¹H NMR Study of Ionic Motions in High Temperature Solid Phases of (CH₃NH₃)₂ZnCl₄

Hiroyuki Ishida

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan Reprint requests to Prof. Dr. H. I.; E-mail: ishidah@cc.okayama-u.ac.jp

Z. Naturforsch. 55 a, 412-414 (2000); received January 8, 2000

The reorientation of the tetrahedral complex anion ${\rm ZnCl_4}^{2-}$ and the self-diffusion of the cation in $({\rm CH_3NH_3})_2{\rm ZnCl_4}$ were studied by ${}^1{\rm H}$ NMR spin-lattice relaxation time (${}^1{\rm H}$ T_1) experiments. In the second highest-temperature phase, the temperature dependence of ${}^1{\rm H}$ T_1 observed at 8.5 MHz could be explained by a magnetic dipolar-electric quadrupolar cross relaxation between ${}^1{\rm H}$ and chlorine nuclei, and the activation energy of the anion motion was determined to be 105 kJ mol ${}^{-1}$. In the highest-temperature phase, the activation energy of the self-diffusion of the cation was determined to be 58 kJ mol ${}^{-1}$ from the temperature and frequency dependence of ${}^1{\rm H}$ T_1 .

Key words: Nuclear Magnetic Resonance; Molecular Motion; Cross Relaxation; (CH₃NH₃)₂ZnCl₄.

Bis(methylammonium) tetrachlorozincate(II), (CH₃NH₃)₂ZnCl₄, forms at room temperature monoclinic crystals (P2₁/a), containing discernible tetrahedral ZnCl₄²⁻ ions [1]. Pérez-Mato et al. reported the existence of two solid-solid phase transitions at 426 and 483 K from calorimetric, dielectric, thermal expansion, and optical measurements [2]. The transition at 426 K was also reported from Raman [3] and IR [4] spectra, but not found by DSC [5, 6], DTA, and ¹H NMR [5] measurements. The transition at 483 K is accompanied by large enthalpy and entropy changes [1, 5, 6]. Previous ¹H NMR studies revealed that the cation in the highest-temperature phase (Phase I) performs isotropic rotation and self-diffusion. The cation in the low temperature phases (Phase II and III) undergoes reorientation about its C-N bond axis [5]. However, the reorientational motion of the anion has not been clarified. In the present study, we measured the 1 H T_{1} at 8.5 MHz, which is approximately equal to an average value of 35Cl NQR resonance frequencies observed for eight salts containing tetrahedral ZnCl₄²⁻ ions [7], and showed that the motion of anions could be detected from the ${}^{1}H T_{1}$ through a cross relaxation mechanism between magnetic dipole (1H) and electric quadrupole (35Cl) energy levels. In addition, we measured ${}^{1}H$ T_{1} at two different resonance frequencies in Phase I to obtain more detailed information on the cationic dynamics.

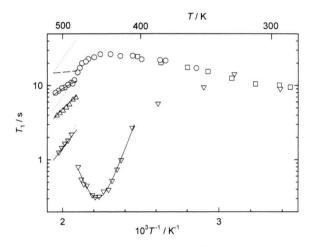


Fig. 1. Temperature dependence of 1 H T_{1} observed for $(CH_{3}NH_{3})_{2}ZnCl_{4}$ at 8.5 (∇) , 18 (Δ) , 20 (\Box) , and 32 (\circ) MHz. Solid lines are best-fitted values calculated by (1) and (2). Dotted and dashed lines are calculated T_{1DD} and T_{1SR} values, respectively.

(CH₃NH₃)₂ZnCl₄ was prepared and purified by the method reported in [5]. ¹H NMR spin-lattice relaxation times were measured at 18 and 8.5 MHz using the pulse spectrometer reported in [5].

The temperature dependence of T_1 is shown in Fig. 1 together with the T_1 data previously observed at 32 and 20 MHz [5]. Above 380 K in Phase II, T_1 observed at 8.5 MHz decreased with increasing

0932-0784 / 00 / 0300-0412 \$ 06.00 © Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

temperature and vielded a minimum of 0.31 s at ca. 450 K. This behavior is unexplainable by the magnetic dipole-dipole interactions between protons because the usual BPP theory using T_1 data at 20 and 32 MHz predicts that the onset of decrease in T_1 at 8.5 MHz is above 420 K, which is much higher than 380 K. Moreover, 8.5 MHz is approximately equal to an average value of 35Cl NQR resonance frequencies in tetrahedral ZnCl₄²⁻ ions, resulting in a strong cross relaxation between proton and chlorine nuclei. Therefore we believe that the relaxation mechanism at 8.5 MHz is mainly a modulation of ¹H...³⁵Cl magnetic dipolar interactions due to anionic reorientations. In fact, Yamamoto et al. studied anionic motions in [(CH₃)₂NH₂]₂ZnCl₄ by means of ³⁵Cl NQR and found that above room temperature the 35Cl NQR spin-lattice relaxation time (T_{10}) decreases rapidly with increasing temperature to less than 10 ms owing to the reorientation of the anion about its pseudo- C_2 axis [8]. Such a motion is expected to occur in (CH₃NH₃)₂ZnCl₄ in the temperature region in question. When the resonance angular frequency of protons, $\omega_{\rm H}$, is comparable to the quadrupole resonance frequency of chlorine nuclei, ${}^{1}H T_{1}$ is approximately given by [9]

$$T_1^{-1} = C\tau/(1 + (\omega_{\rm H} - \langle \omega_{\rm Cl} \rangle)^2 \tau^2),$$
 (1)

where τ , $\omega_{\rm Cl}$, and $\langle \ \rangle$ are the correlation time of anionic motion, the resonance angular frequency of chlorine nuclei, and the powder and isotope averages, respectively. Assuming an Arrhenius relationship for the activation energy $E_{\rm a}$ for the anionic motion: $\tau = \tau_0 \exp(E_{\rm a}/RT)$, we fitted (1) to the T_1 data, taking $E_{\rm a}$, C, and $(\omega_{\rm H} - \langle \omega_{\rm Cl} \rangle) \tau_0$ as parameters. We obtained $E_{\rm a}$ of 104 \pm 3 kJ mol⁻¹, which is comparable to that of 140 kJ mol⁻¹ obtained in [(CH₃)₂NH₂]₂ZnCl₄ [7].

In Phase I, T_1 decreased with increasing temperature. This decrease is attributable to the self-diffusion of the cation from the previous NMR study [5]. However, the gradient of the log T_1 vs. T^{-1} plots observed became gentler with increasing the Larmor

frequency, implying the presence of more than one relaxation mechanisms. A similar behavior of T_1 was also reported for the CsCl-type ionic plastic phase of CH₃NH₃X (X = NO₃ [10], I [11], ClO₄ [12], Br [13]). According to the analysis of the T_1 data of these salts, the present T_1 values could also be expressed by the superposition of two components, T_{1DD} and T_{1SR} ,

$$T_1^{-1} = T_{1DD}^{-1} + T_{1SR}^{-1}, (2)$$

where

$$T_{\rm 1DD}^{-1} = C_{\rm DD} \omega_{\rm H}^{-2} \tau_{\rm d}^{-1}, \ T_{\rm 1SR}^{-1} = C_{\rm SR} \tau_{\rm r}^{-1}. \eqno(3)$$

 $T_{\rm 1DD}$ denotes the relaxation time due to the magnetic dipole interaction among ¹H nuclei modulated by the cationic self-diffusion. $C_{\rm DD}$ and $\tau_{\rm d}$ are the motional constant and the correlation time of cationic self-diffusion, respectively. T_{1SR} originates from the spinrotation interaction due to the rapid uniaxial and/or isotropic rotation of the cation [14]. C_{SR} and τ_r are the motional constant and the correlation time of cationic rotation, respectively. In (2) and (3), we assume that $\tau_{\rm r}$ is much shorter than $\tau_{\rm d}$ and the conditions $\omega_{\rm H} \tau_{\rm d} gg1$ and $\omega_H \tau_r$ 111 are fulfilled. An Arrhenius-type temperature dependence can be approximated for the correlation time. Using (2) and (3), T_{1DD} and T_{1SR} was calculated separately, as shown in Figure 1. The activation energy evaluated for the cation self-diffusion was $58 \pm 5 \text{ kJ mol}^{-1}$, which is much larger than 26 kJ mol⁻¹ previously estimated from T_1 data measured only at 32 MHz [5]. On the other hand, E_a derived from T_{1SR} is 4 ± 2 kJ mol⁻¹. Thus, the spinrotation interaction is due to the rapid uniaxial rotation of the cation, because this value is comparable to E_a of 3.8 kJ mol⁻¹ for the reorientation of CH₃NH₃⁺ about the C-N axis in (CH₃NH₃)₂ZnCl₄ [5].

Acknowlegdement

This work was supported by Grant-in-Aid for Scientific Research (B) (No. 10440208) from the Ministry of Education, Science, Sports and Culture, Japan.

- [1] B. Morosin and K. Emerson, Acta Cryst. **B32**, 294 (1976)
- [2] J. M. Pérez-Mato, J. L. Mañes, J. Fernández, J. Zúñiga, M. J. Tello, C. Socías, and M. A. Arriadiaga, Phys. Stat. Sol. (a) 68, 29 (1981).
- [3] P. S. R. Prasad, Phys. Stat. Sol. (a) 149, K13 (1995).
- [4] T. K. K. Srinivasan, M. Mylrajan, and J. B. Srinivasa Rao, J. Raman Spectrosc. 23, 21 (1992).
- [5] H. Ishida, T. Iwachido, N. Hayama, R. Ikeda, M. Terashima, and D. Nakamura, Z. Naturforsch. 44a, 741 (1989).
- [6] Y. Sakiyama, K. Horiuchi, and R. Ikeda, J. Phys. Condens. Matter 8, 5345 (1996).
- [7] Nuclear Quadrupole Resonance Spectra (NQRS) Database (1999), Japan Association for International Chemical Information.

- [8] H. Yamamoto, A. Ishikawa, T. Asaji, and D. Nakamura, Z. Naturforsch. 45a, 464 (1990).
- Y. Furukawa, S. Gima, and D. Nakamura, Ber. Bunsenges. Phys. Chem. 89, 863 (1985); Y. Tai, T. Asaji,
 R. Ikeda, and D. Nakamura, Z. Naturforsch. 44a, 300 (1989), and references therein.
- [10] H. Ishida, R. Ikeda, and D. Nakamura, J. Chem. Soc. Faraday Trans. 2, 81, 963 (1985).
- [11] H. Ishida, R. Ikeda, and D. Nakamura, Bull. Chem. Soc. Japan 59, 915 (1986).
- [12] H. Ishida, R. Ikeda, and D. Nakamura, Bull. Chem. Soc. Japan 60, 467 (1987).
- [13] M. Tansho, D. Nakamura, and R. Ikeda, Ber. Bunsenges. Phys. Chem. 95, 1643 (1991).
- [14] P. S. Hubbard, Phys. Rev. 131, 1155 (1963).