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The recursive formulas of modified Bessel functions give the relativistic expressions for energy 
and momentum. Modified Bessel functions are solutions to a continuous time, one-dimensional 
discrete jump process. The jump process is analyzed from two inertial frames with a relative 
constant velocity; the average distance of a particle along the chain corresponds to the distance 
between two observers in the two inertial frames. The recursion relations of modified Bessel 
functions are compared to the 'k calculus' which uses the radial Doppler effect to derive relativistic 
kinematics. The Doppler effect predicts that the frequency is a decreasing function of the velocity, 
and the Planck frequency, which increases with velocity, does not transform like the frequency 
of a clock. The Lorentz transformation can be interpreted as energy and momentum conservation 
relations through the addition formula for hyperbolic cosine and sine, respectively. The addition 
formula for the hyperbolic tangent gives the well-known relativistic formula for the addition 
of velocities. In the non-relativistic and ultra-relativistic limits the distributions of the particle's 
position are Gaussian and Poisson, respectively. 
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1. Introduction 

At the beginning of the last century there was con-
siderable interest in the origin of the mass of an elec-
tron [1]. Experiments that measured the charge to 
mass ratio definitely showed that the mass increased 
sharply with the speed of an electron [2], It was even 
suggested that the entire mass of an electron is elec-
tromagnetic in origin [3]. An electron in motion pro-
duces a magnetic field about its line of flight. The 
magnetic field has an energy associated with it. En-
ergy is required to set the electron in motion so that 
mass can be associated with an electron because of 
the fields that it creates. This mass is entirely elec-
tromagnetic. Experiments were performed to select 
the correct model of an electron; the contenders were 
the Lorentz model, which was indistinguishable in its 
predictions from Einstein's special theory of relativ-
ity, and the Abraham model [4], whose aim was to 
provide for an electrodynamic foundation for all of 
mechanics. 

These classical models of an electron have all but 
been abandoned [5] because they appear to introduce 
more problems than they solve. The contradictions 
of an electron with a finite extension and relativis-

tic causality are well-known [6]. It is the purpose of 
this article to point out, however, that the recursive 
formulas of modified Bessel functions give the cor-
rect special relativistic expressions for the energy and 
the momentum. Modified Bessel functions occur in a 
wide variety of problems in probability theory when 
the times at which the jumps of a random walk occur 
are randomized [7]. In other words, modified Bessel 
functions make their appearance when the times of the 
steps in a discrete time random walk are randomly dis-
tributed according to a Poisson process. In this way, 
a one-dimensional probabilistic model of special rel-
ativity presents itself in terms of random jumps along 
a linear lattice. The jumping electron accelerates and 
de-accelerates emitting radiation which is analyzed in 
an inertial frame moving relative to the lattice. The 
average displacement of the particle along the lattice, 
in a given time interval, coincides with the distance 
between two observers in two inertial frames moving 
relative to one another. 

A discrete jump process permits the electric charge 
to have a finite extension in space. Consider an elec-
tron as a rigid object of finite dimension [6], When 
a pulse of radiation strikes one side of the surface 
of the electron it is instantaneously set into motion. 
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This implies that the impulse had to be transmitted in-
stantaneously across the diameter of the electron, and 
this contradicts the relativistic law of causality. How-
ever, by considering events separated by a distance of 
the order of the particle's Compton wavelength, the 
smallest time that a signal can be transmitted between 
neighboring points on the lattice is the time it takes 
light to cross the particle's Compton wavelength. In 
other words, by dispensing with all knowledge of the 
process between the lattice points, perhaps due in part 
to the limitations of our measuring apparatus, we ad-
mit that there can be only a finite rate of change. 
Consequently, there is nothing to prohibit an elec-
tron having a finite extension in space since signals 
transmitted over such distances would not be open to 
observation. 

But, cannot the Compton wavelength be reduced 
still further to the classical electron radius? Once a 
universal length, 7*0 say, is specified, it can then be 
combined with the other two fundamental constants, 
Ti and c, to produce a quantity which has dimensions 
of mass, Ti/tqc. If the value e2 /mc2 is assigned to 
ro, a further constant must be introduced, namely the 
electric charge, e. The fact that the introduction of the 
classical electron radius requires an additional con-
stant, led Heisenberg [8] to conclude that the specifi-
cation of the charge is extraneous to the specification 
of a universal length, or elementary mass. Only after 
the nature of the universal length has been clarified 
can the question of electronic charge be addressed. 
Moreover, since the Compton wavelength is Tic/e2 

times greater than the classical electron radius, ample 
room is left for an electron of finite extension. 

2. Bessel Functions and Random Walks 

Consider an infinite chain of regularly spaced 
masses ttiq. A particle will be able to jump from one 
mass point to another, and when it does it emits a 
signal of frequency w. This frequency should char-
acterize the particle in its rest frame. The only non-
vanishing energy is the rest energy, ttlqc2, and when it 
is divided by Planck's constant, we obtain the fre-
quency w = moc2/Tx. From these three constants 
we can form a length, namely the Compton length 
A = h/moc, and it determines the spacing between 
the mass points. 

Consider a frame k which moves at a velocity v 
with respect to the frame k of the linear lattice. The 
relation between the coordinates (r, rut) in the frame 

k and the coordinates (f, wt), in the frame k, is given 
in the most general form by the formulas: 

r = f cosh 9 + wt sinh 9 (1) 

and wt = wt cosh 9 + r sinh 9, 

where the 'angle' 9 can depend only on the relative 
velocity of the two frames. In particular, if we consider 
the motion of the origin of the k frame (f = 0), with 
respect to the k frame, we obtain the relative velocity: 

ß = r/wt = q/ct = tanh 9, (2) 

where ß = v/c, and q = r A is distance from the origin 
of the k frame. 

The particle's position r along the chain coincides 
with the distance of two observers in frames k and 
k. The advantage of introducing the frame k is that 
it will allow us to determine the relationship between 
two events that occur in k at one point, f = 0, in 
space, and registered by one clock using the proper 
time interval, t, and the time interval between the 
same events, t, as registered by two clocks in k, in 
which the two events occur at different points. If the 
particle starts at the origin and gets to r, at time t, then 
among the n jumps that were made, \(n + r) had to 
have been positive, and \{n—r) negative. In order that 
these values be integers, n — r = 2j must be even. 
This is the number of reversals that has occurred. 
Given equal probabilities for a jump to the left and 
the right, the probability to be at position r > 0 just 
after the nth jump is [7] 

- y » = ( r + 2 j V n . 
\(n + r)) \r+j J 

Given the probability that n = r + 2j jumps have 
occurred up until time t is Poisson, {wt)ne~'^i/n\, 
the probability to be at r > 0 at time t is [7] 

+ 2i\ (3) 

(r + 2j)\ \r+j J 

= e~miIr(wi) = Pr(t). 

Averaging is required since we do not know how many 
jumps it will take to reach r. It is this randomization of 
the time steps, which is accomplished by the Poisson 
process, that converts a discrete into a continuous 
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time random walk, and has brought in the modified 
Bessel function of order r, Ir(zut). The symmetry 
of modified Bessel function, I_r(xvt) = Ir(-cct), for 
integer values of r, and the sum X ^ - o o Irfat) = 

guarantee that the probability density Pr(t) is 
normalized. 

We will now prove that (3) is the solution to a 
one-dimensional random walk. For simplicity we as-
sume that a step to the left or the right occurs with 
equal probability \w dt in time dt. The continuity, or 
master, equation 

d iP r ( i ) = \w (Pr+lG) - 2P r ( t ) + Pr+l(t)) , (4) 

has the usual initial condition that the walker starts at 
the origin, P r(0) = <5o,r • At the initial instant, the read-
ings of the two clocks of k and k coincide since the 
two observers are at the same point. Afterwards, the 
frame k will move away from the source of radiation 
located in the frame fc at a constant velocity. 

The solution to (4) is most conveniently obtained 
by employing the method of generating functions [9]. 
The generating function 

oo 

r=—oo 
satisfies the boundary conditions Q(z, 0) = 1 and 
Q(\, t) = 1. Multiplying the master equation (4) by 
and summing result in a first order differential equa-
tion whose solution is: 

Q(z~t) = exp {—rut + (z + z - 1 ) } . 

This expression for the generating function is compa-
rable with that of a modified Bessel function, 

oo 

e&i(z+z-1)= zrIr(wt), (5) 

r=— oo 

which is sometimes used as the definition of Ir(zut). 
Consequently (3) is the solution to the master equa-
tion (4). 

Introducing (3) into the master equation (4) gives 
the well-known recursion relation [10] 

d i l r ( w t ) = \w (lr-\(tat) + Ir+\(zot)) (6) 

for modified Bessel functions. The recursion relation 
is easily verified from the generating function (5). 
Differentiating (5) with respect to t, and equating the 

coefficients of z r gives (6). A second recursive for-
mula can be obtained by differentiating the generating 
function (5) with respect to z. Equating coefficients 
of zr~l equal to zero results in [10] 

rlr(zut) = \wt (Ir-\{mt) — Ir+\(wt)) . (7) 

Writing the dummy variable in the expression for 
the generating function as z = ee, (5) becomes 

oo 

G(0,t)= Y^ e9rIr(zu~t) = ex*icoshe. (8) 
r = — o o 

Multiplying both sides of (6) by e0r and summing 
over all r result in 

d{\nö = zo{(ed+ e~e) = zu cosh 0 = a;, (9) 

which defines the frequency uo. Multiplying the sec-
ond recursion relation (7) by e9r and summing give 

r/zut = q/ct = i (ee - e~d) = sinh0. (10) 

This coincides with the first moment of the distribu-
tion 

de\nQ = wt sinh0 = r, (11) 

which determines the average distance that the par-
ticle is from the origin. If (11) is evaluated at 9 = 0 
(z = 1), as is usually done when 9 has no physical 
meaning, the particle will, on the average, show no 
tendency to wander from the origin at the proper time 
t. This implies that 9 can be a function only of the 
relative velocity of the two inertial frames. 

Equation (11) sheds new light on the meaning of 
the Lorentz transformation as specifying the mean 
position of a particle executing a random walk. It 
coincides with first equation in (1) when the motion 
is considered in the k frame of the origin of the k 
frame (f = 0). However, (9) does not coincide with 
the second equation in (1) under the same condition. 
Converting frequencies into periods of the motion, 
uj = It:/t and w = 2tt/t, results in t = tcosh9, and 
not t = t cosh 9 at f = 0, as given by (1). It will turn 
out that (9) is the correct relativistic expression for the 
energy, but it does not transform like the frequency of 
a clock. 

3. Recursion Relations and the Doppler Effect 

An elegant method of deriving relativistic kine-
matics is the so-called lk calculus', which is 
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based entirely on the radial Doppler effect in one-
dimension [11]. The k calculus is completely equiv-
alent to the Lorentz transformation, and enjoys the 
added advantage of dispensing with the necessity of 
having to introduce different sets of coordinate axes. 
It consists of sending, reflecting and receiving light 
signals between two observers in two inertial frames. 
An observer moving at a constant velocity relative to 
a source registers a frequency different from the fre-
quency emitted by the source. The source of radiation 
is the radiating electron when it accelerates in mak-
ing a jump from one lattice site to another. One of the 
observers, O, is placed at the source, in the frame k, 
and the other observer, Ö, is moving relative to the 
radiating source at a constant velocity v in frame k. 
This is entirely equivalent to an electron moving with 
an average velocity — v in frame k with respect to a 
stationary frame k. If radiation is emitted periodically 
with period T, O in k will receive these signals in a 
different time interval, as measured by his own clock. 
If T is the period in which the signals are emitted, 
then kT will be the period in which they are received. 
These periods are measured by clocks at rest in frames 
k and k, respectively. Without knowing the specific 
form of k, we know that it can only depend upon the 
relatively velocity between the two frames. This is 
a consequence of the Doppler effect: the change in 
frequency depends only on the relative motion. 

If O sends out signals in intervals T and O receives 
them in intervals kT, then, by the equivalence of all 
inertial frames, O will receive signals sent out by Ö 
in intervals kT when O sends them out in intervals 
T. This has the important consequence that signals 
sent out by O in intervals T, received by O in inter-
vals kT and reflected by him in intervals T will be 
received back at O in intervals k(kT). This is to say 
that the time interval on the return journey will again 
be increased by an amount k. Hence if O sends out a 
signal at time T to Ö, which is immediately reflected 
back to O he will receive it in time (k2 — \)T. The 
time that it takes a signal to propagate between these 
two observers is \{k2 — 1 )T. And because the veloc-
ity of light is the same in both directions, the distance 
between the two observers is 

q = Uk2-\)cT. (12) 

We must now determine the time at which the ob-
server Ö reflected the signal, as measured by the ob-
server O's clock. Since the event occurs at a position 

other than where O's clock is located, this time inter-
val cannot be measured by, but rather must be ascribed 
to, O's clock. The signal was sent out in time T and 
received back in time k2T so that the moment it was 
reflected is their average: 

t = {(k2 + 1)T. (13) 

Since both the distance (12) and time separation (13) 
refer to a single frame, their ratio determines the rel-
ative velocity, cß, where 

ß = 
k2 - 1 

(14) 

of observer Ö with respect to O. Rearranging (14) 
yields 

k = 
\ - ß ' 

(15) 

This is as far as the k calculus goes in determining the 
form of k [11]. However, it is already apparent that 
an exponential factor is involved since a change in the 
sign of the relative velocity transforms k into 1 jk. 

In order to find the functional form of k, we con-
sider three inertial frames k, k and k. The factor 
fc(0, Ö) will depend only on the relative velocity be-
tween the frames k and k, while k(0,0) will depend 
only on the relative velocity between frames k and k. 
If a light signal is sent from O to O and immediately 
on to O, it will require the same time as a light signal 
sent from O directly to O due to the constant speed 
of light. The equivalence of their time intervals 

fc(0, Ö)T = k(0, Ö) k(Ö, 0)T 

implies that k is exponential: k = ee, where 9 can de-
pend only on the relative velocity of the two frames. In 
other words, the time magnification factor, k, of the ra-
dial Doppler effect is the exponential of an imaginary 
phase shift between neighboring lattice sites. Conse-
quently, the relative velocity (14) between frames k 
and k is (2). Upon solving (2) for 9 gives 

e = 111 (16) 

which is (15). Furthermore, (12) is now seen to co-
incide exactly with the average distance the particle 
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moves along the chain, (11), remembering that q = rA 
and t = kT is the proper time. In other words, we can 
determine the average distance covered by the particle 
along the chain by an observer moving in an inertial 
frame with respect to a stationary source. 

It is well-known that the addition formula for the 
hyperbolic tangent accounts for the relativistic addi-
tion law for velocities. If v is the relative velocity 
between frames k and k, and v is the relative velocity 
between frames k and k, then the relativistic law of 
addition of velocities is cß where 

ß = tanh (J + ») = T 
tanh 9 + tanh 9 ~ß + ß 
+ tanh6 tanh6 l+ßß 

Although the a priori probabilities for a jump to the 
left and to the right are equal, the exponential factor 
on the left-hand side of (16) is related to the proba-
bility of an electron taking a jump to the right, while 
e~e is related to the probability that an electron will 
take a jump to the left. The jump consists in accel-
erating the electron, either to the right or to the left. 
An accelerating electron radiates energy, and it is the 
frequency of this radiation that gets Doppler shifted. 
If the radiation is emitted in the direction of the ob-
server then the time it will take to reach him is e~eT, 
with a corresponding increase in the frequency. Anal-
ogously, if the transition is in the opposite direction, 
the frequency will be shifted toward the red, requiring 
a longer time to arrive, e6T. 

If O sends light signals at the interval T, we have 
seen in (13) that the time it takes to reach Ö is 
5 (e2e + l) T, as registered by two clocks in k. The 
ratio of this time interval to the proper time interval, 
t = eeT, in the frame k is: 

t = t cosh 6. (17) 

Transforming from time intervals to frequencies, (17) 
becomes: 

UJ = W i - ß 2 . (18) 

Consequently, (17) gives the correct transformation of 
the frequency of a clock, or time dilation due to view-
ing a moving clock. Furthermore, since the relative 
velocities in the two frames are equal and opposite, 
q/q = t/t, (17) is also the expression for the Fitzge-
rald-Lorentz contraction, q = q\J 1 — ß2. 

The ratio of the distance (12), measured in k, to the 
proper time of k is 

q/t = csinhö, (19) 

which is precisely the recursion relation (10). This 
relation could also be obtained from (17) and q = vt 
(q = 0), where the relative velocity is given by (2). 
Why then does (17) give the incorrect energy relation 
when Planck's energy-frequency relation is used? In-
stead of the coordinate 'two-vector' (q, ict), consider 
momentum two-vector, (p,iE/c). Since the k frame 
is at rest, only E does not vanish. According to the 
Lorentz transformation, we have momentum and en-
ergy in the k frame given by p = (E/c)smh9 and 
E = E cosh 9, respectively. With the proper frequency 
given by w = E/h, we find 

vo 
UJ = 

x / r ^ ' 
(20) 

and p = rriQcß/y/l — ß2. Combining the two rela-
tions, we obtain uj = ( c / ß ) K , where c/ß will later 
be identified as the phase velocity [cf., (21) below]. 
The correct expression for the momentum is arrived 
at independently of the expression for the frequency. 
According to special relativity, the ratio of the mo-
mentum to the total energy, huj, is proportional to the 
velocity, c2p/hu> = v. The recursion relation (9), or 
equivalently (20), gives p = ( u j / w ) m o v , while (18) 
gives the inverse relation p = (zu/uj)mov. Whereas 
the Doppler effect predicts that the frequency de-
creases with the velocity, the frequency (20) does not 
transform like the frequency of a clock (18). 

In order to get the correct velocity dependence on 
the frequency the Lorentz transformation has been 
used in conjunction with the wave associated with 
the motion [12]. In a stationary frame, the phase 
of the wave is wt. Viewed from another inertial 
frame with a relative velocity u, the phase becomes 
wt = vo {t cosh 9 — (<7/c)sinh0} = u>(t — q/u), 
with a frequency (20) and a phase speed 

u = c2/v = ccothö. (21) 

The frequency relation (20) is the inverse of (18). 
As de Broglie concluded, "the difference between 
the relativistic variations of the frequency of a clock 
and the frequency of a wave is fundamental" [12]. 
Moreover, the relative velocity of the traveling wave 
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(21) is not the particle velocity; rather, it is the inverse 
of (2). 

The fact that special relativity actually predicts 
that the frequency will be increased by the motion, 
and not decreased by it, caught de Broglie's atten-
tion and made it a focus of his research [12]. That 
wave amplitudes should only depend upon space and 
time through the combination (t — q/u) introduces 
a phase velocity u which make them unsuitable for 
the transmission of signals because if the particle ve-
locity is less than the speed of light, the phase speed 
will certainly be greater than the speed of light, de 
Broglie assumed an equivalence between the phase 
of the 'regulator' clock, that is associated with the 
particle, and the phase of the wave phenomenon that 
is associated with it. The phase, wt = u>t — nq, has 
frequency (20) and wave number 

K C = 
wß 

= H 7 s i n h 0 , (22) 

which is identical to the second recursion relation (10) 
of the modified Bessel functions for a wave number 
given by k = r/ct. Dividing (20) by (22) does, in fact, 
give the phase velocity (21). Since the phase velocity 
is u:/k, both positive and negative traveling waves 
can be obtained by keeping the frequency positive 
and letting the wave number k assume both positive 
and negative values. Squaring both (20) and (22) and 
subtracting the latter from the former give 

CO — (kc)" = w". (23) 

Interpreting k as the density of waves and uj as the 
flux of waves, 

dtK + drLV = 0 

with the convention that the frequency be kept positive 
while the wave number can take on both negative, as 
well as positive, values. The group velocity 

du; 2 CK 
V = 

d K ^/ro2 + (ck)2 ' 

remains the same, but the product of the modified 
phase velocity and the group velocity 

u • v — 1 
w 

y/ W2 + (CK)2 

shows that both the phase and group velocities are less 
than the speed of light. Such a wave can be used for 
signal transmission. Whereas the dispersion relation 
(23) corresponds to the Klein-Gordon equation, 

c2d2
qTp - d2

tip = w2*Ij, 

for the wave amplitude ip, (24) is equivalent to the 
telegrapher's equation, 

—d^ip + 2 iwdti> = — 

which has an intermediate position between the non-
relativistic Schrödinger equation and the relativistic 
Klein-Gordon equation. The former is obtained in the 
limit w ck. 

Consider the Lorentz transformation law for mo-
mentum and energy: 

p/m0c 
iE/rriQC2 ' 

coshö' — zsinh#' 
zsinhö' cosh#' 

p/m0c 
iE/moc2 

(25) 

represents the conservation of waves [13]. It is equiv-
alent to the expression for the group, or particle, ve-
locity (2) since 

d < 0
 t up v = — = c tanh 6. 

ar0 

Rather, had we considered the dispersion equation 
for the master equation (4) we would have obtained: 

u) = —w + \J W2 + (CK)2, (24) 

Since p = raocsinh# and E = raoc2cosh#, the 
Lorentz transform (25) implies p = uiqc sinh (6 + 0') 
and E = tuqc2 cosh (0 + 0'). The fact that the deter-
minant of the Lorentz transformation is equal to unity 
is the condition for energy conservation, viz., 

E'1 
P E2 

V 
( m 0 c 2 ) ( m 0 c ) 2 ( •m 0 c 2 ) ( m 0 c ) 2 

(26) 

To demonstrate that (25) does in fact imply the con-
servation of energy, we write its components out 
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E'E PP 
TTIQC2 (JTIQC2)2 (moc)2 

and 

V 
JTIQC 

E' P E p' 
ttiqcl TTIQC mocL TTIQC 

Squaring both expressions and subtracting the latter 
from the former gives (26) for both the primed and 
unprimed sets of terms. 

To conclude this section, we consider the Compton 
effect in the more general case where the electron 
is in motion prior to its collision with the photon. If 
A and A' are the wavelengths of the photon before 
and after collision, and 0 is the angle of deviation of 
the photon, then energy and momentum conservation 
yield the relation between the two wavelengths as: 

A' cosh 9 - A = 2A sin2 (0/2) , (27) 

where 9 depends on the velocity of the electron prior 
to collision. If the electron is at rest then (27) reduces 
to the ordinary Compton effect. However, for large 
initial velocities, (27) becomes: 

A' = 4A sin2 (0 /2) 1 - j g (28) 

where we have used (16), and the initial velocity of 
the electron is cß. Expression (28) has the form of 
the radial Doppler shift in the wavelength. The wave-
length of the incoming photon has disappeared and 
the wavelength A', represents the shift in wavelength 
of 4A sin2 (0/2) due to the initial velocity of the elec-
tron. 

4. Relativistic Limits via Integral Bessel Formula 

The modified Bessel function can be represented 
by the complex integral [10, p. 181] 

Ir(wt) = —— 
2m 

.rot cosh 6 — rO d 9 (29) 

when \a.rg(wt)\ < where the equality sign holds 
for r > 0. The contour is made up of three sides of a 
rectangle with vertices at oo — ni, —iri, ni and oo+7ri 
We will consider real t. The function 

S(9)=r9 - wt cosh 9 (30) 

has a maximum at 9 = s inh - 1 ( r / z u t ) , which is 
none other than (10). Transforming from proper time 
to the time in the frame at rest, t = t cosh 9 — 
(q/c) sinh9, gives the stationary condition as ß = 
tanhö, which is the same condition since tanh - 1 ß = 
sinh - 1 (j3/\J 1 — ß . Introducing this stationary 
point into (30) results in 

S(r,t) = rsmh~\q/ct) - wtyJ 1 + (r/wt)2. (31) 

This is precisely the expression that appears when 
(29) is evaluated by the method of steepest descent 
[14] 

Ir{vot) 
-S(r,f) 

y / l i r i z i y / l + ( r / w t ) 2 

(32) 

The function (31) plays a role analogous to a clas-
sical action for a path. The derivative of (31) with 
respect to q gives 

AdqS = sin h'\q/ct) = 9. (33) 

Ordinarily, we would identify (33) with the wave 
number, but from the condition of the extremum of 
(30) we are prevented from doing so. However, the 
derivative of (31) with respect to time is still the neg-
ative of the frequency 

= —w\j1 + (q/ct)2 = —uj, (34) 

which is seen to be (9) when (33) is introduced. Hence, 
the action (31) may be written as: 

ß wt 
S(q, Ö = "T s inh - 1 . , . 

Introducing the asymptotic form of the modified 
Bessel function (32) into the expression for the prob-
ability density (3) gives: 

Pr(wt) = e~^Ir(wt) (35) 

eujt(y/\+(r/zvi)2-\)-r s inh - ' ( r / tut) 

yflltwtyj 1 +(r/wt)2 

It is well-known that in the limit r wt, (35) tends 
to the Gaussian probability density [9] 
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Prü) 
72 zat 

\/2lTZüt 
(36) 

for the displacement of the particle. The action, 
S(q, t) = moq2/2th = p2t/2moh, corresponds to that 
of a non-relativistic free particle. There is no longer 
any distinction between the time intervals in the two 
frames; Galilean invariance prevails. From the loga-
rithm of the generating function, In Q = \wt92, the 
average distance covered by the particle in time t is 
found to be de In Q = wt9. It tends to zero as 9 does; 
the particle, on the average, will be found at the ori-
gin in the non-relativistic limit where the drift tends 
to zero. 

The frequency and angle are given by 

and 

dtS = ——(~)2 = —w 

1 r 
drS=--=ß = 9, 

tu t 

(37) 

(38) 

respectively. Solving (38), which is the first term in 
the series expansion for sinhö [cf., (10)], for the ra-
tio r/t and introducing it into (37) gives the first 
term in the power series expansion of coshö, viz., 
u j / w = \92 [cf, (9)]. The velocity dependence on 
the frequency, co ~ wß2/2, has nothing to do with 
the radial Doppler effect, which for small velocities 
would be u ~ tu( l — ß). 

In the opposite limit q » c, the asymptotic 
form of the modified Bessel function (32) reduces 
to I r (wt ) ~ { { w t y / r l where Stirling's approxima-
tion r! ~ \j2-nre~rrr has been used. In comparison 
with the master equation (4), where steps to the left 
and to the right occur with equal probability, steps to 
the left have now a vanishing probability. The master 
equation is now reduced to: 

dipr(t) = w'{pr-l(i)-pr(t)}, (39) 

where w' = \ w . Steps are now taken only to the right 
with a lattice spacing twice as great, but still at ran-
dom times. Normalization of the asymptotic modified 
Bessel function leads to the Poisson distribution: 

rl 
(40) 

in the ultra-relativistic limit q ci, or, equivalently, 
p > tuqc. 

Relativistic trajectories look quite different from 
non-relativistic ones: the Brownian paths, corre-
sponding to (36), get straightened out. The logarithm 
of the generating function of the Poisson distribution, 
In Q = zu't (ee - 1), gives the average position of the 
particle as: 

de In Q = w ' t e e = (41) 

which, unlike (11), does not vanish even when 9 = 
0. The average distance covered by the particle, or, 
equivalently, the distance that observer Ö has moved 
away from O in the time interval \k2T, is q = \k2cT. 
This is the limiting expression for (12) for k » 1. 

From the dimensionless action, 

S ( r , <) = —r { 1 + In ( — 

for the Poisson distribution (40), the expressions for 
frequency and angle are found to be 

d{S = -r/t = -u, (42) 

and 

a r 5 = l n ( - ^ = ) =9, (43) 

respectively. According to (11) and (22), r / t = kc 
so that (42) is the expression for the ultra-relativistic 
energy hcc = pc. Expression (43) can thus be written 
as p = rriQce6. Introducing (42) into (43) and using 
the definition of the angle 9, (16), result in: 

CO = vo 
1 +ß 

T ^ ß 1 
(44) 

which is the exact relativistic equation describing the 
radial Doppler effect. 

The non-relativistic limit, therefore, corresponds 
to long wavelengths which are completely insensi-
tive to the lattice spacing. Alternatively, in the ultra-
relativistic limit, corresponding to extremely short 
wavelengths, the particle motion is discontinuous, and 
the lattice spacing, 2A, is the minimum wavelength 
of an electron. Nothing can be said about the motion 
of the electron in between the lattice spacing, and 
this gives the electron its finite extension. An impulse 
could not be transmitted instantaneously across the 
electron since we would have no information on the 
position of the electron in lengths smaller than A. The 
time required for light to cross the particle's Compton 
length is 27r/ro. This is the smallest time interval pos-
sible; the Doppler effect (17) requires all other time 
intervals to be greater. 
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