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The nonlinear Rayleigh-Taylor stability of a cylindrical interface between vapor and the liquid phas-
es of a fluid is studied when the phases are enclosed between two cylindrical surfaces coaxial with the
interface, and when there is mass and heat transfer across the interface. The method of multiple time
scale expansion is used for the investigation. A simple nondimensional parameter is found to character-
ize the stability of the system. Using this parameter, the region of stability is displayed graphically.
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1. Introduction

The problem of stability of liquids when there is mass
an heat transfer across the interface has been investigat-
ed in [1-7]. Hsieh [2] established a general formulation
of the interfacial flow problem with mass and heat trans-
fer and applied it to the Rayleigh-Taylor and Kelvin-
Helmholtz instability problems in plane geometry. In the
nuclear reactor cooling of fuel rods by liquid coolants,
the geometry of the system in many cases is cylindrical.
Indeed, there have been some investigations [6, 7] on the
stability of a cylindrical interface between two fluids
when there is a mass and heat transfer across the inter-
face. The analysis of these studies was confined within
the framework of the linear theory.

The effect of mass and heat transfer across the inter-
face should be taken into account in the stability discus-
sions, when the situation is like film boiling of fluids.
However, with the linear analysis, the stability criteria
remain the same as in the case with the neglect of heat
and mass transfer across the interface. Hsieh found [1]
that when the vapor region is hotter than the liquid region,
as is usually so, the effect of mass and heat transfer tends
to inhibit the growth of the instability. Thus, it is clear
that such a uniform model based on the linear theory is
inadequate to explain the mechanism involved, and the
nonlinear theory is needed to reveal the effect of heat and
mass transfer on the stability of the system. This prob-
lem is of fundamental importance in a number of appli-
cations such as design of many types of contacting equip-
ment, e.g., boilers, condensers and reactors in industrial
and environmental processes.

The purpose of this paper is to investigate the nonlin-
ear stability of a cylindrical interface between vapor and
liquid phases of a fluid when there is a mass and heat
transfer across the interface. The basic equations with the
accompanying boundary conditions are given in Sect. 2.
The first order the linear dispersion relation are obtained
in Sect. 3. In Sect. 4, we have derived solutions near the
linear critical wavenumber. In Sect. 5, some numerical
examples are presented in graphical form.

2. Formulation of the Problem and Basic Equations

We shall use a cylindrical system of coordinates (r, 6,
2) so that in the equilibrium state the z-axis is the axis of
symmetry of the system. The central solid core has a radi-
us a. In the equilibrium state the fluid phase “1”, of den-
sity p", occupies the region a < r <R, and, the fluid
phase “2”, of density p®, occupies the region R < r < b.
The temperatures at r = a, R, and b are taken as T, T,
and T,, respectively. The bounding surfaces r = a, and
r = b are taken as rigid. The interface, after a disturbance
is given by

F(r,z,)=r-R-n=0, (1)

where nis the perturbation in radius of the interface from
its equilibrium value R, and for which the outward nor-
mal vector is written as
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We assume that fluid velocity is irrotational so that the
velocity potentials are ¢ and ¢® for the fluid phases 1
and 2. In each fluid phase

VeV =0, (j=1,2). 3)

The solutions for ¢“” (j = 1, 2) have to satisfy the boun-
dary conditions. The relevant boundary conditions for
our configuration are

(1) On the rigid boundaries r = a and r = b:
The normal field velocities vanish on both the central
solid core and the outer bounding surface:

(1

agr =0 on r=a, @)
(2)

agr =0 on r=b. 5)

(i1) On the interface r = R + 1 (z, ©):

I. The conservation of mass across the interface
requires

oF
9t L ve-vE ||l =
[[p(at+ ¢ )ﬂ 4
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where [ ] represents the difference in a quantity as we
cross the interface, i.e., [h] = h® — AV, where the super-
scripts refer to the upper and lower fluids, respectively.

II. The interfacial condition for energy is
Lp'" [%E+V¢“> ~VF)=S<n), (7)
t

where L is the latent heat released when the fluid is trans-
formed from phase 1 to phase 2. Physically, the left-hand
side of (7) represents the latent heat released during the
phase transformation, while S(7) on the right-hand side
of (7) represents the net heat flux, so that the energy will
be conserved.

In the equilibrium state, the heat fluxes in the direc-
tion of increasing r in the fluid phases 1 and 2 are
- K (T, - Ty)/ Rlog (a/R) and — K, (T — T,)/R log (R/b),
where K| and K, are the heat conductivities of the two
fluids. As in [2], we write

S(n): KZ(TO _TZ)
(R+m) (log b —log (R+m))
K\ (Th -Ty)

— . 8
(R+m) (log (R+ 1)~ log a) ®)
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and we expand it about r = R by Taylor’s expansion, such
that

S(m) =S(0)+15'(0) + % 28" (0 +..., (9

and we take S(0) = 0, so that

K, (To -T) _ Ki(T - To)
Rlog(b/R) Rlog(R/a)

=G(say), (10)
indicating that in the equilibrium state the heat fluxes are

equal across the interfaces in the two fluids.
From (1), (7), and (9), we have

p(])[a¢(l) 871 aT[ a¢(l)j

or ot dz 0z

=a(m+on® +a3n’), (11)

where
o= Glog(b/a)
LRlog(b/R)log(R/a)’

_1( 3 1
az_R( 2 " Tog (b/R) 1og(R/a))‘

III. The conservation of momentum balance, by taking
into account the mass transfer across the interface, is

pM (Vo . VF) (aa—f + Vo ~VF)

= p® (Vs .VF) (aa—F LV VF)
t
+(py—p1+0V -n)|VF [, (12)
where p is the pressure and o the surface tension, respec-
tively.
By eliminating the pressure by Bernoulli’s equation
we can rewrite the above condition (12) as

a3y 27y
(22 )]
=—a§%{l+(3—z)z}_m

e
+a(R+n)"{1+(a—nj } .
0z

To investigate the nonlinear effects on the stability of
the system, we employ the method of multiple scales (Lee

13)
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[8-10]). Introducing € as a small parameter, we assume
the following expansion of the variables:

3
n=>Y &N, (2T, T, L)+ 0(e"),

(14)
n=1
oV =Y "¢ (r,z2, Ty, T, Th) + O(e*),
n=1
(j=12). 15)

The quantities appearing in the field equations (3) and
the boundary conditions (6), (11), and (13) can now be
expressed in Maclaurin series expansion around r = R.
Then, we use (14), and (15) and equate the coefficients
of equal power series in £ to obtain the linear and the suc-
cessive nonlinear partial differential equations of a var-
ious orders (see Appendix).

3. Linear Theory

The linear wave solutions of (3), subject to the boun-
dary conditions, yield

m=AN,T)e? +A(T,T)e ", (16)

D =—It—(p—%7—ia)] AT, Th) E; (kr)e®® +c.c., (17)
1 . i
¢1(2)=;(;(0£2-)-—1w)A(7],T2)E2 (kr) e +c.c., (18)
where

E, (k)= Jolkn) Ki (k) + hka) Ko (kD) (o

I, (kR) K, (ka) - I, (ka) K, (kR)
E, (kr) = JoGn) Ka (kD) + hkb) Ko (k)

I, (kR) K (kb) — I, (kb) K; (kR)
0=kz- wT, Q1

with 7,, and K,,(m = 0,1) the modified Bessel functions
of the first and second kinds, respectively.
Substituting (16)—(18) into (A.3), we obtain the dis-
persion relation
a0w§+a1wo +a,=0, 22)
where
ag = p' Ey(kR) - p®) E; (kR),
a; = a{E|(kR) - E (kR)},

a2=;—§(R2k2—1), W =—io.
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From the properties of Bessel functions, and since « is
always positive, we notice thatay > 0, and a; > 0. Apply-
ing the Routh-Hurwitz criteria to (22), the condition for

stability is a, > 0, from which we obtain k > l. Thus
the system is stable if k > k., where R
Eesi,
R
The corresponding critical frequency, w, is zero for this
case.

(23)

4. Solutions near the Linear Critical Wavenumber

To solve equations in the neighborhood of the
linear critical wave number k., we assume that the
critical wavenumber, because of nonlinear effect, will
shift to

k=k.+ & p. 24)

The first-order solution will reproduce the linear results
for the critical case, and they are obtained from (16)—(18)
by setting w equal to zero.

With the use of the first order solutions for the critical
wavenumber, we obtain the equations for the second

order problem
V29 =0, (j=1,2). (25)

and the boundary conditions at r = R:

p(”a‘g—él)wm —%
:p(l)g_lrileikz
+a{%—2k El(kR)+a2}A2e2”‘z
+c.c.+2a(%+a2)|A|2, (26)
p‘”a‘g—?—anz—g—%
=p(2)§_2eikz

+a{71t;-2k E2(kR)+a2}A2e2"“

+c.c.+2a(%+a2)|A|2, 27
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o 993" _p® 9¢5” _0[32'72 +'7_2}

oT, oT, 022 R?

={p? E, (kR - p"V Ey (kR)}—e*
1

1+ E} (kR)}Az 2ikz
p(2)

2
+a2l 1+ Ef (kR)_
2 p(l)

_ 2;3 (R2k2+2) A2e2ikz

1-E} (kR) 2
- pz(z) }|A|

1- Ef (kR)
p(l)

+ 6.+ a2 {

+ _1(;3— (R*? - (28)

The non secularity conditions for the existence of the
uniformly valid solution are
u_,
oT 29)

and its complex conjugate relation.
Equations (26) to (28) furnish the second order solu-
tions

nz-—z( +a2)|A| + Ay e2k7 4 Ay 72k

(30)
oV =V (T, T, T»)
+(B, 2% + B, &= ¥k2y E (2kr), (1)
¢P =6 (L, T, T»)
+(Cy 2+ Cy e M) Ey (2kr)  (32)
where
E,(2kr) = Io(2kr) K, (2ka) + I, (2ka) Ko (2kr)
: 1,(2kR) K, (2ka) — I, (2ka) K; (2kR) ’
(33)
E, (2kr) = Io(2kr) K, (2kb) + I, (2kb) Ko (2kr)
. I, (2kR) K; (2kb) — I, (2kb) K, (2kR)’
(34)
Ay =N A% (35)
AZ
B, =%{%+#—2E,(km+%}, (36)
aA? 1
C2=2p(2)|:k +ﬁ—2E2(kR)+ k }, (37)
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R*a?
T BKR*-2)0
_{1+1€,2 (kR) 1+E} (kR)}
p(l) p(2)
__kK’R*+2
(8k*R*-2)R’

(38)
0 ab(” ) ab@)

T, Ty
_[ 2{—1+E,2(kR) —1+E22(kR)}
il m - )

o p
3(k g - 2)}|A| Za(R+(x2)|A|

(39)

We substitute the first- and second-order solutions into
the third order equation. In order to avoid nonuniformity
of the expansion, we again impose the condition that sec-

ular terms vanish. Then, from (A.9), we find
Ej(kR)- Ey(kR)} & 94
{E1(kR) - Ex( )}kaT2

+20k pA+v|AFA=0, (40)

where

v=o {(N+L+a2)
R

{El(kR)El(ZkR)—l

_EZ(kR)Ez(sz)—l]

p(l) p(z)
E (kR E,(kR
—Zk[ ‘;m ER) g kR E,(2kR) -1} - %

{E,(kR) E2(2kR)—1}} +%[ﬁ_;}?j}_}%

{~ R2N 1-K*R?) + 4Rar,
+7—%k2R2(1—3k2R2)}. (41)

5. Discussion

There is no loss of generality to treat A as real in (40)
since the phase associated with A remains constant. Thus
we may rewrite (40) as

dA 2
—+(a;+ayA”)A=0,
o (a1 +a,A7)

(42)
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where
. 20 uk k @3)
a{E|(kR) - Ey(kR)}
and
ay = L . (44)
a{E|(kR) - E;(kR)}
Denoting A (0) by A, we obtain
A%(T,) = a;Ad exp (- 2a;1)
-[ay + a,Ad - a,AZ exp (- 2a;0]7'.  (45)

With a finite value of Ay, let us consider the values of a,
and a, for which the denominator in (45) is not equal to
zero. In this case A is asymptotically bounded.

From (45), we can see that if a, > 0, the system is
always stable. The stability condition a, > 0 is equiva-

lent to
v>0. (46)

Since the vapor density p‘! is usually much smaller than
the liquid density p®, when p < p®, v is approxi-
mately

a2
V=w{{51(kR) E (2kR) -1}
-{N+%+a2 —2kE1(kR)}+%}

+% {RZN(I —k*R?>)-4Ra, -7

-%k2R2(1—3k2R2)}, @7
where
. | Ra® 1+El(kR)  k’R*+2
R| pVo (8k*R*-2) (8k*R*-2)|
(48)

From the criteria (46) and (47) it is seen that a relevant
nondimensional parameter is
_ R3a?
0= My
oo
and the condition (46) can be written in the form
A8 + BE+ €>0,

from which we can obtain the value & for which the
system is stable. In Fig. 1, we show the variation of &
with respect to the thickness of the vapor h;. Here we
have chosena = 1 and b > a. The region above the curve
is the stable region, while below the curve is the region
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Fig. 1. The variation of & with respect to the thickness h;.

of instability. From this figure we see that as A, increase,
d increases also. This means, since ¢ is proportional to
the heat flux of the system: with the same heat flux, the
thinner the vapor the easier the system can be stabilized.

When the system is linearly unstable, i.e., when u <0,
the asymptotic value of A for larger times will be given by

AP ==20k.ulv.
From practical considerations, we would expect that as
the amplitude exceeds the thickness of the fluid layers,
there is a tendency for bubbles to form and detach from

the interface, as to cause the rupture of the fluid layers.
The criterion against the rupture is given by

h2>-20kulv.

In the case a, < 0, the stability can also be established
if a; > 0 and the initial amplitude is small enough, i.e.,
Ao <- 01/(12.

Appendix

The interfacial conditions are given on r = R as
Order O (¢)

a¢1 af]lj
— _lil=0, .

[[p( or 9T, L
o an

o) 1 _ 9T |_

p [ o o, an, (A2)
94 - a2771 Uil

[[p o, =-0 [——azz +— . (A.3)
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Order O(£?)
o¢ 0% Omy I Omy I¢y
24ty 2 0 A7 =0, _
H” ( ar o MTon Tan T 9 a Lk
295" 92" on, om omy 99"
M S0 n Pl O Ol ¥ |- 2
p [ or T o MTon Tan 3 e a(m+ayni), (A.5)
pl2t 30 I 1 (M)Z(aﬂ)z +%(M_aﬂ)
dTy 0T, OTyor 2|\ or 0z or\dT, or
3’m . 1 (3771)2 m
i =l == | dm—ar, A6
a{az2+21e z) R B (0]
Order O(g?)

943 84)2 3%y 13¢1 ons _dmy  dmy
Hp{ar a2"+a2'7 230 M 9T, T, _ oT,

9¢, ¢ ) my 3¢y
—L2ZAL=0, A7
oz [ dz azar H dz 0z A7
a¢(1) az¢(1) 9?2 (1) 1 a3 1 an an an
1 3 2_9%3 92 90
F {ar 3 M e My T o o o

(o, P ) om

= ol +2 +asni), AS
dz \ dz  dzor 3z 81} a(ms +20mm +o3ni) (A.8)

043 06,  0¢y . 0’y O’ , 3%
Hp{aro "o "o, T anar ™ T\ amar T omar )™

1 0% o 3¢ (93¢ az¢1 991 (09, , ¢,
et M o (or T M) o (o T ™

_ %_m](%_MM)+%(m+%_%+%%)
or 90Ty )\ or 0z oz or \dTl, dT, or dz oz

2 o’ (I _ 941 ), gy 0L I’ PG
ot 0Ty, or or \aT,or or?

2 2
=_0{8 P, 42 ok, L3 O (M)

9z? 9z 2 922 \ oz
2 3
_ln_z(a’hj +Laﬂl 3n2+&_21713172+n_14 ‘ (A.9)
2 R°\ oz R 0z 9z R R R
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