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To begin with, relaxation equations will be generally examined within the framework of the thermo-
dynamics of irreversible processes. The relaxation in the glass transition region specifically proves to
be a non-linear process which resembles an accelerated or retarded autocatalytic reaction. Therefore it
is physically not very useful to split the relaxation in the glass transition region into a sum of linear re-
laxation mechanisms. The linear response theory and the concept of normal modes lose their validity.

1. Introduction

The transition to an equilibrium state of a system first
perturbed and then left alone is generally designated as
relaxation. The characteristic physical quantities y of the
system then often obey a linear differential equation of
the form

VO =—L(v-ve). )
T

where y= dy/dt is the total derivative of y relative to time
t, T= const. > 0 the so-called relaxation time and y, the
equilibrium value of the quantity y in the final state of
the system. The solution of this equation is an exponen-
tial function

YO =[vO0) =vel €+ y, )

Exponential functions are totally monotonous functions
for whose nth time derivatives y

D"y >0 if v(0)>ye
D"YP<0 if y0)<y, 3)

is valid.

On the other hand, in the glass transition region, i.e. in
the finite temperature region in which a liquid transforms
into the vitreous state at a sufficiently slow cooling rate,
the relaxation usually does not obey an exponential func-
tion (e.g. see [1-3]). Since the work of Hopkinson [4]
one has attempted to explain monotonous non-exponen-
tial relaxation processes with the assumption that sever-
al molecular mechanisms (degrees of freedom) are
present which simultaneously relax according to (2), but
which have different relaxation times 7;. One can always
find reasons for a distribution of relaxation times, e.g. in
the non-uniformity of the bonding situations in a silicate

glass, in the conformational isomerism of polymers, or
in the always present fluctuations of the mass density.
However, as long as one is not able to explicitly define
the individual molecular mechanisms, not able to deter-
mine their relaxation times, and in particular, not able to
prove the linearity of the problem, such attempts of ex-
planationremain purely formal. The success of these “ex-
planations” is solely based on the Bernstein theorem [5],
according to which every arbitrary totally monotonous
function y(¢) can be represented by a sum of exponential
functions

YO=ye+ X c;e " @

(whereby in the case of a dense relaxation time spectrum
the summation sign must be replaced by an integral).

A single molecular degree of freedom, on the other
hand, can definitely also undergo a non-exponential re-
laxation, e.g. the scaling-invariant hyperbolic relaxa-
tion

Yy ~rY, y>0 &)

The hyperbolic relaxation can be approximated very well
by a sum of the form (4), and, with the help of a dense
relaxation time spectrum, can even be accurately simu-
lated. However, the physical content of such an approx-
imation is extremely questionable (see Mandelbrot’s sar-
castic comment on this topic [6], pages 417, 418). More-
over, one should take into account that a complex mo-
lecular process involving several molecular degrees of
freedom can also possibly be described by an individu-
al macroscopic variable in the macroscopic-phenomen-
ological theory.

In any case, relaxation processes are irreversible pro-
cesses. Itis, therefore, obvious to use the thermodynam-
ics of irreversible processes (see e.g. [7-9]) in describ-
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ing these processes. In the following, this will be done
for the relaxation processes in the glass transition re-
gion.

2. General Relations

Let us consider a homogeneous isotropic single-com-
ponent fluid of constant mass. A single macroscopic
internal variable ¢ is assigned to the molecular internal
degrees of freedom relevant in non-equilibrium. Gibbs’

fundamental equation in the S-representation is then
s=su v, 0) (6a)

or in differential form

(2] (8,3
ds={ 5| dut| | dv+| 2| d
y [auj,,_; “r v u,g . 8C u,v C

(6b)
with

L3

(i) 1 (Qz) _Pr (ﬂj a
oulye T \owlye T \0¢),, T
(6¢)

where s is the specific entropy, u the specific internal en-
ergy, v the specific volume, T the temperature, p the hy-
drostatic pressure, and a the so-called affinity. In the
framework of the thermodynamics of irreversible pro-
cesses, the temporal change § of the entropy during an
irreversible non-equilibrium process (e.g., the relaxa-
tion) is given by

S'=L12+£1"+(v[§ (7
T T T
In a homogeneous isotropic fluid system of constant
mass, the first law has the form

u=q-pv, (8)

where ¢ > 0 is the heat the system absorbs per unit time
and mass from the exterior. Insertion of (8) into (7) leads
to

.
S=—g+—¢. 9
Tt TS )]
According to the second law of thermodynamics, the
temporal change of the entropy can be splitinto two com-
ponents [8]

jotaf A8
dr dr

(10)
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Here, d,s/dr describes the entropy which the system ex-
changes with its surroundings and d;s/dt > 0 the entropy
created in the interior of the system per unit time and
mass. If the temperature defined by (6¢) is the tempera-
ture 7* of the surroundings of the system, one obtains

dys zi('l: EZE:
d T d T
The coincidence of T and T*, however, is by no means
essential in non-equilibrium [10] and is also not to be ex-
pected in the glass transition region [11]. With T # T*,
there is

(1)

das _ 1
dr T*
i.e., with (9) and (10)

dis_(l 1 ) a
L=l == |g+=
dt r I T

The additional term which occurs here in the entropy pro-
duction as compared to (11) corresponds to the irrever-
sible part of the heat exchange between two homogene-
ous phases which are not in thermal equilibrium [8].
However, T* is the temperature at which the heat ex-
change between system and surroundings occurs. Hence,
T* not only describes a property of the surroundings but
also a property of the system. 7* has to be interpreted as
a dynamic temperature and 7T as a static temperature of
the system. If we disregard possible interferences, T and
T* are connected in the S-representation via
# = lT + L,u

(L,: phenomenological coefficient) [10].

Equations (8-12) are generally valid for homogene-
ous isotropic fluid systems of constant mass. Therefore
we can directly proceed from these equations to the G-
representation, in which the specific free enthalpy

g=9(T p, O =h(T p, O)-Ts(T p, 0 (13)

as a function of the, usually experimentally given, inde-
pendent variables 7, p, C takes over the role of the Gibbs
potential (4 is the specific enthalpy of the system). In the
G-representation. the affinity is given by

q. (12a)

E. (12b)

(lz—[a—{]_j = TUTI, - 7]7'],. (14)
I8 T.p
whereby
_ 85‘j . _[ah)
or, =| — s M =| = (15)
g (a; T.p ]71 (-)(: T.p
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describe the partial specific entropy, and the partial spe-
cific enthalpy with respect to the relevant internal vari-
able.

In the following, we will not differentiate between
the hydrostatic pressure p and the hydrodynamic pres-
sure p* and assume p = p* = const. Equation (8) then
leads to

g=nh. (16)
For the temporal change of the entropy at constant pres-
sure one obtains in the G-representation

- asj : (8s) :
§= = T+ = C
(aT . 64, T.p

Js
T . =¢. &
(aT),,_; “rt

is the specific heat capacity measured in the arrested equi-
librium (£ = 0). Hence, we have

Here,

a7

c . 3
ssz'CT+OTI, . (18)

With this and with (14) and (16), (9) results in

Gg=h=c,  T+ng,§. (19)

Insertion of (19) into (12b) yields for the entropy produc-
tion in the case T # T*:

dis _

e )b m-E e

One of the fundamental hypotheses of the thermody-
namics of irreversible processes is that the product
T(d;s/dr) always appears as a bilinear form of the fluxes
and forces present [8]. Therefore we can conclude from
(11) that a dynamic law of the form

t=La (1)

exists in the case 7= T*. For the case T # T*, if we dis-
regard possible interferences, (20) leads to the dynamic
laws (phenomenological equations)

. T*_T
TZLTCI,.; T (22)
E=La* (23a)

with
*_.T
a*=a+ng, 4 (23b)
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In the framework of the linear theory, the so-called phen-
omenological or kinetic coefficients L, Ly must always
be regarded as positive constants [8, 12]. However, this
is not possible when we describe the glass transition [9,
11]. The vitreous state is an (arrested) equilibrium state
frozen with respect to the relevant internal degrees of
freedom, which is characterized by the condition t=o.
However, {does not disappear because of a = 0 or a* = 0
(so-called internal equilibrium, see Section 3), but be-
cause of L — 0. At least, L has to be regarded as a vari-
able function L(7, p, §) when describing the glass tran-
sition.

3. Relaxation Equations

For the temporal change of the affinity a(T, p, {), we
generally have in the G-representation

i=(2) +(2) j4(2) & v
aT p.c ap Tl aC T.p

For the coefficient of the third term on the right-hand side
we introduce the abbreviation

), 42
8; T.p aCZ T, p

aT,Tp ) (aoTp j
= — T = 9 -
( ac Tsp ac T,p YTI

Under the condition 7] p = const, we then obtain

(25)

a=-1yp, {=-Lyp,a,

see (21). The product Ly7, necessarily has the dimension
of reciprocal time. Therefore, one can also write

-1
a=-——aua

TTp

(26a)

This is a non-linear relaxation equation, as the relaxation
time

0, (T, p,§) = Ll (26b)

YTp
depends via (1) on the present state of the system. Hence,
the relaxation of a is generally non-exponential. More-
over, the relaxation time Ty, is composed of two factors:
a kinetic factor 1/L and a thermodynamic factor 1/yr,.
The equilibrium with respect to the internal variable
g, the co-called internal equilibrium, is described by
a =0,da =0, and T = T*. Although { remains variable
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in the internal equilibrium, { becomes a dependent var-
iable according to (14)

E=L (T, p),

(We indicate the quantities referred to an internal equi-
librium state with “e”). If the internal equilibrium state
is stable or metastable, one obtains further

27

Y1 > 0. (28)

If one is not too far from a given internal equilibrium

state “e”, the equation of state a = a(7, p, {) can be ex-

panded in a Taylor series about this state, and the series
can be terminated after the linear terms:

_ aa) (a_a)
=== (T-T.)+ (P —Ppe)
. (aT P dp T.t.

(3
& )r ,

If the temperature and pressure are kept constant with
T =T, and p = p,, one obtains with (25)

a Z—Y;'p (C_Ce)'

Insertion of this expression into the dynamic law (21)
yields with (26b) the relaxation equation

fo_ 1

e
T Tp

(E-L). (29)

(E-Ce). (30a)

This is a linear differential equation which is identical
with (1), since due to (27)

15, (T, p) = 1/LY7,>0 (30b)

only depends on T, p, whereas T and p are kept constant.
If the reference state “e” is a stable or metastable inter-
nal equilibrium state, 77, > 0 is always valid because of
¥7p>0and L>0.

In the same way, one can also linearize the mechani-

cal equation of state v = v(T, p, {):

ree(2) (2] oo
p.C. ik
Jv Y
+—=| €-E). 31
(ag]m ’ B
With the abbreviation
Jv
D1y E(_) (32)
g aC T.p
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one obtains under the conditions 7 =T, = const, p = p,
= const

v-v.= 0p, (5~ ) (33)
and
=05, ¢,
i.e. with (30)
b= - g5, (E- )
er
or with (33)
v=— i v=-1.). (34)
'L'T[,

77, > 0 is often designated as the Debye relaxation time.
It is also composed of a kinetic factor and a thermody-
namic factor [see (30b)]. The derivation of (30) and (34)
shows that every non-linear relaxation process resulting
from (21) and (26) must become an exponentially de-
creasing or increasing linear process in its final stage ap-
proaching internal equilibrium. Therefore, the hyperbol-
ic relaxation (5) only agrees with the dynamic law (21)
if r%,, = + o= is valid in the final state. According to (30b),
this is only possible if the final state with Y7, = 0is aneu-
tral equilibrium state or, with L — 0, a frozen (arrestet)
equilibrium state.

In thermodynamics, as long as one does not differen-
tiate between the static and the dynamic temperatures,
relaxation equations can generally only be derived under
the condition T =const, p =const. Linear relaxation
equations of the types (1), (30), and (34) also require the
restriction to linear equations of state and to constant
phenomenological coefficients. The Gibbs fundamental
equation of the system must be representable in a quad-
ratic form

9=0.+ 91(E- &) + g2(E-CD)2

In the literature, T and thus 77, (T, p) are often regarded
as variables in equations of the types (30) and (34). Such
a procedure is beyond the framework of thermodynamics.
In the following, we will differentiate between 7 and
T*. If the dynamic temperataure of the system (the tem-
perature of the surroundings of the system) is suddenly
brought to another constant value, the static temperature
definitely stays variable and, according to (22), relaxes
to the equilibrium value T, = T*. In this case, the affin-
ity a* determines the dynamics of the process for which,
according to (14) and (23b), we can also write

a*=T(T* o, - ng,)/T*.

(35)

(36)
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Under the condition 7* = const, p = p* = const, one ob-

tains
a*:(a“*j T'+[a“fj £, (37a)
aT p-€ ag T,p
Here, we have
(361*) ~a%, F (37b)
or ), T T*

V{T*[aorpj _(aqr,,j 1
oT pt or ), ¢
(8{1*) :L T*(aGT[J) _[anij
aC T.p T ag T.p aC T.p

(37¢)

For the hypothetical case that T# T* also remains con-
stant with 7*, (37) in place of (26) yields the relaxation
equation

a*=——L g* (382)
'L'TI,
with
ang, *
L E_L_L( ’Z’] s (38b)
*
I, T ¢ T.p T

With variable 7, however. no relaxation equation can
generally be derived from (37) and no relaxation time be
defined. A relaxation equation only exists if [as we will
assume in Section 4, see (55), (56)] o7, and 17, do not
depend on the temperature. (37) then leads to

d*z—%a* with

T T

B (39)
P r

The relaxation time 7, not only depends on the variables
T, ¢ but also on the rate 7.

When describing relaxation processes under the con-
dition T* = const, it is useful to introduce the so-called
ficitive temperature 7; according to Tool [13, 14]

Ty= 07/ 07 (40)

According to (14), this is the temperature which the
system in a non-equilibrium state (7, {) would have if it
were in an internal equilibrium state with a = a* =0.
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With (40) one can also write instead of (14)

a=o07,(T-T)) 41)
and instead of (23b) or (36)
a*=Tog, (T*-Ty)/T*. 42)

If the quantities 7)7;, and 07, do not depend on the tem-
perature, (40) yields for the temporal change of the fic-
tive temperature

Tf = Y;'p C/OT/I’ (433)
whereby, according to (295),
: an ] ( a0 j
. Tp Tp
YT, :( - -T: | —— (43b)
’ aé’ T.p r ac T.p

is defined. Insertion of (23) and (42) into (43) yields for
the fictive temperature the non-linear relaxation equa-
tion

TF-;%T’;*T* (44a)
with

7, (T.p, §) = /Ly, (44b)
corresponding to (26b).

Moreover, the observation that 7 relaxes to its
equilibrium value 7= T, =T* = T; and ¢ to its equi-
librium value £ (T,) does not suffice when describing
a relaxation procsss. Rather, the response functions
of the system (e.g., the coefficient of thermal expan-
sion, the heat capacity, or the compressibility) also
have to converge towards their equilibrium values.
For example, the thermal expansivity of the con-
sidered homogeneous isotropic fluid system [9, 11] is
given by

a=ar+Aa

(3
5 v\ dT p.E

is the expansivity of the arrested equilibrium and A« the
contribution of the relevant internal degree of freedom
to the coefficient of thermal expansion. The contribution
of the internal degree of freedom during an irreversible
relaxation is given by

(45a)

(45b)

<«

1 S
Aa==¢@r, =, 46
U(pT] T ( )
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whereas in the internal equilibrium by

7, OF
Aa:Aea:l—‘pTl’c L. (47)
v YTI’
Hence, the limiting value
L 0f
lim £ =—2 (48)
1=2=T ¥

must be reached upon relaxation. Insertion of (22), (23a),
and (42) leads to

- ) T, = * _
i e SO o, T2y

2 (49)
to=T  Lp(e)c,p 1= T*-T
and if (43) is valid to
* __ 5 .; c, -
lim T—Tf=9= lim E:ﬂ lim £ (50)
toe0 T*_T (0 15T ()'%, I oo

This means that the limiting value of L must necessar-
ily amount to

T.
Ly(w)=—"* (51)
TT/; ('/).‘:
In addition
=
lim Lk =, (52a)
e T*_T
and because of
T*___E, _]_ T_Tt
T*=T T-T*
finally
T et/ N (52b)
e T —T*

must be valid. Hence, 7 must necessarily converge fast-
er towards T; than towards T*.

4. Relaxation in the Glass Transition Region

The main problems when describing the relaxation in
the glass transition region in the framework of the ther-
modynamics of irreversible processes are: 1) the explic-
it formulation of a Gibbs fundamental Equation (13) for
the melt and 2) a suitable formulation for the phenomen-
ological coeffficients L and Ly in the equations (22) and
(23).

If, according to Eyring [15, 16], one considers the melt
as a mixture of vacancies and material particles, one ob-
tains the simple (but certainty only approximately valid)
Gibbs’s fundamental equation [9, 11]

g=go+RT 19“’ 1n<p+|n(1-<p)J
+h 92 (53)
l-p+Ap

Here and in the following, all the extensive quantities are
referred to one mole of material particles. g is the stan-
dard value of the chemical potential of the material par-
ticles, R the gas constant, ¢ = v,/v,, v, is the partial mo-
lar volume of the material particles, v, the partial molar
volume of the vacancies, h,. the energy required to gen-
erate one mole of vacancies in the vacancy-free melt, A
a geometric factor which takes into account the different
sizes and shapes of the mixing partners, and ¢ the vol-
ume fraction of the vacancies (the relative free volume).
As the internal variable which determines the glass tran-
sition we choose the factor {. With its help the mole num-
ber N, of the massless vacancies can be determined via
N, = {N, from the mole number of N, of the material
particles. Between ¢ and ¢ we have the relations

(=00 . gro_©

l-¢’ (1-9)*

For the quantities (15) and (32), determining the dynam-
ics of the relaxation, (53) and (54) lead to

do. (54)

-9
=h | —T—|,
777'/7 06 (I—QD*‘AQDJ (55)
Grp:R{lnprré(Q—l)(l-(p)} (56)
-9
=ty = v. (57)

In the following we will approximately assume that the
factors h, 0 and A do not depend on the temperature. 7,
and 07, thus also become independent of the tempera-
ture, so that (39) and (43) hold in the following. The struc-
ture of (55-57) shows clearly that the relaxation in the
glass transition region must generally be a non-linear
phenomenon.

The functional dependence of the phenomenological
coefficients on the independent variables can not be de-
rived in the framework of the macroscopic-phenomeno-
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logical theory. Here, one rather depends on ad hoc for-
mulations. The coefficient L in (21) or (23) has the di-
mension fluidity/volume. Therefore, association of L
with the fluidity or the coefticient of self-diffusion of the
melt suggests itself when describing the processes in the
glass transition region. In [11], we proceeded from the
Vogel-Fulcher-Tammann-Hesse equation

Innp=Inn"+

Cy
3 58
T (38)
where 77 is the viscosity of the melt, 1/1) the fluidity and
T.. the so-called Vogel-temperature. This equation seems
to be logically incomplete in that we also consider the
free volume in addition to the temperature as an indepen-
dent variable in the thermodynamic equations (53)—(57).
The viscosity, however, is then only considered as a func-
tion of the temperature. According to Doolittle [17]
Innp=Inp” +<& (59)
should be valid. In the literature, (58) and (59) are often
coupled with each other by postulating the relation

- P = acp(T_ To)

[1, 18, 19]. Ay is a kind of expansivity of the free vol-
ume. However, such a coupling is not possible. In equi-
librium the relation between ¢ and T is given by (27) and
(54). In non-equilibrium, 7 and ¢ are mutually indepen-
dent variables. In the following we will, therefore, pro-
ceed from a combined expression

C C
v,

Innp=Inn" + .
1 1 .

(60)
This corresponds, for example, to the formulation by Lit-
ovitz and Macedo [20] (see also [1]). We thus split L into
three factors:

L= L()LvLD (61a)
with
Ly =exp|ey | —+— -1 (61b)
T*-T. T*-T.
and
Lp =exp _c'D (L - lﬂ 4 61c)
L ¢ @

Ly is the value of L in an arbitrary fiducial state Z[Tq
@S (T)). One postulates with (61) that the melt complete-
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ly freezes at the Vogel temperature. Apart from that, L > 0
is always valid.

The coefficient L+in (22) could first be associated with
the coefficient of thermal diffusivity of the system. How-
ever, (22) does not describe the thermal equilibration
between two phases but the equilibration between the
static and the dynamic temperatures of the system. If the
system, which is in an internal equilibrium state with
To=T2 =T =T, and @.(Ty), is suddently brought to
the temperature 7*, the relaxation of the static tempera-
ture to the equilibrium value T, = T* is described by (22).
Correspondingly, L depends in this final state on the
Debye relaxation time 1y,(T, @c(T.)), cf. (51). This then
raises the question how (51) can be expanded in order to
obtain a general expression Ly (T, ¢).

One couldfirstassume Ly = T/7c,, ¢, whereby T would
have to be identified with one of the relaxation times de-
fined above. Such a formulation, however, is not suffi-
cient to generally guarantee the convergence (52). (51)
holds independently of (52). In order to produce the con-
vergence (52), Ly must necessarily also depend on T;.
The simplest approach to achieve this is

LT= T (l+ T_Tf]
'L'C,,‘C T-T*

(62)

With this expression the contribution of the term involv-
ing T can become negative in the entropy production (20).
This is acceptable in the case of non-linear phenomeno-
logical equations as long as only the total entropy pro-
duction of the process remains positive [8, 21]. Since a*
is the driving force of the relaxation processes we have
considered, it further seems logical to choose the relax-
ation time 7;} instead of 7 in (62) (see further down). If
we insert 7,¥ into (62), insert the given Ly into (22) and
resolve the thus obtained equation according to 7', we ob-
tain the equation

T 2T-T;-T*

Th 2(T*-T)+ T (63}
as a description of the relaxation of T.

The temporal change of the volume is given with (32),
(57), and (45b) by

v:u(acf+—l—¢éj, (64a)
0
or with (54) by

(lnv)':a;f+l LY (64b)
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The first term on the right-hand side describes the vol-
ume change resulting from thermal expansion of the ma-
terial structure, the second term the volume change re-
sulting from the change in free volume. The volume v is
defined as volume per mole of material particles. The
structure of our equations, however, allows also to spec-
ify vin cm® g~'. If we regard o as being approximately
a constant, (64) can easily be integrated. Because of

af; T= (ln 1'2)-

one obtains with ag = const.

vy

v= exp [ag (T =Ty)l, (65)

whereby v3* = v,(T) refers to an arbitrary fiducial state.
One should mention that instead of (64), one can also
write

v=vaT. (66)

However, this is a purely formal equation, since, accord-
ing to (45) and (46), « depends on the ratio £/T.

In order to do calculations for some figures, we pro-
ceed from the Eqgs. (23), (36), (38b), (63), and (65) with
(40), (55-57). We choose values for the constants of these
equations which approximately apply for polystyrene
namely

h,=10KImol™"; 0=10; A=3 (67a)

according to [22],

T.=340K: c¢y=400K;

v=098cm’g ' at T, =380K (67b)

according to [23]. and

ag=0.00021 K™ (67¢)

according to [24]. Furthermore, we assume

Ly=0.01molJ™' s at Ty =Ty =400 K

and cp=0.3 (67d)

(R=8.3143 Jmol™' K™'). The given value of v leads
to v3 =0.9516 cm? g With these values, the fictive
temperature 7; freezes at 372 K at a cooling rate of
T7*=1K min~' (see[11]). Thisis a good measure for the
so-called glass temperature otherwise described using
Ty
Figure 1A/B shows the relaxation of the volume ratio
(v - ve)/v. when the system in an internal equilibrium
state is suddenly cooled down from T7* =380K to
T* =370 K (Fig. 1, top) or heated from 7* = 360 K to
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Fig. 1 A. Relaxation of the specific volume v after quenching
the system from 7* = 380 K to 7* = 370 K (top) and sudden-
ly heating from 7* = 360 K up to 7* = 370 K (bottom). In both
cases, the initial state was an internal equilibrium state. v,: spe-
cificequilibrium volume at 7, = 370 K. The curves marked with
D correspond to the Debye relaxation according to (34) with
the relaxation time 77, of the internal equilibriumat 7, = 370 K.

64 .
e ~.
TS
V-Vo 413 ~
=0
34
04 !
0,001 001 o1
intlh]——
._3.
o) -

Fig. I B. As non-Debye relaxation in Fig. I A, but with a log-
arithmic time scale.

T* =370 K (Fig. 1. bottom). If the relaxation were to
obey the linear equation (34), both relaxation curves
would have to lie symmetrically to the axis v = v,(370),
as both processes would then only be determined by the
relaxation time 77,(370) of the final state (in Fig. 1A
these curves are marked with D; the small difference re-
garding the symmetry is due to the fact that the initial
values of v are not completely symmetrical). According
to our equations (and this corresponds to the experimen-
tal findings, see e.g. [1]), the relaxation considerably de-
viates from this exponential relaxation. When cooled, the
system first relaxes faster, but then becomes slower. This
essentially (but by no means exactly) corresponds to hy-
perbolic relaxation or to relaxation according to Kohl-
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Fig. 2. Relaxation time 7,¥ according to (39b) during the relax-
ation processes shown in Figure 1. Top: after sudden heating;
bottom: after sudden cooling. 77,: relaxation time of the inter-
nal equilibrium at T, = 370 K (see Table 1).

Table 1. Relative free volume ¢.(T,) and Debye relaxation
time r?,, (T,) in the internal equilibrium with (67) for different
temperatures 7T.

T, [K] 0. 75, [s]

400 0.0380778... 0.0284122...
380 0.0290318... 6.0958604...
375 0.0271454... 47.413328...
370 0.0253799... 626.29494. ..
362 0.0227802... 266668.7...

360 0.0221699... 22792104...

355 0.0207083... 42684918174...

rausch and Williams, Watts (see e.g. [9]). When heated,
the system first relaxes more slowly, but then more rap-
idly, which leads to a slight convex curvature of the re-
laxation curve at the beginning of the process. InFig. 1B,
we chose a logarithmic time scale in order to allow a bet-
ter comparison with the representations common in the
literature (see e.g. Figs. 7 and 8 in [1]).

The explanation for this non-linear behaviour is sim-
ple: Upon cooling, the relative free volume @is first larg-
er than in the final state (see Table 1), so that the relaxa-
tion can occur more rapidly. In the further course of the
process, the free volume becomes ever smaller, so that
the process becomes slower and slower. Upon heating,
on the other hand, the free volume is at first small, then
gradually increases to the final value, so that the relax-
atin has a distinctly autocatalytic character. In the same
way, these situations are reflected in the relaxation time
7y (Figure 2). The non-linearity of the problem express-
es itself by the fact that the relaxation time considerably
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Fig. 3. The system in internal equilibrium was quenched from
T*=375K to T* =362 K. The starting relaxation was inter-
rupted after the times (hours) indicated at the curves, and the
temperature brought to 7* = 375 K. The figure shows the re-
laxation of the specific volume v back to the initial state. v,:
specific equilibrium volume at 7, = 375 K.

changes in the first part of the process. It should be not-
ed that the relaxation time 7, even though the initial state
is an internal equilibrium state, corresponds to the De-
bye relaxation time 77, only at the end of the process (see
Table 1). Apart from that, 7} deviates only slightly from
the relaxation times 7, (26b) and r#,, (38b). Therefore
one obtains, at least qualitatively, the same behaviour
(Fig. 1-4) if one inserts either 77, or 1:?,, instead of 7f
into (62) [regarding Fig. 5, however, there is a fundamen-
tal difference, see further below].

Figure 3 is based on the following experiment (see
Kovacs [1], Fig. 9): The system, which is in internal
equilibrium at 7=T*=375K, is suddenly cooled
down to T* = 362 K, whereas the starting relaxation is
interrupted at different times ¢, and the system brought
back to 7* = 375 K. The initial state of the second re-
laxation starting at ¢, is then a non-equilibrium state.
The second relaxation back to the original initial state
[(T=375K; ¢.(7)] is shown in Fig. 3. At a small dis-
tance from the initial state, the relaxation seems to obey
a linear equation, i.e., to develop exponentially. The
non-linearity only seems to become more and more pro-
nounced with increasing distance from the intial state
[1]. However, this is not the case. A measure for the de-
viation from the linearity is the ratio v /(v — v,) which,
according to (34), is equal to —1/77, = const. in the lin-
ear case. In Fig. 4, this ratio is given as a function of
time for the cases shown in Figure 3. The relaxation is
in principle non-linear. Independent of the distance to
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Fig. 4. Ratio v/(v - v,) according to (64) as a functin of time ¢
during the relaxation processes shown in Figure 3. v.: specific
equilibrium volume at 7, = 375 K; 77,,: relaxation time of the
internal equilibrium at T =375 K (see Table 1).

the initial state, the processes only reach approximate
linearity towards the end.

Of special interest are cases in which the relaxation
in the glass transition region occurs non-monotonously
(seee.g. Fig. 24 in [1]). For example, if one cools a sam-
ple from a temperature T to a temperature 7', interrupts
the starting relaxation process once the sample has
reached a volume v, which approximately corresponds
to the equilibrium volume v.(T) at the temperature
T, < T < Ty, and then brings the sample to T, one would
expect that hardly anything happens because the volume
has already almost reached its equilibrium value. As a
matter of fact however, the volume increases above its
equilibrium value, passes through a maximum and on-
ly then returns to the equilibrium value. Judged on the
basis of (34), such a behaviour seems to be absurd, even
if 77, is regarded as a variable. “Ce comportement révele
indiscutablement la multiplicité des configurations des
verres, et elle correspond a une distribution des temps
de retard qui caractérise le réarrangement de ces config-
urations” [1].

Nevertheless. when judging this strange behaviour,
one should not proceed from (34), as this equation only
strictly holds for the linear relaxation under the condi-
tion T, p = const. According to (66), v with T # O can pass
through an extreme value if a=0, i.e. if according to

(45), (46), and (43)
< i,
(1;=—l'(prl,i.: lmTr

68a
T v /T,, T (o8e)
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Fig. 5. Non-monotonous relaxation of the specific volume v.
The system was quenched from 7* = 380 K to 7* = 355 K and
the starting relaxation interrupted once the equilibrium value
v, of the volume at 7, = 370 K was exceeded. The system was
then brought to T* = 370 K. The relaxation starting at this point
is shown in the figure.

or, according to (64),

1 ¢
Ay =——— = 68b
¢ l-o T oy

Because of o> 0, this is only possible if

sgn(§) =sgn (@) =sgn(T;) = — sgn(T).

This is possible, however, if  or T; relax at another rate
than T (which is to be expected according to our equa-
tions). If the relaxation is interrupted and the system
changed to a temperature 7* which is not too different
from T and Ty, it can occur that 7" and T lie on different
sides (above or below) of T* at the beginning of the re-
starting relaxation, so that sgn(7;) = —sgn(7) is valid
during the further course of the process.

Figure 5 shows an example: The system in internal
equilibrium was suddenly changed from the tempera-
ture Ty = 380 K to the temperature T} = 355 K. The start-
ing relaxation was interrupted as soon as the non-equi-
librium volume v exceeded the value v, which the system
would have if it was in equilibrium at 7, = 370 K. The
system was then brought to 7* = 370 K. In the course
of the second relaxation starting at this point, v increas-
es beyond the equilibrium value v, reaches a maximum
and then drops back to v.. The cause for this behaviour
can be found in the opposing contribution of the mate-
rial structure and the free volume at the beginning of the
process with respect to the rate of the volume change
(64). &, ¢. and T; liec above the equilibrium and, there-
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Fig. 6. Temperature differences Ty — T* and T — T* during the
non-monotonous volume relaxation shown in Figure 5. Ty: fic-
tive temperature according to (40); T: thermostatic temperature;
T*: thermodynamic temperature. “max” denotes the time at
which the maximum in the volume occurs.

fore, continuously decrease during the second relaxa-
tion. Thus, the contribution of the free volume in (64) is
negative. The static temperature, which relaxes faster
than §, ¢, and T in the first half of the relaxation pro-
cess, is below the equilibrium value at the beginning of
the second process, and consequently increases during
the second relaxation process. The contribution of the
material structure in (64) is positive. If the contributions
of the free volume and the material structure become
equal in magnitude, v = O follows from (64). The vol-
ume passes through a maximum. Moreover, T cannot
reach its equilibrium value T, = T* =370 K from be-
low, whereas T; strives to reach this value form above.
According to (52), T must converge faster towards T
than towards T*. i.e. T must necessarily intersect the
equilibrium value 7, = T*, pass through a maximum and
then, together with T}, strive to reach the equilibrium
value from above (see Figure 6). T= 0 with éi 0 holds
at the maximum of 7, i.e., A has to pass through a sin-
gularity at this point.

The non-monotonous effect depicted in Fig. 5 is rel-
atively small. The maximum of » becomes the larger, the
larger the difference T — T'is at the beginning of the sec-
ond relaxation. Since the difference T;— T passes
through a maximum during the first relaxation, the
height of the maximum in v during the second relaxa-
tion depends on the position of the temperature 7*. Fur-
thermore, the maximum in v becomes the larger, the low-
er the temperature 7). It can possibly become signifi-
cantly larger if the initial state at T is not an internal
equilibrium state.
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If, instead of 7, one inserts the Debye relaxation time
17, referring to the respective final state into (62), T re-
laxes considerable slower than 7;. The non-monotonous
effect is then particularly pronounced, but points in the
wrong direction (when cooling, as described above, one
obtains a minimum instead of the experimentally deter-
mined maximum). If, instead of 7, one inserts the relax-
ation time 77, according to (26b) into (62), T= T be-
comes valid for all relaxation processes which proceed
from an internal equilibrium state. Non-monotonous re-
laxation is then only possible if the initial state at Ty was
a non-equilibrium state.

5. Conclusion

Relaxation processes in the glass transition region are
non-linear. This becomes immediately clear if one con-
siders that the relaxation times change by factors of ten
within the relatively small temperature range of the glass
transition (Table 1). As the solutions of non-linear diffe-
rential equations are not additive, it does not appear very
useful to describe the processes in the glass transition re-
gion using additively superimposed linear mechanisms.
The term “normal modes”, which is linked to linear dif-
ferential equations, loses its validity, as does the linear
response theory. We do not wish to deny that several mo-
lecular degrees of freedom are possibly involved in the
relaxation processes in the glass transition region. It was
shown here, however, that some modes of behaviour
which led to the assumption of a multiplicity of degrees
of freedom in the literature, can also be described by a
single internal variable.

Comments:

1) The differential equations (63) and (23) were solved by
means of the Runge-Kutta method of the second and fourth
order [25]. Within the accuracy of the figures, a difference
between the two methods could not be detected.

2) The formulation in (60) should definitely be preferred to the
VFTH-equation (58). For example, if one anneals a glass
and then heats it up at a constant temperature rate, the ex-
perimental data (see e.g. Fig. 13 in [1]) are described much
better by (60) than by the VFTH-equation (Fig. 8 in [11]).

3) When describing the relaxation processes in the glass tran-
sition region within the framework of the thermodynamics
of irreversible processes, it is essential to realize that the so-
called phenomenological coefficients cannot be constants.
I didn’t take this into consideration in two previous papers
[26, 27]. I would, therefore, like to withdraw these papers.
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