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To begin with, relaxation equations will be generally examined within the framework of the thermo-
dynamics of irreversible processes. The relaxation in the glass transition region specifically proves to 
be a non-linear process which resembles an accelerated or retarded autocatalytic reaction. Therefore it 
is physically not very useful to split the relaxation in the glass transition region into a sum of linear re-
laxation mechanisms. The linear response theory and the concept of normal modes lose their validity. 

1. Introduction 

The transition to an equilibrium state of a system first 
perturbed and then left alone is generally designated as 
relaxation. The characteristic physical quantities y of the 
system then often obey a linear differential equation of 
the form 

V(0 = - —(V-.Ve), (1) 
T 

where y = dy/df is the total derivative of y relative to time 
t, T= const. > 0 the so-called relaxation time and ye the 
equilibrium value of the quantity y in the final state of 
the system. The solution of this equation is an exponen-
tial function 

y(t) = [y(0) - y e ] e~"T + ye (2) 

Exponential functions are totally monotonous functions 
for whose «th time derivatives y(,,) 

(_iy< y«>>0 if y(0) >y e ; 

( - l ) \ y ( n ) < 0 if y ( 0 ) < y e (3) 

is valid. 
On the other hand, in the glass transition region, i.e. in 

the finite temperature region in which a liquid transforms 
into the vitreous state at a sufficiently slow cooling rate, 
the relaxation usually does not obey an exponential func-
tion (e.g. see [1-3]). Since the work of Hopkinson [4] 
one has attempted to explain monotonous non-exponen-
tial relaxation processes with the assumption that sever-
al molecular mechanisms (degrees of freedom) are 
present which simultaneously relax according to (2), but 
which have different relaxation times T,. One can always 
find reasons for a distribution of relaxation times, e.g. in 
the non-uniformity of the bonding situations in a silicate 

glass, in the conformational isomerism of polymers, or 
in the always present fluctuations of the mass density. 
However, as long as one is not able to explicitly define 
the individual molecular mechanisms, not able to deter-
mine their relaxation times, and in particular, not able to 
prove the linearity of the problem, such attempts of ex-
planation remain purely formal. The success of these "ex-
planations" is solely based on the Bernstein theorem [5], 
according to which every arbitrary totally monotonous 
function y (t) can be represented by a sum of exponential 
functions 

y( t ) = ye + 1 c i e - " T ' (4) 
i 

(whereby in the case of a dense relaxation time spectrum 
the summation sign must be replaced by an integral). 

A single molecular degree of freedom, on the other 
hand, can definitely also undergo a non-exponential re-
laxation, e.g. the scaling-invariant hyperbolic relaxa-
tion 

y(t)~rr, y> 0. (5) 

The hyperbolic relaxation can be approximated very well 
by a sum of the form (4), and, with the help of a dense 
relaxation time spectrum, can even be accurately simu-
lated. However, the physical content of such an approx-
imation is extremely questionable (see Mandelbrot's sar-
castic comment on this topic [6], pages 417,418). More-
over, one should take into account that a complex mo-
lecular process involving several molecular degrees of 
freedom can also possibly be described by an individu-
al macroscopic variable in the macroscopic-phenomen-
ological theory. 

In any case, relaxation processes are irreversible pro-
cesses. It is, therefore, obvious to use the thermodynam-
ics of irreversible processes (see e.g. [7-9]) in describ-
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ing these processes. In the following, this will be done 
for the relaxation processes in the glass transition re-
gion. 

2. General Relations 

Let us consider a homogeneous isotropic single-com-
ponent fluid of constant mass. A single macroscopic 
internal variable £ is assigned to the molecular internal 
degrees of freedom relevant in non-equilibrium. Gibbs' 
fundamental equation in the S-representation is then 

s = s{u, v, L) 

or in differential form 

d j = du + dv + 
U.L, 

ds 

with 

ds') 
du J v.C T 

dC 

(6b) 

a_ 
T ' 
(6c) 

where 5 is the specific entropy, u the specific internal en-
ergy, v the specific volume. T the temperature, p the hy-
drostatic pressure, and a the so-called affinity. In the 
framework of the thermodynamics of irreversible pro-
cesses. the temporal change s of the entropy during an 
irreversible non-equilibrium process (e.g., the relaxa-
tion) is given by 

1 • p • a I s = — u + — v + — L 
T T T 

(7) 

In a homogeneous isotropic fluid system of constant 
mass, the first law has the form 

u — q — pv, (8) 

where q > 0 is the heat the system absorbs per unit time 
and mass from the exterior. Insertion of (8) into (7) leads 
to 

• 1 • a L 
5- = — q + — L, 

T T ' 
(9) 

According to the second law of thermodynamics, the 
temporal change of the entropy can be split into two com-
ponents [8] 

_ d a s t d|,v 
dt dt 

(10) 

Here, d^/df describes the entropy which the system ex-
changes with its surroundings and d^/dr > 0 the entropy 
created in the interior of the system per unit time and 
mass. If the temperature defined by (6c) is the tempera-
ture T* of the surroundings of the system, one obtains 

dt T 
(11) 

d,5 _ q cl 
dt T ^ ' 

The coincidence of T and T*, however, is by no means 
essential in non-equilibrium [10] and is also not to be ex-
pected in the glass transition region [11]. With T* T*, 
there is 

(6a) d as _ l 
df T* 

i.e., with (9) and (10) 

djS _ f 1 1 > • + a_ i 
dt {T T*)q T ^' 

(12a) 

(12b) 

The additional term which occurs here in the entropy pro-
duction as compared to (11) corresponds to the irrever-
sible part of the heat exchange between two homogene-
ous phases which are not in thermal equilibrium [8]. 
However, T* is the temperature at which the heat ex-
change between system and surroundings occurs. Hence, 
T* not only describes a property of the surroundings but 
also a property of the system. T* has to be interpreted as 
a dynamic temperature and T as a static temperature of 
the system. If we disregard possible interferences, Tand 
T* are connected in the S-representation via 

(Lu: phenomenological coefficient) [10]. 
Equations (8-12) are generally valid for homogene-

ous isotropic fluid systems of constant mass. Therefore 
we can directly proceed from these equations to the G-
representation, in which the specific free enthalpy 

g = g(T, p, £) = h(T, p, £) - Ts(T, p, £) (13) 

as a function of the, usually experimentally given, inde-
pendent variables T, p. £ takes over the role of the Gibbs 
potential (h is the specific enthalpy of the system). In the 
G-representation. the affinity is given by 

dg 

T.p 

whereby 

(14) 

(15) 
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describe the partial specific entropy, and the partial spe-
cific enthalpy with respect to the relevant internal vari-
able. 

In the following, we will not differentiate between 
the hydrostatic pressure p and the hydrodynamic pres-
sure p* and assume p = p* = const. Equation (8) then 
leads to 

q = h (16) 

For the temporal change of the entropy at constant pres-
sure one obtains in the G-representation 

i = f — 1 t . 

Here, 

T 

dT 

dT J 

T.P 

PX (17) 
PX 

is the specific heat capacity measured in the arrested equi-
librium (£ = 0). Hence, we have 

• CPX T~ ^ s = ~y-T + oTp L,. 

With this and with (14) and (16), (9) results in 

<1 = h = c PX T + ^Tp £ • 

(18) 

(19) 

Insertion of (19) into (12b) yields for the entropy produc-
tion in the case T ^ T * : 

d jS _ T + 
T a + VTpl 1 

J_ 
T * C- (20) 

One of the fundamental hypotheses of the thermody-
namics of irreversible processes is that the product 
T(djS/dt) always appears as a bilinear form of the fluxes 
and forces present [8], Therefore we can conclude from 
(11) that a dynamic law of the form 

£= La (21) 

exists in the case T=T*. For the case 7V T*, if we dis-
regard possible interferences, (20) leads to the dynamic 
laws (phenomenological equations) 

T = Lt c p X 

j* 

with 

= a + ijTp 
T*-T 

(22) 

(23a) 

(23b) 

In the framework of the linear theory, the so-called phen-
omenological or kinetic coefficients L, LT must always 
be regarded as positive constants [8, 12]. However, this 
is not possible when we describe the glass transition [9, 
11]. The vitreous state is an (arrested) equilibrium state 
frozen with respect to the relevant internal degrees of 
freedom, which is characterized by the condition £ = 0. 
However, £does not disappear because of a = 0 or a* = 0 
(so-called internal equilibrium, see Section 3), but be-
cause of L —* 0. At least, L has to be regarded as a vari-
able function L(T, p, £) when describing the glass tran-
sition. 

3. Relaxation Equations 

For the temporal change of the affinity a(T, p, £), we 
generally have in the G-representation 

da 
« = f — 1 T + > \dTjp,t {dp 

da 

For the coefficient of the third term on the right-hand side 
we introduce the abbreviation 

da 

KST.P 

driTP 

d£ T.P 

f S2g ] 
U e 2 L 

doTp 
= YTP• (25) 

T.P 

Under the condition T, p = const, we then obtain 

ä = -yTp t=-LyTpa, 

see (21). The product LyTp necessarily has the dimension 
of reciprocal time. Therefore, one can also write 

a = a 
TTp 

(26a) 

This is a non-linear relaxation equation, as the relaxation 
time 

TT (T, p,0 = 1 

LYT» 
(26b) 

depends via £(f) on the present state of the system. Hence, 
the relaxation of a is generally non-exponential. More-
over, the relaxation time rTp is composed of two factors: 
a kinetic factor 1/L and a thermodynamic factor 1 /yTp. 

The equilibrium with respect to the internal variable 
the co-called internal equilibrium, is described by 

a = 0, da = 0, and T=T*. Although £ remains variable 
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in the internal equilibrium, £ becomes a dependent var-
iable according to (14) 

£ = £ e ( 7 » , (27) 

(We indicate the quantities referred to an internal equi-
librium state with "e"). If the internal equilibrium state 
is stable or metastable, one obtains further 

YTP> 0. (28) 

If one is not too far from a given internal equilibrium 
state "e", the equation of state a = a(T, p, £) can be ex-
panded in a Taylor series about this state, and the series 
can be terminated after the linear terms: 

(T-Te) + 
dp (P~Pe) 

(29) 

If the temperature and pressure are kept constant with 
T= Te and p = pc, one obtains with (25) 

Insertion of this expression into the dynamic law (21) 
yields with (26b) the relaxation equation 

£ = - 4 - ( C - C e ) . 
TTp 

(30a) 

This is a linear differential equation which is identical 
with (1), since due to (27) 

TTp (T, p) = \!LYTp > 0 (30b) 

v = v„ + dv_~\ (T-TE) + 
dp. 

(P- Pt) 

dv 

With the abbreviation 

dv 
(pTp = 

a£ 

one obtains under the conditions T=T e = const, p = pe 

= const 

only depends on T, p, whereas Tandp are kept constant. 
If the reference state "e" is a stable or metastable inter-
nal equilibrium state, Xjp > 0 is always valid because of 
YTJ, > 0 and L > 0. 

In the same way, one can also linearize the mechani-
cal equation of state v = v(T, p, £): 

(31) 

(32) 

and 

v=(pTPt, 

i.e. with (30) 

f = - 4 - < ^ ( £ - £ e ) 
TTp 

or with (33) 

v= ~-~(v-ve). 
TTp 

(33) 

(34) 

rTp > 0 is often designated as the Debye relaxation time. 
It is also composed of a kinetic factor and a thermody-
namic factor [see (30b)]. The derivation of (30) and (34) 
shows that every non-linear relaxation process resulting 
from (21) and (26) must become an exponentially de-
creasing or increasing linear process in its final stage ap-
proaching internal equilibrium. Therefore, the hyperbol-
ic relaxation (5) only agrees with the dynamic law (21) 
if Ttp = + 00 is valid in the final state. According to (30b), 
this is only possible if the final state with y\p = 0 is a neu-
tral equilibrium state or, with L -* 0, a frozen (arrestet) 
equilibrium state. 

In thermodynamics, as long as one does not differen-
tiate between the static and the dynamic temperatures, 
relaxation equations can generally only be derived under 
the condition T= const, p = const. Linear relaxation 
equations of the types (1), (30), and (34) also require the 
restriction to linear equations of state and to constant 
phenomenological coefficients. The Gibbs fundamental 
equation of the system must be representable in a quad-
ratic form 

g = gs + g i(£-£e) +92(t-£e)2- (35) 

In the literature, T and thus x\p (T, p) are often regarded 
as variables in equations of the types (30) and (34). Such 
a procedure is beyond the framework of thermodynamics. 

In the following, we will differentiate between T and 
T*. If the dynamic temperataure of the system (the tem-
perature of the surroundings of the system) is suddenly 
brought to another constant value, the static temperature 
definitely stays variable and, according to (22), relaxes 
to the equilibrium value Te = T*. In this case, the affin-
ity a* determines the dynamics of the process for which, 
according to (14) and (23b), we can also write 

T.P a* = T(T* oTp - T]Tp)/T*. (36) 
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Under the condition T* = const, p = p* = const, one ob-
tains 

da * 
dT 

Here, we have 

da * 
dT pX T T* 

(37a) 

(37b) 

T* ( d°Tn ) f dllT, 

^ Kx V * y „ . t J 

da* 
3C T.p 

T 
-p * 

do Tp 

YTP 

driTp 
T.P 

T.P 

djhp] 

K J 

JL j * 

T-P J 

(37c) 

For the hypothetical case that 7V 7* also remains con-
stant with T*, (37) in place of (26) yields the relaxation 
equation 

a* = 5— a 
TTp 

with 

I 
* 

TTp rTp 

Mrp 

T.P 

f * — T j- * 

(38a) 

(38b) 

With variable T. however, no relaxation equation can 
generally be derived from (37) and no relaxation time be 
defined. A relaxation equation only exists if [as we will 
assume in Section 4, see (55), (56)] oTp and r]Tp do not 
depend on the temperature. (37) then leads to 

a * -j- a * with 1 
rTn 

(39) 

The relaxation time r* not only depends on the variables 
T, £ but also on the rate t. 

When describing relaxation processes under the con-
dition T* = const, it is useful to introduce the so-called 
ficitive temperature Tt according to Tool [13, 14] 

Tt= r)Tp/oTp. (40) 

According to (14). this is the temperature which the 
system in a non-equilibrium state (7", £) would have if it 
were in an internal equilibrium state with a = a* = 0. 

With (40) one can also write instead of (14) 

a - °Tp (T- Tt) (41) 

and instead of (23b) or (36) 

a* = ToTp (7* - Tf)/T*. (42) 

If the quantities i]Tp and oTp do not depend on the tem-
perature, (40) yields for the temporal change of the fic-
tive temperature 

TT = YTp t/oTp, 
whereby, according to (25), 

d(J Tp 

a t 

(43a) 

(43b) 
T.P 

is defined. Insertion of (23) and (42) into (43) yields for 
the fictive temperature the non-linear relaxation equa-
tion 

Tf=- T Tt -T -
rfTp T* 

with 

iL (T, p, £) = MLyth , 

(44a) 

(44b) 

corresponding to (26b). 
Moreover, the observation that T relaxes to its 

equilibrium value T - Te = T* = Tt and £ to its equi-
librium value £e( 7"e) does not suffice when describing 
a relaxation procsss. Rather, the response functions 
of the system (e.g., the coefficient of thermal expan-
sion, the heat capacity, or the compressibility) also 
have to converge towards their equilibrium values. 
For example, the thermal expansivity of the con-
sidered homogeneous isotropic fluid system [9, 11] is 
given by 

a = Aa. 

I f ^ l 
dT) 

(45a) 

(45b) 

is the expansivity of the arrested equilibrium and A a the 
contribution of the relevant internal degree of freedom 
to the coefficient of thermal expansion. The contribution 
of the internal degree of freedom during an irreversible 
relaxation is given by 

Aa = - <pr ± , 
v T 

(46) 



646 H. Baur • On the Theory of Relaxation in the Glass Transition Region 

whereas in the internal equilibrium by 

1 <P% °T P A a = A a = - — . 
* YTP 

Hence, the limiting value 

'—T Ytp 

(47) 

(48) 

must be reached upon relaxation. Insertion of (22), (23a), 
and (42) leads to 

l i m 7 ^ t ( 4 9 ) 

T LT(OO) cp ^ T*-T 

and if (43) is valid to 
T*-T{ () .. 7f Yfp £ /<;m lim L = —= lim -4- = lim -4-. (50) 
T*-T 0 / -»- T (Jjp T 

This means that the limiting value of LT must necessar-
ily amount to 

Lj{°°) = 7: 
XTp cpX 

In addition 

lim I—LIL = | , 

and because of 

T*-Tf _. T-T{ 

(51) 

(52a) 

T*-T T-T 

finally 

r T~Tf lim —-—— 
j - T* 

= 0 (52b) 

must be valid. Hence. T must necessarily converge fast-
er towards Tt than towards T*. 

4. Relaxation in the Glass Transition Region 

The main problems when describing the relaxation in 
the glass transition region in the framework of the ther-
modynamics of irreversible processes are: 1) the explic-
it formulation of a Gibbs fundamental Equation (13) for 
the melt and 2) a suitable formulation for the phenomen-
ological coefficients L and L r in the equations (22) and 
(23). 

If, according to Eyring [15,16], one considers the melt 
as a mixture of vacancies and material particles, one ob-
tains the simple (but certainty only approximately valid) 
Gibbs's fundamental equation [9, 11] 

g = g0 + RT 

+ h, 

Q(p 
Q(p 

In cp + In (1 - cp) 

1 - cp + Xcp 
(53) 

Here and in the following, all the extensive quantities are 
referred to one mole of material particles. g0 is the stan-
dard value of the chemical potential of the material par-
ticles, R the gas constant, g = v2/v 1? v2 is the partial mo-
lar volume of the material particles, f , the partial molar 
volume of the vacancies, hc the energy required to gen-
erate one mole of vacancies in the vacancy-free melt, A 
a geometric factor which takes into account the different 
sizes and shapes of the mixing partners, and cp the vol-
ume fraction of the vacancies (the relative free volume). 
As the internal variable which determines the glass tran-
sition we choose the factor With its help the mole num-
ber N\ of the massless vacancies can be determined via 
N{ = £/V2 from the mole number of N2 of the material 
particles. Between £ and cp we have the relations 

R Q*P A<- Q A „ t = dL= ^ 2 d(p. 
i ~(p (i -cpy 

(54) 

For the quantities (15) and (32), determining the dynam-
ics of the relaxation. (53) and (54) lead to 

riTp = K 

oT, = R 

1 -cp 
1 -cp + Xcp 

\ncp + -f-(g-\)(\ 
Q 

(P) 

1 -cp 
<pTp = V \ = V • 

Q 

(55) 

(56) 

(57) 

In the following we will approximately assume that the 
factors hv, q and A do not depend on the temperature. riTp 

and oT/, thus also become independent of the tempera-
ture, so that (39) and (43) hold in the following. The struc-
ture of (55-57) shows clearly that the relaxation in the 
glass transition region must generally be a non-linear 
phenomenon. 

The functional dependence of the phenomenological 
coefficients on the independent variables can not be de-
rived in the framework of the macroscopic-phenomeno-
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logical theory. Here, one rather depends on ad hoc for-
mulations. The coefficient L in (21) or (23) has the di-
mension tluidity/volume. Therefore, association of L 
with the fluidity or the coefficient of self-diffusion of the 
melt suggests itself when describing the processes in the 
glass transition region. In [11], we proceeded from the 
Vogel-Fulcher-Tammann-Hesse equation 

In ?/ = ln if c\ 
T - 71 

(58) 

where ij is the viscosity of the melt, 1 h] the fluidity and 
7„ the so-called Vogel-temperature. This equation seems 
to be logically incomplete in that we also consider the 
free volume in addition to the temperature as an indepen-
dent variable in the thermodynamic equations (53)-(57). 
The viscosity, however, is then only considered as a func-
tion of the temperature. According to Doolittle [17] 

ln ij - ln if + — 
<P 

(59) 

should be valid. In the literature, (58) and (59) are often 
coupled with each other by postulating the relation 

<P~ (Po= a<p(7~ To) 

[1, 18, 19]. is a kind of expansivity of the free vol-
ume. However, such a coupling is not possible. In equi-
librium the relation between (p and 7 is given by (27) and 
(54). In non-equilibrium. 7and <p are mutually indepen-
dent variables. In the following we will, therefore, pro-
ceed from a combined expression 

In i] = In if + 
T - 7 1 

CD 

V 
(60) 

This corresponds, for example, to the formulation by Lit-
ovitz and Macedo [20] (see also [ 1 ]). We thus split L into 
three factors: 

L - L0LvLd 

with 

and 

Lv = exp 

L d = exp 

c v 

CD 

T* _ T T*- 71 

1 1 

(Po <P 

(61a) 

(61b) 

(61c) 

L0 is the value of L in an arbitrary fiducial state Z[70 , 
(Pq(Tq)]. One postulates with (61) that the melt complete-

ly freezes at the Vogel temperature. Apart from that, L > 0 
is always valid. 

The coefficient LT in (22) could first be associated with 
the coefficient of thermal diffusivity of the system. How-
ever, (22) does not describe the thermal equilibration 
between two phases but the equilibration between the 
static and the dynamic temperatures of the system. If the 
system, which is in an internal equilibrium state with 
70 = = 7,° = 7q and <pe(70), is suddently brought to 
the temperature 7*, the relaxation of the static tempera-
ture to the equilibrium value 7e = 7* is described by (22). 
Correspondingly, LT depends in this final state on the 
Debye relaxation time RFP(TE, <pe(7e)), cf. (51). This then 
raises the question how (51) can be expanded in order to 
obtain a general expression LT (7, <p). 

One could first assume LT = T/RCP whereby r would 
have to be identified with one of the relaxation times de-
fined above. Such a formulation, however, is not suffi-
cient to generally guarantee the convergence (52). (51) 
holds independently of (52). In order to produce the con-
vergence (52), LT must necessarily also depend on 7f. 
The simplest approach to achieve this is 

Lt = 
TC PX 

1 + 
T - T { f _ j * (62) 

With this expression the contribution of the term involv-
ing 7can become negative in the entropy production (20). 
This is acceptable in the case of non-linear phenomeno-
logical equations as long as only the total entropy pro-
duction of the process remains positive [8, 21]. Since a* 
is the driving force of the relaxation processes we have 
considered, it further seems logical to choose the relax-
ation time r* instead of r in (62) (see further down). If 
we insert r* into (62), insert the given LT into (22) and 
resolve the thus obtained equation according to 7, we ob-
tain the equation 

7 = 7 2 T-T{-T* 
t% 2 ( 7 * - 7 ) + 7f 

(63) 

as a description of the relaxation of 7. 
The temporal change of the volume is given with (32), 

(57), and (45b) by 

I T , 1 L I v = v\ a^T + — £ , 
Q 

or with (54) by 

(Inf)' = a - 7 + —-— <p. 
^ 1 -<p 

(64a) 

(64b) 
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The first term on the right-hand side describes the vol-
ume change resulting from thermal expansion of the ma-
terial structure, the second term the volume change re-
sulting from the change in free volume. The volume v is 
defined as volume per mole of material particles. The 
structure of our equations, however, allows also to spec-
ify v in cm3 g~]. If we regard a£ as being approximately 
a constant. (64) can easily be integrated. Because of 

a- T- (In v2Y 

one obtains with ar = const. 

v = 
1 -q> 

exp [a^ (T - TA)], (65) 

whereby v2 = v2(TA) refers to an arbitrary fiducial state. 
One should mention that instead of (64), one can also 
write 

v = vat. (66) 

However, this is a purely formal equation, since, accord-
ing to (45) and (46), a depends on the ratio t , / f . 

In order to do calculations for some figures, we pro-
ceed from the Eqs. (23), (36), (38b), (63). and (65) with 
(40), (55-57). We choose values for the constants of these 
equations which approximately apply for polystyrene 
namely 

hc= lOkJmor1; £>=10; A = 3 

according to [22], 

7U = 340 K; cv = 400 K; 
v = 0.98 cm3 g~~] at TA = 380 K 

according to [23], and 

a c = 0 .00021 K" 

(67a) 

(67b) 

(67c) 

according to [24], Furthermore, we assume 

L0 = 0.01 mol J"1 s"1 at T0 = TQ = 400 K 
and cD = 0.3 (67d) 

(/? = 8.3143 J mol"' K"1). The given value of v leads 
to v2 = 0.9516 cm3 g~l. With these values, the fictive 
temperature T{ freezes at 372 K at a cooling rate of 
T* = I K min"1 (see [ 11 ]). This is a good measure for the 
so-called glass temperature otherwise described using 
T 1 g-

Figure 1A/B shows the relaxation of the volume ratio 
(v-ve)/ve when the system in an internal equilibrium 
state is suddenly cooled down from T* = 380 K to 
T* = 370 K (Fig. 1. top) or heated from T* = 360 K to 

-3 

- 6 J 

Fig. 1 A. Relaxation of the specific volume v after quenching 
the system from T* = 380 K to T* = 370 K (top) and sudden-
ly heating from T* = 360 K up to T* = 370 K (bottom). In both 
cases, the initial state was an internal equilibrium state. f e : spe-
cific equilibrium volume at 7C = 370 K. The curves marked with 
D correspond to the Debye relaxation according to (34) with 
the relaxation time Tjp of the internal equilibrium at Tc = 370 K. 
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Fig. 1 B. As non-Debye relaxation in Fig. 1 A. but with a log-
arithmic time scale. 

T* = 370 K (Fig. 1. bottom). If the relaxation were to 
obey the linear equation (34), both relaxation curves 
would have to lie symmetrically to the axis v = i>e(370), 
as both processes would then only be determined by the 
relaxation time rf / ;(370) of the final state (in Fig. 1A 
these curves are marked with D; the small difference re-
garding the symmetry is due to the fact that the initial 
values of v are not completely symmetrical). According 
to our equations (and this corresponds to the experimen-
tal findings, see e.g. [ 1 ]), the relaxation considerably de-
viates from this exponential relaxation. When cooled, the 
system first relaxes faster, but then becomes slower. This 
essentially (but by no means exactly) corresponds to hy-
perbolic relaxation or to relaxation according to Kohl-



woo-

0 J i 1 1 1 1 1 
0 0,5 1,0 1,5 2,0 2J5 

t [hi 

Fig. 2. Relaxation time r * according to (39b) during the relax-
ation processes shown in Figure 1. Top: after sudden heating; 
bottom: after sudden cooling. rf-p: relaxation time of the inter-
nal equilibrium at Tc = 370 K (see Table 1). 

Table 1. Relative free volume (pe(Te) and Debye relaxation 
time Tjp (Te) in the internal equilibrium with (67) for different 
temperatures Te. 

Te [ K ] <Pe Tf„[s] 

4 0 0 0 . 0 3 8 0 7 7 8 . . . 0 . 0 2 8 4 1 2 2 . . . 
3 8 0 0 . 0 2 9 0 3 1 8 . . . 6 . 0 9 5 8 6 0 4 . . . 
3 7 5 0 . 0 2 7 1 4 5 4 . . . 4 7 . 4 1 3 3 2 8 . . . 
3 7 0 0 . 0 2 5 3 7 9 9 . . . 6 2 6 . 2 9 4 9 4 . . . 
3 6 2 0 . 0 2 2 7 8 0 2 . . . 2 6 6 6 6 8 . 7 . . . 
3 6 0 0 . 0 2 2 1 6 9 9 . . . 2 2 7 9 2 1 0 . 4 . . . 
3 5 5 0 . 0 2 0 7 0 8 3 . . . 4 2 6 8 4 9 1 8 1 7 . 4 . . . 

rausch and Williams, Watts (see e.g. [9]). When heated, 
the system first relaxes more slowly, but then more rap-
idly, which leads to a slight convex curvature of the re-
laxation curve at the beginning of the process. In Fig. 1B, 
we chose a logarithmic time scale in order to allow a bet-
ter comparison with the representations common in the 
literature (see e.g. Figs. 7 and 8 in [1]). 

The explanation for this non-linear behaviour is sim-
ple: Upon cooling, the relative free volume <pis first larg-
er than in the final state (see Table 1), so that the relaxa-
tion can occur more rapidly. In the further course of the 
process, the free volume becomes ever smaller, so that 
the process becomes slower and slower. Upon heating, 
on the other hand, the free volume is at first small, then 
gradually increases to the final value, so that the relax-
atin has a distinctly autocatalytic character. In the same 
way, these situations are reflected in the relaxation time 
r* (Figure 2). The non-linearity of the problem express-
es itself by the fact that the relaxation time considerably 

Fig. 3. The system in internal equilibrium was quenched from 
T* = 375 K to T* = 362 K. The starting relaxation was inter-
rupted after the times (hours) indicated at the curves, and the 
temperature brought to T* = 375 K. The figure shows the re-
laxation of the specific volume v back to the initial state. ve: 
specific equilibrium volume at Tc = 375 K. 

changes in the first part of the process. It should be not-
ed that the relaxation time r*, even though the initial state 
is an internal equilibrium state, corresponds to the De-
bye relaxation time Tjp only at the end of the process (see 
Table 1). Apart from that, r* deviates only slightly from 
the relaxation times rTp (26b) and Tjp (38b). Therefore 
one obtains, at least qualitatively, the same behaviour 
(Fig. 1-4) if one inserts either TTp or Tjp instead of T* 
into (62) [regarding Fig. 5, however, there is a fundamen-
tal difference, see further below]. 

Figure 3 is based on the following experiment (see 
Kovacs [1], Fig. 9): The system, which is in internal 
equilibrium at 7 = T * = 375 K, is suddenly cooled 
down to T* = 362 K, whereas the starting relaxation is 
interrupted at different times tn, and the system brought 
back to T* = 375 K. The initial state of the second re-
laxation starting at tn is then a non-equilibrium state. 
The second relaxation back to the original initial state 
[(T= 375 K; (pt(T)] is shown in Fig. 3. At a small dis-
tance from the initial state, the relaxation seems to obey 
a linear equation, i.e., to develop exponentially. The 
non-linearity only seems to become more and more pro-
nounced with increasing distance from the intial state 
[ 1 ]. However, this is not the case. A measure for the de-
viation from the linearity is the ratio v/(v - vt) which, 
according to (34), is equal to - 1/T^, = const, in the lin-
ear case. In Fig. 4, this ratio is given as a function of 
time for the cases shown in Figure 3. The relaxation is 
in principle non-linear. Independent of the distance to 
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Fig. 4. Ratio v/{v - vc) according to (64) as a functin of time t 
during the relaxation processes shown in Figure 3. ve: specific 
equilibrium volume at Tc = 375 K; T j p . relaxation time of the 
internal equilibrium at Tc = 375 K (see Table 1). 
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Fig. 5. Non-monotonous relaxation of the specific volume v. 
The system was quenched from T* = 380 K to T* = 355 K and 
the starting relaxation interrupted once the equilibrium value 
f c of the volume at Tc = 370 K was exceeded. The system was 
then brought to T* = 370 K. The relaxation starting at this point 
is shown in the figure. 

the initial state, the processes only reach approximate 
linearity towards the end. 

Of special interest are cases in which the relaxation 
in the glass transition region occurs non-monotonously 
(see e.g. Fig. 24 in [ 1 ]). For example, if one cools a sam-
ple from a temperature T0 to a temperature Tl, interrupts 
the starting relaxation process once the sample has 
reached a volume v. which approximately corresponds 
to the equilibrium volume vs{T) at the temperature 
T] < T< T0, and then brings the sample to T, one would 
expect that hardly anything happens because the volume 
has already almost reached its equilibrium value. As a 
matter of fact however, the volume increases above its 
equilibrium value, passes through a maximum and on-
ly then returns to the equilibrium value. Judged on the 
basis of (34), such a behaviour seems to be absurd, even 
if Tj.? is regarded as a variable. "Ce comportement revele 
indiscutablement la multiplicity des configurations des 
verres. et eile correspond ä une distribution des temps 
de retard qui caracterise le rearrangement de ces config-
urations" [1 ]. 

Nevertheless, when judging this strange behaviour, 
one should not proceed from (34), as this equation only 
strictly holds for the linear relaxation under the condi-
tion T, p = const. According to (66), v with T * 0 can pass 
through an extreme value if a = 0, i.e. if according to 
(45), (46). and (43) 

or, according to (64), 

- M 

1 <pTp OTp Tf 

V YL T 

(P (68b) 

(68a) 

1 -<p T 

Because of a* > 0, this is only possible if 

sgn(t) = sgn(<p) = sgn(Tf) = - sgn(T). 

This is possible, however, if L, or T{ relax at another rate 
than T (which is to be expected according to our equa-
tions). If the relaxation is interrupted and the system 
changed to a temperature T* which is not too different 
from T and T{, it can occur that T and Tt lie on different 
sides (above or below) of T* at the beginning of the re-
starting relaxation, so that sgn(7^) = - sgn(T) is valid 
during the further course of the process. 

Figure 5 shows an example: The system in internal 
equilibrium was suddenly changed from the tempera-
ture Tq = 380 K to the temperature 7"*= 355 K. The start-
ing relaxation was interrupted as soon as the non-equi-
librium volume v exceeded the value ve which the system 
would have if it was in equilibrium at Te = 370 K. The 
system was then brought to T* = 370 K. In the course 
of the second relaxation starting at this point, v increas-
es beyond the equilibrium value ve, reaches a maximum 
and then drops back to ve. The cause for this behaviour 
can be found in the opposing contribution of the mate-
rial structure and the free volume at the beginning of the 
process with respect to the rate of the volume change 
(64). (p. and T{ lie above the equilibrium and, there-
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Fig. 6. Temperature differences 7 r - T* and T-T* during the 
non-monotonous volume relaxation shown in Figure 5. T{. Ac-
tive temperature according to (40); T. thermostatic temperature; 
T*\ thermodynamic temperature, "max" denotes the time at 
which the maximum in the volume occurs. 

fore, continuously decrease during the second relaxa-
tion. Thus, the contribution of the free volume in (64) is 
negative. The static temperature, which relaxes faster 
than £, (p, and 7, in the first half of the relaxation pro-
cess, is below the equilibrium value at the beginning of 
the second process, and consequently increases during 
the second relaxation process. The contribution of the 
material structure in (64) is positive. If the contributions 
of the free volume and the material structure become 
equal in magnitude, v = 0 follows from (64). The vol-
ume passes through a maximum. Moreover, 7 cannot 
reach its equilibrium value 7e = 7* = 370 K from be-
low, whereas 7f strives to reach this value form above. 
According to (52), 7 must converge faster towards 7f 

than towards 7*. i.e. 7 must necessarily intersect the 
equilibrium value 7e = 7*, pass through a maximum and 
then, together with 7t, strive to reach the equilibrium 
value from above (see Figure 6). 7= 0 with £ * 0 holds 
at the maximum of 7, i.e., A a has to pass through a sin-
gularity at this point. 

The non-monotonous effect depicted in Fig. 5 is rel-
atively small. The maximum of v becomes the larger, the 
larger the difference 7, - 7 is at the beginning of the sec-
ond relaxation. Since the difference 7 f - 7 passes 
through a maximum during the first relaxation, the 
height of the maximum in v during the second relaxa-
tion depends on the position of the temperature 7*. Fur-
thermore, the maximum in v becomes the larger, the low-
er the temperature 7*. It can possibly become signifi-
cantly larger if the initial state at Tq is not an internal 
equilibrium state. 

If, instead of r, one inserts the Debye relaxation time 
r t p referring to the respective final state into (62), 7 re-
laxes considerable slower than 7f. The non-monotonous 
effect is then particularly pronounced, but points in the 
wrong direction (when cooling, as described above, one 
obtains a minimum instead of the experimentally deter-
mined maximum). If, instead of T, one inserts the relax-
ation time xTp according to (26b) into (62), 7 = 7f be-
comes valid for all relaxation processes which proceed 
from an internal equilibrium state. Non-monotonous re-
laxation is then only possible if the initial state at Tq was 
a non-equilibrium state. 

5. Conclusion 

Relaxation processes in the glass transition region are 
non-linear. This becomes immediately clear if one con-
siders that the relaxation times change by factors of ten 
within the relatively small temperature range of the glass 
transition (Table 1). As the solutions of non-linear diffe-
rential equations are not additive, it does not appear very 
useful to describe the processes in the glass transition re-
gion using additively superimposed linear mechanisms. 
The term "normal modes", which is linked to linear dif-
ferential equations, loses its validity, as does the linear 
response theory. We do not wish to deny that several mo-
lecular degrees of freedom are possibly involved in the 
relaxation processes in the glass transition region. It was 
shown here, however, that some modes of behaviour 
which led to the assumption of a multiplicity of degrees 
of freedom in the literature, can also be described by a 
single internal variable. 

Comments: 
1) The differential equations (63) and (23) were solved by 

means of the Runge-Kutta method of the second and fourth 
order [25], Within the accuracy of the figures, a difference 
between the two methods could not be detected. 

2) The formulation in (60) should definitely be preferred to the 
VFTH-equation (58). For example, if one anneals a glass 
and then heats it up at a constant temperature rate, the ex-
perimental data (see e.g. Fig. 13 in [ 1 ]) are described much 
better by (60) than by the VFTH-equation (Fig. 8 in [11]). 

3) When describing the relaxation processes in the glass tran-
sition region within the framework of the thermodynamics 
of irreversible processes, it is essential to realize that the so-
called phenomenological coefficients cannot be constants. 
I didn't take this into consideration in two previous papers 
[26, 27]. I would, therefore, like to withdraw these papers. 
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