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The nonlinear Rayleigh-Taylor stability of a cylindrical interface between vapor and the liquid phas-
es of a fluid is studied when the phases are enclosed between two cylindrical surfaces coaxial with the 
interface, and when there is mass and heat transfer across the interface. The method of multiple time 
scale expansion is used for the investigation. A simple nondimensional parameter is found to character-
ize the stability of the system. Using this parameter, the region of stability is displayed graphically. 
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1. Introduction 

The problem of stability of liquids when there is mass 
an heat transfer across the interface has been investigat-
ed in [1-7]. Hsieh [2] established a general formulation 
of the interfacial flow problem with mass and heat trans-
fer and applied it to the Rayleigh-Taylor and Kelvin-
Helmholtz instability problems in plane geometry. In the 
nuclear reactor cooling of fuel rods by liquid coolants, 
the geometry of the system in many cases is cylindrical. 
Indeed, there have been some investigations [6,7] on the 
stability of a cylindrical interface between two fluids 
when there is a mass and heat transfer across the inter-
face. The analysis of these studies was confined within 
the framework of the linear theory. 

The effect of mass and heat transfer across the inter-
face should be taken into account in the stability discus-
sions, when the situation is like film boiling of fluids. 
However, with the linear analysis, the stability criteria 
remain the same as in the case with the neglect of heat 
and mass transfer across the interface. Hsieh found [1] 
that when the vapor region is hotter than the liquid region, 
as is usually so, the effect of mass and heat transfer tends 
to inhibit the growth of the instability. Thus, it is clear 
that such a uniform model based on the linear theory is 
inadequate to explain the mechanism involved, and the 
nonlinear theory is needed to reveal the effect of heat and 
mass transfer on the stability of the system. This prob-
lem is of fundamental importance in a number of appli-
cations such as design of many types of contacting equip-
ment, e.g., boilers, condensers and reactors in industrial 
and environmental processes. 

The purpose of this paper is to investigate the nonlin-
ear stability of a cylindrical interface between vapor and 
liquid phases of a fluid when there is a mass and heat 
transfer across the interface. The basic equations with the 
accompanying boundary conditions are given in Sect. 2. 
The first order the linear dispersion relation are obtained 
in Sect. 3. In Sect. 4, we have derived solutions near the 
linear critical wavenumber. In Sect. 5, some numerical 
examples are presented in graphical form. 

2. Formulation of the Problem and Basic Equations 

We shall use a cylindrical system of coordinates (r, 0, 
z) so that in the equilibrium state the z-axis is the axis of 
symmetry of the system. The central solid core has a radi-
us a. In the equilibrium state the fluid phase "1", of den-
sity p (1 ) , occupies the region a<r<R, and, the fluid 
phase "2", of density p (2), occupies the region R < r< b. 
The temperatures at r = a, R, and b are taken as T{, T0, 
and T2, respectively. The bounding surfaces r = a, and 
r = b are taken as rigid. The interface, after a disturbance 
is given by 

F(r, z,t) = r-R-rj = 0, (1) 

where T] is the perturbation in radius of the interface from 
its equilibrium value R, and for which the outward nor-
mal vector is written as 

n = VF 
VF I 

= - 1 + aaY 
dz) 

- 1 / 2 
3 77 e e 

r dz 1 

(2) 
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We assume that fluid velocity is irrotational so that the 
velocity potentials are ' and (j)(2) for the fluid phases 1 
and 2. In each fluid phase 

V2(j)(j) = 0, (J = 1, 2). (3) 

The solutions for (p(j) (J = 1,2) have to satisfy the boun-
dary conditions. The relevant boundary conditions for 
our configuration are 

(i) On the rigid boundaries r = a and r - b: 
The normal field velocities vanish on both the central 

solid core and the outer bounding surface: 

d<p (i) 

dr 
= 0 on r = a, 

_ 
dr 

= 0 on r = b. 

(4) 

(5) 

(ii) On the interface r = R + t](z, t): 

I. The conservation of mass across the interface 
requires 

p [ ^ + V(t)-VF 
\ dt 

= 0, 

or 
\dr dt dz dz 

= 0, (6) 

where [ ]] represents the difference in a quantity as we 
cross the interface, i.e., , where the super-
scripts refer to the upper and lower fluids, respectively. 

II. The interfacial condition for energy is 

(7) 

where L is the latent heat released when the fluid is trans-
formed from phase 1 to phase 2. Physically, the left-hand 
side of (7) represents the latent heat released during the 
phase transformation, while S{rj) on the right-hand side 
of (7) represents the net heat flux, so that the energy will 
be conserved. 

In the equilibrium state, the heat fluxes in the direc-
tion of increasing r in the fluid phases 1 and 2 are 
- Kx (7, - T0)l R log (a/R) and - K2(T0 - T2)/R log (R/b), 
where Kx and K2 are the heat conductivities of the two 
fluids. As in [2], we write 

S(ri) = 
K2(T0-T2) 

(R + T1)(\ogb-\og(R + t1)) 

(/? + 7 7 ) ( l 0 g ( / ? + 7 7 ) - l 0 g f l ) 
(8) 

and we expand it about r = R by Taylor's expansion, such 
that 

5(77) = 5(0) + riS\0) + ±7]25"(0) + . . . , (9) 

and we take 5(0) = 0, so that 

K2(T0-T2)= KM-T0) 
R\og(b/R) R\og(R/a) 

indicating that in the equilibrium state the heat fluxes are 
equal across the interfaces in the two fluids. 

From (1), (7), and (9), we have 

»0) 3</>(1) dr\ 377 d(p (i) 

dr dt dz dz 

= a(r\ + a2rj2 + a 3 ty ), (11) 

where 

a = 
Glog {bl a) 

LR log (b / R) log {Rl a) 

1 1 
a 2 = — - — + 

R{ 2 log (b/R) log (R/a) 

III. The conservation of momentum balance, by taking 
into account the mass transfer across the interface, is 

dF p^W^-VF) + -VF 
\ dt 

= p ( 2 ) (V^2) - V F ^ + V ^ VF 
\ dt 

+ {p2- px+oV -n)\VF\2, (12) 

wherep is the pressure and athe surface tension, respec-
tively. 

By eliminating the pressure by Bernoulli's equation 
we can rewrite the above condition (12) as 

te-HlHSl'-Mtr 

dz dz dr J V dt dz dz dr 
- 3 / 2 

1/2 

(13) 

To investigate the nonlinear effects on the stability of 
the system, we employ the method of multiple scales (Lee 
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[8-10]). Introducing eas a small parameter, we assume 
the following expansion of the variables: 

3 

V= £ £nrtn (z,T0,T„T2) + O(e4), (14) 
n = 1 

4>U) = I £nA]) (r,z,T0,Tx,T2) + O(E*), 
n = 1 

( j = 1,2). (15) 

The quantities appearing in the field equations (3) and 
the boundary conditions (6), (11), and (13) can now be 
expressed in Maclaurin series expansion around r = R. 
Then, we use (14), and (15) and equate the coefficients 
of equal power series in eto obtain the linear and the suc-
cessive nonlinear partial differential equations of a var-
ious orders (see Appendix). 

3. Linear Theory 

The linear wave solutions of (3), subject to the boun-
dary conditions, yield 

7ll=A(TuT2)eie+A(Tl,T2)e-i0, ( 1 6 ) 

a n _ l 

k(2) _ 1 

a 
r\0 ) — I CO A(Tl,T2)El (kr)e'6 +c.c., (17) 

a 
, ( 2 ) -ico A(7] ,T 2 )E 2 (kr) e'e + c.c., (18) 

where 
I0(kr) K{(ka) + I^jka) K0(kr) 
Ix (kR) (ka) - /, (ka) K, (kR) 

/p(kr) K{(kb) + Ii(kb) K0(kr) 
(kR) Kx (kb) - /j(kb) Kx(kR) 

6=kz- coT0 

E\ (kr) = 

E2(kr) = 

(19) 

(20) 

(21) 

with lm and Km(m = 0,1) the modified Bessel functions 
of the first and second kinds, respectively. 

Substituting (16)—(18) into (A.3), we obtain the dis-
persion relation 

where 

a0a)0 + ax(O0 + a2 = 0, 

a0=p^E,(kR)-p(2)E2(kR), 
ax = a {£] (kR) - E2 (kR)}, 

a2=^-(R2k2-1), (O0=-i(D. 

(22) 

From the properties of Bessel functions, and since a is 
always positive, we notice that a0 > 0, andaj > 0. Apply-
ing the Routh-Hurwitz criteria to (22), the condition for 

stability is a2 > 0, from which we obtain k > — . Thus 
the system is stable if k > kc, where 

1 

R 

K R . (23) 

The corresponding critical frequency, a>c is zero for this 
case. 

4. Solutions near the Linear Critical Wavenumber 

To solve equations in the neighborhood of the 
linear critical wave number kc, we assume that the 
critical wavenumber, because of nonlinear effect, will 
shift to 

k = kc + e2 p. (24) 

The first-order solution will reproduce the linear results 
for the critical case, and they are obtained from (16)-( 18) 
by setting a) equal to zero. 

With the use of the first order solutions for the critical 
wavenumber, we obtain the equations for the second 
order problem 

V 2 ^ = 0, 0 = 1 , 2 ) . (25) 

and the boundary conditions at r = R: 

>0) 

F 37] 

+ a <{ - 2k Ex (k R) + a2 }> A1 e 2 likz 

+ c.c. + 2 a 

M2
2) 

F dr 12 dT0 

(2 )dA ikz 
H ar, 

3T?2 

(26) 

+ a\-^-2k E2(k R) + a2\ A e 2 -likz 

f l + c.c. + 2 o r ^ + a 2 IM I (27) 
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F DT0 

d m i 

a z 2 /?2 

= { p ( 2 ) E 2 ( * / ? ) 
DTX 

2 l J l + £ ? ( * * ) l + E}(kR)\ 2 2ikz 
~ 315 7(2) e 

( i ) 

^ r (R k + 2) A e 
2R 

<7 / r>2 I. 2 (28) 

The non secularity conditions for the existence of the 
uniformly valid solution are 

37] 
= 0 (29) 

and its complex conjugate relation. 
Equations (26) to (28) furnish the second order solu-

tions 

772 =- 2(^ + a2)|A|2 + A2 e2ikz + A2e~2ikz, 

(30) 

=bw(T0,TltT2) 

+ (B2 e2ikz + B2 e'likz)Ex(2kr), (31) 

+ (C2 e2ikz + C2 e~2ikz)E2{2kr) (32) 

where 

Ex(2kr) = I0(2kr) A", (2 fa) + /[(2ka) K0(2kr) 
/, (2*/?) tf, (2*a) - /, (2ka) Kx (2kR)' 

(33) 

£ ( 2 / , r ) ^ / q W fr (2*fr ) + /) (2*fr) ( 2 k r ) 
2 I\{2kR) K\ (2kb) - I\ (2kb)Kx (2kR)' 

(34) 

A2 = NA2, 

B2 

aA2 N_ 
2 p ( , ) _ k 

aA2 
K 

' 2 p ( 2 ) _ k 
+ — 2E2(k R) + 

« 1 
k _ 

« 2 

(35) 

. (36) 

. (37) 

N = 
2 „ 2 

(8&2 /?2 - 2) a 

\ + E?(kR) \ + E%(kR)\ 
pO) 

k2R2 + 2 
(Sk2R2 -2) R 

,(2) 7 
(38) 

P ( , ) 
db{{) 

dT0 

£j(2) db{2) 

dT0 

-a2 f - 1 + E?(kR) --a2 

I P ( 1 ) ,(2) 

/?3 

P - i 
+ a 2 l lAI I 2 - 2 a f — 1 ~ 11 " 2 

V/? 
(39) 

We substitute the first- and second-order solutions into 
the third order equation. In order to avoid nonuniformity 
of the expansion, we again impose the condition that sec-
ular terms vanish. Then, from (A.9), we find 

{Ex(kR)-E2(kR)}^^-
k öT2 

+ 2okcjiA + v | A | A = 0 , (40) 

where 

v = cr i I N + — + a2 

Ex(kR) Ex(2kR)-\ E2(kR) E2(2kR) - 1 

-2k 

p d ) 

Ei(kR) 

,(2) 

{Ex(kR)Ex(2kR)-l} E2(kR) 

{E2{kR)E2(2kR)-\) 
R{p 

P ( 2 ) , \ 1 
1 1 
(2) 

J 

•{- R2N (1 - k2R2) + ARa2 

+ 7 - k2R2(\ - 3/c2/?2)| . 

R 

(41) 

5. Discussion 

There is no loss of generality to treat A as real in (40) 
since the phase associated with A remains constant. Thus 
we may rewrite (40) as 

- ^ + {ax+a2A2)A = 0 , 
d / 2 

(42) 
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whe re 

841 

ax = 2o pkc k 
a{E\(kR)~ E2(kR)} 

and 

a2 = vk 
a{E\(k R) - E2(kR)} 

Denoting A (0) by A0, we obtain 

A2(T2) = axAl exp ( - 2 a x t ) 
• [ax + ü2Aq -ci2Aq exp ( - 2axt)]~x. 

(43) 

(44) 

(45) 

With a finite value of A0, let us consider the values of ax 

and a2 for which the denominator in (45) is not equal to 
zero. In this case A is asymptotically bounded. 

From (45), we can see that if a2 > 0, the system is 
always stable. The stability condition a2 > 0 is equiva-
lent to 

v > 0. (46) 

Since the vapor density p (1) is usually much smaller than 
the liquid density p(2), when p (1)<^p (2), v is approxi-
mately 

V = {{E](kR)El(2kR)-\} 

N + - + a2-2kE](kR)\ + ~ 
2 J R 

+ <| R2N (1 - k2R2)- 4Ra 2 - 7 
R 

— — k2R2(l - 3k2R2) 
2 

(47) 

where 

N = -
R 

R3a2 1 + E?(kR) k2R2 + 2 
<7 (U2R2-2) (Sk2R2 - 2) 

(48) 
From the criteria (46) and (47) it is seen that a relevant 
nondimensional parameter is 

6 = RW 
Q^a 

and the condition (46) can be written in the form 

siö2 + 2ßÖ+ <g>0, 

from which we can obtain the value <5 for which the 
system is stable. In Fig. 1, we show the variation of S 
with respect to the thickness of the vapor hx. Here we 
have chosen a = 1 and b> a. The region above the curve 
is the stable region, while below the curve is the region 

Fig. 1. The variation of S with respect to the thickness hv 

of instability. From this figure we see that as hx increase, 
<5 increases also. This means, since a is proportional to 
the heat flux of the system: with the same heat flux, the 
thinner the vapor the easier the system can be stabilized. 

When the system is linearly unstable, i.e., when /i < 0, 
the asymptotic value of A for larger times will be given by 

|;4|2 = - 2okcii/v. 

From practical considerations, we would expect that as 
the amplitude exceeds the thickness of the fluid layers, 
there is a tendency for bubbles to form and detach from 
the interface, as to cause the rupture of the fluid layers. 

The criterion against the rupture is given by 

h\ > - 2a kc/j./v. 

In the case a2 < 0, the stability can also be established 
if ax > 0 and the initial amplitude is small enough, i.e., 
Aq <-axla2. 

Appendix 

The interfacial conditions are given on r - R as 

Order O(e) 

drh) T p 
dT0) 

o ( 1 ) (M" a * ] H 
< 3 r a r 0 , 

r\ — ST y 
a T0 _ 

— — u 

= 0 , 

= arli > 

dz' R2 

(A.L) 

(A.2) 

(A.3) 
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O r d e r 0(e2) 

'302_+3^0i_ drj 2 drj i 3t7, "j 

, 3r 3r2 " 370 37] dz dz 1 
= 0 , 

atf) 3 2 0i ( 1 ) 

-3r 3r2 " 370 

[302 | 301 | 320, +J_ 
[370 371 3703r 71 2 

37, 

dr 

= - O O l + X f f ^ O +Hl_!]L 
dz2 2R { dz ) 

377, 30,(1)> 

3z 

)\ 
2" 

J v dz J 

2 
m 
R\ I ' 
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(A .4 ) 

X(RI2 + A 2 R I I ) , (A .5 ) 

3 0 r 3 Z Z L _ 3 0 L ^ | T 

dr{dT0 dr J j _ 

(A .6 ) 

O r d e r 0 ( e 3 ) 

303 3202 320] l 330, 2 3m 3m 3n, 
— + - z r v - Vi + — 7 ? 2 + — — V - — — — 3r dr n dr2 12 2 3r3 " dT0 37, 372 

T 302_ + d% 

dz { dz dzdr 
30i j 

3z 3z j 
= 0 , 

M l 
dr 

3T?i 

3z 

3 2 0 2
1 } „ ^ 3201

( 1 ) „ ^ 1 330! ( 1 )
 2 3773 3772 377, 

dr2 

3 0 ^ 

7], + 
3 r ' 

+ T 

3 2 0, ( 1 ) 

dz dzdr 

| 3 0 i + 3 0 1 + 3 0 l + _3^0l 

|370 37, 372 3703r ' 

2 3 r 

3t72 30,(1) 

dz dz 

/ 320, 

* 7 i - 37n 37, 37-, 

= a(773 + 2a2 Hi + «3 rf), 

3202 ' 
37,3r 3703r 

+ — 
1 3 3 0 ] 2 3 0 , F 302 3 2 0 , 30 , F 302 3 2 0 , 

7/f + 
2 3703r2 '" 3r + T 3r 3r + 

3z 3z 3r3z 
30i _ 3/ 1̂ T 302_ _ 30i_ 377, ^ , 30! T dr]2 | 3/7, 302 | 30, 3t7, 
3r 370 J V 3r dz dz J dr I 370 37, 3r dz dz 
320, f 377, 30, 30, f 3277, 320, 

+ 

= - o 

2 /?2 

3r2 V37( 

32T73 

3r dr dTndr dr: 

dz 
LL + (kc

l+2kc f i ) 3277i 3 d \ ( 377, ^ 
3z2 2 3z2 I dz ) 

MY 
3z J 

I 1 3yy, 3T72 | T?3 2r]x r]2 | 7713 

R dz dz R R3 fl4 

(A .7 ) 

(A .8 ) 

(A .9 ) 
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