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The rotational spectrum of n C l x O has been measured up to 1 THz. The lowest rotational transitions 
of 1 l s O (J = 2 *- 1 to J = 6 *— 5) have been measured by saturation-dip spectroscopy with an experi-
mental accuracy of 2 kHz. These five low J rotational transitions cover the frequency range between 
209 and 628 GHz. The narrow linewidths of about 20 kHz of the saturation dips allowed to resolve the 
two main hyperfine components . The splitting is caused by coupling of the 1 C nuclear spin with the 
rotation of the molecule. The appropriate coupling constant C/ ( ' C O) is 33.90(81) kHz. 

In addition we have measured in the Doppler limited mode, the line positions of the rotational tran-
sitions 7 = 7 * - 6 , 7 = 8 * - 7 , and J = 9 * - 8 with accuracies of 5 kHz. We provide a set of improved con-
stants together with frequency predictions up to 4.1 THz (J = 40 * - 39). 

Introduction 

Astrophysically, CO is an ubiquitous molecule in the 
interstellar medium and plays an important role in astro-
physical observations. It is used as a tracer molecule for 
studying planetary atmospheres and the structure of in-
dividual interstellar molecular clouds in our Galaxy. The 
interstellar lines of the rare isotopomers are often opti-
cally thin and are therefore more reliable tracers for col-
umn density determinations of molecular clouds. It is 
therefore important to provide precise laboratory tran-
sition frequencies to support astrophysical investiga-
tions. 

In contrast to the main isotopomer of carbon monox-
ide 12C160, [1,2], only a few publications of laboratory 
measurements have been reported in literature for 
l 3C l 80. Sub-Doppler measurements on CO were pre-
sented in 1997 by Winnewisser et al. [2] on the main iso-
topomer l2C160, followed by sub-Doppler measure-
ments on l 3C160 [3], 

In 1983 Guelachvili et al. [4] published Dunham co-
efficients of CO based on Fourier Transform measure-
ments of l2C160, l2C180, 13C160, 13C I80 of vibration-
rotation spectra between 1205 and 6335 cm-1. The first 
measurements in the submm region up to 576 GHz have 
been carried out on six different CO isotopomers by 
Winnewisser et al. [5], The aim of the present work is to 
improve previous laboratory work on the isotopomer 
l 3C l sO to the level of the two more abundant isotopom-
ers 12C I60 and l3C160. 

Experimental Details 

Detailed descriptions of the experimental setup of the 
Cologne THz spectrometer can be found in [6]. Briefly, 
the main components consist of the stabilized radiation 
sources (High power backward wave oscillators (BWOs) 
from ISTOK, Russia; reference synthesizer KVARZ, Rus-
sia), the absorption cell, and the InSb hot electron bolom-
eter (QMC, UK). The BWOs used for these measurements 
operate in the frequency range from 200 to 1000 GHz. The 
BWO radiation is carefully focused through a 3.5 m ab-
sorption cell with a diameter of 10 cm. The windows of 
the cell and the lenses are made of high density Polyethy-
len (HDPE), which offers a lower absorption coefficient 
than PTFE [7]. In the case of the sub-Doppler measure-
ments, the sample pressure in the absorption cell was main-
tained near 3 pbar. We used a 99% enriched 13C sample. 
The l 8 0 content was not specified, but it may also have 
been slightly enriched due to the ,3C enrichment process. 

Results 

In Table 1 the frequencies of the newly measured tran-
sitions of l 3C1 80 are summarized together with the tran-
sition frequency of the J = 1 0 line measured by 
Winnewisser et al. [6]. The line center frequencies were 
derived from the measured data points by fitting them to 
a parabolic function. The present Lamb dip measure-
ments are reliable to about 2 kHz. The Doppler-limited 
measurements can be trusted to 5 kHz. 
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Table 1. Sub-Doppler and doppler resolved rotational transiti- Table 3. Predicted frequencies of rotational transitions of 
ons of n C l x O . n C l 8 0 . 

J' F' J" F" Obs. Frequencies11 

[MHz] 
O - C 
[kHz] 

Rel. Int. 

1 0 104 711.4035 (57) b 8.1 
2 1.5 1 0.5 209419 .1380(20) - 3 . 7 0.333 
2 2.5 * - 1 1.5 209419.1721 (20) - 3 . 5 0.600 
3 2.5 « - 2 1.5 314 119.6453 (20) 4.8 0.400 
3 3.5 2 2.5 314 119.6752(20) 0.8 0.571 
4 3.5 3 2.5 418 809.2422(20) - 0 . 5 0.429 
4 4.5 3 3.5 418 809.2763 (20) - 0 . 3 0.556 
5 4.5 < — 4 3.5 523 484 .3138(20) - 2 . 4 0.444 
5 5.5 4 4.5 523484.3486 (20) - 1 . 5 0.546 
6 5.5 5 4.5 628 141.2299(20) 1.3 0.455 
6 6.5 5 5.5 628 141.2665 (20) 4.0 0.539 
7 6 732776 .360 (5 ) - 4 . 9 
8 7 837 386.054 (5) - 4 . 8 
9 8 941 966.695 (5) - 0 . 2 

a For unresolved hfs the F values and relative intensities are 
omitted. In these cases the calculated frequencies were obtai-
ned by using weighted averages of individual hfs compo-
nents. The errors are 1 o. 

h Observed frequency taken from Winnewisser et al. [5]. 

Table 2. Molecular constants of " C ^ O . 

Constant This work M M W dataa Unit 

Bo 52355 .99739 (11) 52356.0022 (7) MHz 
On 151.3415 (27) 151.416(18) kHz 
H{) - 0.1231 h Hz 
c, 33 .90 (81 ) - kHz 

a Winnewissere t al. [5]. 
h Values derived f rom Guelachvili et al. [4], 

Lamb Dip Spectrum ( J = 2 ^ 1 ) 
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Fig. 1. The Lamb-dip spectrum of the 7 = 2 « - 1 transition of 
1 XT lxO at 209 GHz superimposed on the Dopplerprofile. 

J' F' J" F" Calc. Frequencies a 

[MHz] 

1 0 104711.39541 (38) 
2 1 209419.15863 (71) 
3 2 314 119.65745 (93) 
4 3 418 809.2597 (10) 
5 4 523484.3331 (11) 
6 5 628141 .2456 (12) 
7 6 732776.3649 (19) 
8 < — 7 837386.0588 (32) 
9 8 941 966.6952 (51) 

10 9 1 046514 .6418 (76) 
11 10 1 151 026.266 (11) 
12 11 1 255497.937 (15) 
13 < — 12 1 359926.021 (19) 
14 13 1464 306.887 (25) 
15 14 1 568636.901 (31) 
16 15 1 672912 .433 (39) 
17 « - 16 1 777 129.850 (47) 
18 < — 17 1 881 285.519 (57) 
19 < — 18 1 985 375.809 (68) 
20 19 2 0 8 9 397.087 (79) 
21 < — 20 2 193 345.722 (93) 
22 « - 21 2 2 9 7 218.08 ( I D 
23 < — 22 2 4 0 1 0 1 0 . 5 3 (12) 
24 23 2 5 0 4 719.44 (14) 
25 «— 24 2 6 0 8 3 4 1 . 1 8 (16) 
26 < — 25 2711 872.11 (18) 
27 26 2 815 308.60 (20) 
28 27 2 9 1 8 6 4 7 . 0 3 (23) 
29 <— 28 3 021 883.75 (25) 
30 29 3 125015.14 (28) 
31 30 3 228037 .57 (31) 
32 < - 31 3 330947 .39 (34) 
33 32 3 4 3 3 740.99 (38) 
34 33 3 536414 .72 (41) 
35 < — 34 3 638964 .96 (45) 
36 35 3 741 388.07 (49) 
37 36 3 843 680.42 (53) 
38 37 3 945 838.39 (58) 
39 38 4 0 4 7 858.32 (63) 
40 <- 39 4 149736.61 (68) 

a For frequencies the hfs and relative intensity is omitted. 

The achievable accuracy for unblended, fully resolved 
Lamb dip measurements in the sub-millimeter wave re-
gion recorded with a good signal to noise ratio is esti-
mated to be around 500 Hz [2], However, the present ac-
curacies are estimated to be about 2 kHz, i.e. somewhat 
lower than the achievable 500 Hz. The reason is twofold: 
(i) the components of the hyperfine structure are slight-
ly overlapping and (ii) the signal-to-noise ratio of the 
1 ?C1 80 measurements is limited. In a series of figures we 
present some of the recorded Lamb dip spectra. Figure 1 
presents the Lamb dips of the two hyperfine components 
superimposed on the Doppler line profile of the J = 2 *- 1 
transition. The linewidth of the Doppler profile is about 
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Lamb Dip Spectrum (J = 6 
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Fig. 2. The highest J rotational transition of n C l x O measured 
in sub-Doppler resolution. 

This is the highest frequency Lamb dip spectrum ob-
tained in this study. 

The 13 newly measured rotational transitions (Table 1) 
of 1 3C , 80 were subjected to a least squares fit, in which 
each line was weighted proportionally to the inverse 
square of its assigned experimental uncertainty. For un-
resolved hyperfine splittings, the calculated frequencies 
were determined in the fit by using intensity-weighted 
averages of the individual hyperfine-components. The o 
of the fit is 4 kHz. In Table 2 we give a summary of the 
newly determined two constants B0 and D0 together with 
the nuclear spin-rotation constant C/(13C180). The ratio 
C /(13C)/ß0(' 3C) of the isotopomers 13C I80 and 13C160 
[3] agrees within less than 1 cr and is therefore an excel-
lent measure of the internal consistency of the data. Ta-
ble 3 lists the frequency predictions up to 4.1 THz based 
on our newly determined constants. 

471 kHz whereas the linewidths of the hyperfine com-
ponents are about 21 kHz, just allowing to resolve the 
two main hyperfine components. The hyperfine compo-
nents are separated by 34 kHz. The third hf-component 
was to weak for detection. 

The J = 6*- 5 transition of 628 GHz (Fig. 2), where 
the two strongest hyperfine components have a separa-
tion of only 36.6 kHz, is recorded with similar accuracy. 
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