum Energy

The non-linearity parameter a for the pendulum
can be calculated on the basis of expressions depend-
ing on a, = ¢,/2 and the fundamental formula

o Jdo J(ao)aa}/aao. 42)
o dl  w(ay)d]/0a,

This expansion, absent in numerous text-books, is
presented for the case of J =J (v#¢) and J = J&r9 in
Table 3; the plots of both a’s, taken as functions of a,,
are given in Figure 3.

A difference existing between the two kinds of the
energy expression, E\??¢) and E®PJ, implies a
difference in the behaviour of the change of the
oscillation period T attained with the change of
energy of the oscillating system. Because of (13), (25)
and (31) we have

or  OT/d(g/2)  OT/oa,
OE(r:)  gE(rr) / owy/2)  OEU™) [oa,
a[e rE L e
= 712 24 s ag 2426 S a,
12357
+msln a0+...:| (43)



S. Olszewski et al. - Phase-space Symmetry of the Pendulum Problem 895

Table 3. Non-linearity parameter a for two kinds of the
pendulum Hamiltonian, calculated in terms of the power
series of the parameter a,; see (42) and inferences given
below that formula.

1, 1, 143 1403
Cpd) — _Z 2 gh o g0 3
* 3%~ 22% T T1520™ " 3225600 T
(o) = Lo 5 e 333 o 2657
“ 2% 738" " Tis20% T 1200080 T

0.0

-0.5 4

2.0 4

25 4

-3.0 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6

Fig. 3. The non-linearity parameter a [see (42)] plotted
versus amplitude a, for two kinds of the pendulum
Hamiltonian: H(¢, p,) from (2) and H(x, p,) from (16).

whereas
oT 0T /day oT
= —4 e 4
DECr) ~ QECr ) [day 0 o p(en) (432)
Equation (43a) holds because of the relation
OE( ) A DEP) "
B e cosa oa (44)

Plots of the formulae (43) and (43a) presented as
functions of g, are given in Figure 4.

4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8

a,

Fig. 4. The ra{es S)f change of the oscillation period 7 with
the energy E\*"¢) [see (2), (6) and (43)] and the energy
4E®Po) [see (16), (22), and (43a)] plotted as functions of a,.

7. Summary

We obtained a Hamiltonian which is symmetrical in
the canonically conjugated coordinates of position and
momentum, x and p,. The Hamiltonian leads — for both
kinds of coordinates — to equations of motion which
are identical to that characteristic for the angular
coordinate of ¢ of the mathematical pendulum. The
symmetry of the Hamiltonian becomes a symmetry of
the phase-space plots of p, versus x absent in traditional
plots of the momentum p,, versus . The new Ham-
iltonian can easily be referred to the exact pendulum
Hamiltonian, and the derived equations of motion
can easily be solved with the aid of Fourier series.

The action functions of both Hamiltonians are
calculated and mutually compared. Similar calculations
are done for the parameter of non-linearity which
characterizes the two pendulum systems, and the rate
of change of the oscillation period obtained with the
change of the pendulum energy is also computed.
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