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The linear stability problem for a fluid in a classic Benard configuration is considered. The applied
temperature gradient is the sum of a steady component and a time-dependent periodic component. Only
infinitesimal disturbances are considered. The time-dependent perturbation is expressed in Fourier series.
The shift in critical Rayleigh number is calculated and the modulating effect of the oscillatory tempera-
ture gradient on the stability of the fluid layer is examined. Some comparison is made with known results.

1. Introduction

This paper concerns the stability of a fluid layer con-
fined between two horizontal planes and heated from
below as well as from above in a periodic manner with
time. Chandrasekhar [1] has given a comprehensive
review of this stability problem. Donnelly [2] has inves-
tigated experimentally the circular couette flow, i.e. the
flow between two coaxially rotating cylinders (Taylor
instability) when the inner cylinder has a velocity which
varies periodically with time while the outer cylinder is
at rest. He found that the onset of instability is delayed
by the modulation of the angular speed of the inner cyl-
inder with the degree of stabilization rising from zero at
high frequency to a maximum at a frequency of 0.274
(vld?), where d is the gap between the cylinders and vis
the kinematic viscosity.

Since the problem of Taylor stability and Benard stabil-
ity are very similar, Venezian [3] has worked out the ther-
mal analogue of Donnelly’s experiment. One of the aims
of Venezian’s paper is to compare his solution with some
experimental results, obtained by Donnelly. Venezian’s
theory does not give any such finite frequency as obtained
by Donnelly, but he found that for the case of modula-
tion only at the lower surface, the modulation would be
stabilizing with maximum stabilization occuring as the
frequency goes to zero. However in his explanation it
was suggested by Venezian that linear stability theory
ceases to be applicable when the frequency of modula-
tion is sufficiently small.

Rosenblat and Herbert [4] have investigated the line-
ar stability problem in the case of low modulation fre-
quency and provided an asymptotic solution of the prob-
lem. They employed the periodicity criterion and ampli-

tude criterion to calculate the critical Rayleigh number.
The free-free boundary conditions are used in both the
above analyses. Rosenblat and Tanaka [5] have used the
Galerkin procedure to solve the linear problem by using
the more realistic rigid wall boundary conditions. A sim-
ilar problem has been considered earlier by Gershuni and
Zhukhovitskii [6]. In their work, however, the tempera-
ture fluctuations obey a rectangular law instead of being
sinusoidal as used by other researchers.

Gresho and Sani [7] have treated the linear stability
problem with rigid boundaries and found that gravita-
tional modulation can significantly affect the stability
limits of the system. Finucane and Kelly [8] have carried
out an analytical-experimental investigation to confirm
the results of Rosenblat and Herbert. Besides investigat-
ing the linear stability, Roppo et al. [9] have also carried
our the weakly non-linear analysis of the problem. A
numerical solution of the linear Rayleigh-Benard con-
vection was obtained by Weimin and Charles [10], and
the results are compared with the analytic solution. Kel-
ly and Hu [11] have investigated the onset of thermal con-
vection in the presence of an oscillatory, non-planar shear
flow on linear basis. Recently Aniss etal. [12] have
worked out a linear problem of the convection paramet-
ric instability in the case of a Newtonian fluid confined
in a Hele-Shaw cell and subjected to a vertical periodic
motion. In their asymptotic analysis they have investi-
gated the influence of the gravitational modulation on the
instability threshold.

The object of the present study is to find the critical
conditions for the onset of convection. Here amore realis-
tic modulated temperature profile is being taken, which
is similar to the variation of the atmospheric temperature
near to the earth’s surface during one complete day-night
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cycle. The temperature profile has been expressed by a
Fourier series, and the results of this profile have been
compared with the results of other profiles as well as with
the Venezian results.

2. Formulation

Consider a fluid layer of a viscous, incompressible
fluid, confined between two parallel, horizontal stress-
free planes, a distance d apart. The system is of infinite
extent in the horizontal direction. The configuration is
shown in Figure 1.

The governing equations in the Boussinesq approxi-
mation are

a—V+V.Y7V+L(p—p;.[)
dt PR
=V V+ag(F =Tk, 2.1
V.V=0, (2.2)
and aa_T VYT =k VT, 2.3)
t

where pg, v, K, and a are the fluid properties; i.e. the
reference density, the kinematic viscosity, the thermo-
metric conductivity and the coefficient of volume
expansion, respectively. k is the vertical unit vector,
V = (u, v, w) the fluid velocity, g the acceleration due to
gravity, and py and Ty are the hydrostatic pressure and
temperature, respectively, and are determined by

5
== oy 24)
Z
0Ty Kk9°T;
d —H:—H’ 25
T 8z i

where py is the hydrostatic density of the fluid. The
precise form of Ty clearly depends on the nature of the
applied heating. To write the boundary conditions, we
consider a temperature profile as shown in Fig. 2 and
given by
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where w is the modulating frequency and 2 7t/ w the peri-
od of oscillation. The temperature profile shown in Fig. 2
is similar to the variation of the atmospheric temperature
near to the earth’s surface during one complete day-night
cycle.

The Fourier series of the above function is given by

oo

a < .
T(t)=—29+ > a,cosmwt+ Y, b, sinmot,
m=1

m=1
(2.6)
where
14
:—7 2.6
agp T (2.6a)
2 -10 mmx 3 Smm
Oy =—5—5| —— +€0s——+=cos —— |,
m°m 7 2 7 6
(2.6b)
) . ommT 3 . 5m]t:l
and b,=——|sin—+=sin——|. ;
m2752[ 2 7 6 (20c)

By shifting the origin we write

T(tH)= Y, a,cosmwt+ Y, b,sinmwt, (2.7)

m=1 m=1

where a,, and b,,, are as given above.
Now we write the externally imposed wall tempera-
tures as follows:
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i) When the temperature of the lower boundary as well
as of the upper boundary is modulated, we have

T(t)=Tx +/3d{1 +§{i a, cosmwt (2.8a)

m=1

+ b,,,sinmth atz=0,

m=1

=T +[3’d§{ i a,cos(mwt+¢) (2.8b)
m=1

+ i b,, sin (mwt+¢)}
m=1

atz=d,

ii) When the upper boundary is held at a fixed constant
temperature, then

T(t):TR+ﬁd{1+e{ Y a,cosmwt
m=1

+ Y, bysin mth
m=1

at z=0, (2.9a)

=Tx at z=d, (2.9b)

Here erepresents a small amplitude, 3 is the thermal gra-
dient, ¢ the phase angle and Ty the reference tempera-
ture. For both the cases (i) and (ii), the differential equa-

tion (2.5) can be solved. We write
Tz, ) =Ts() + €T (z, 1), (2.10)

where T5(z) is the steady temperature field and ¢ T the
oscillating part. Then the solution is

Ts(z)=TR+AT(—Z-:1—d) _r
and Ti(z,t)=Re { 2 a, {a (M) etnzld
m=1
+a (— Am) e AmZ/d} eim(l)t:l
(2.11b)

—Im{z by {a (Ay) !
m=1

+a(=Ay) e—kmz/d} eimmt}y
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where

AT e _ g An ;
a@(dy)===———— forease(i) (2.12)
2 elm _ e~ ’m
e-lm
and a(A,)=-AT ———— forcase (ii). (2.13)
e'm —e m

Also A2 =—imw d%/x. (2.14)

Here the basic solution of (2.1)—(2.3), (2.8) and (2.9) is

V=@, v,w)=0, T=Ty(z, 1)

and p=py(z ). (2.15)

Our aim is to examine the behaviour of infinitesimal dis-
turbances to the basic solution (2.15). With this in view,
we substitute

V=@, v,w), T=Ty+6, p=pu+p  (2.16)

into (2.1)—(2.3). If we scale length, time, temperature,
velocity and pressure by the units d, d*/k, AT, k/d, and
Kvpr/d®, respectively, then the governing equations in
linear form are

LoV, vp=v2v+ RO, @.17)
P ot

Vv=0, (2.18)
a0 Ty 2

—— 4 :—:V 0, 2.19
ot Y daz i

where P = v/x is the Prandtl number and R = agATd?/
vk is the Rayleigh number. In the above equations, the
variables are in their non-dimensional form.

T,
The temperature gradient —2, obtained from the

0z

dimensionless form of (2.10) is

L S (2.20)

az

where

f=Re [ Y ang(Ay) e"""“’*'}

m=1
_ Im{ > b g () e—i'""’*’jl (2.21)
m=1
9(Ay) = A(Ay,) 77 + A(=1,,) €7, (2.22)
A(A) = Do @ (An) (2.23)
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and A2 =—imw* and 0* = wd*/x
(non-dimensional frequency)

(2.24)

Henceforth the asterisk will be dropped and w will be
considered as the non-dimensional frequency. For con-
venience, the entire problem has been expressed in terms
of w and 6.

From (2.17) we write

190 _y2|p2, - gy, 2.25)
P dt
where
22 9% 2° 2_ 02 | 9?
vi=C9_ +9 19 and Vi=2+2.
ox*  9y* 972 Pl dy?

Now from (2.25) and (2.19) we write
10 _p2||9 _y2 V2w=_RaiV12w.
P dt Jt 0z

(2.26)

Free-free boundary conditions are being applied in this
problem, therefore at z =0 and 1, we have

_Pw_

w= =
0z°

0 (2.27)

and also 0 = 0 (externally fixed temperature).
Then with the help of (2.25) we write

Zw _ 0w
=2 _ =0 at z=0 andl. 2.28a
9z> 9zt ( )
6y
From (2.26) it follows that 8—6 =0 forz=0and 1.
%

Now by differentiating (2.26) we conclude, successive-
ly, that all the even derivatives of w vanish for z = 0 and
1. Thus

a(?.m)w

W=0 (m=1,2,3,— ————— )

at z=0 and 1. (2.28b)

Equation (2.26) can be solved using the boundary con-
ditions (2.28). For solution we Fourier-analyze the dis-
turbances and write

w=w(z,1)exp [i(a.x + ayy)] etc., (2.29)

so that
Viw=—a’w, (2.30)

1/2

2 . .
where a = (a? + a?)""? is the horizontal wave-number.
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For the sake conciseness of notation, the exponential fac-
tor will be left out.

3. Solution

We seek the eigenfunctions w and eigenvalues R of
(2.26) and (2.28) for a temperature profile that departs

from the linear profile aai =-1 by quantities of

order . For this we write the expansions
W=wot+EW +E Wy +——————— ., (3.la)
B=Ri+eR + 8 Rt ——————— , (3.1b)

This type of expansion was first used in connection with
convection problems by Malkus and Veronis [13] to con-
sider the effects of finite-amplitude convection. A simi-
lar expansion has been used among others by Schliiter,
Lortz, and Busse [14], Ingersoll [15], Roppo, Davis, and
Rosenblat [9] and by Jenkins and Proctor [16]. Substi-
tuting (3.1) into (2.26) and separating the terms of dif-
ferent powers of &, we get the system as

Lwy=0, (3.2)
Lwy =R, Viwy— Ry f Viwo, (3.3)
Lwy, =R, V3w, + Ry Viwy - R, f Viwg
—Ro fVEwy, (3.4)
where
1 d 2 (| 9 2 |2 2
L=|——-V°||—=-V°|V°=-Ry V. (35
[P Jt ][az ] A

The function wy, is the solution of the classical Benard
problem (& = 0). The marginally stable solutions for that
problem are

wi? = sin nmz,

which correspond to the eigenvalues

For a fixed value of a, the least eigenvalue is

) 243
R():(ﬂ:—za) (3.6)

corresponding to

W = sin 7z. 3.7
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Here (3.6) and (3.7) will serve as the starting solution.
The equation for w, reduces to

Lw, = R,d’ sin i1z + Rya’ fsin 7. (3.8)

The solubility condition of (3.8) requires that the coeffi-
cient R, is zero. In fact all odd coefficients R;, Rj,
Ry—————— are Zzero.

To find the solution of (3.8) we expand the right hand
side of it in a Fourier series and thus obtain an expres-
sion for w; by inverting the operator L term by term. For
this we write

g(A)sinkzz= Y, gu(A) sinnmz,

n=1

(3.9)

where
1
e (A)=2 _[ g(A)sin kmz sin nz dz,

0
()= —4nka? A2, [1+ (=110
Inkm) = 2 =k A2, + (n+ k)2 2]
for case (i) (3.10)
—4nka* A2
n Am = =
and gk (hn) = o T AR + ()R]

for case (ii). (3.11)

From (3.8) we write

Lw, = Rya’Re { Y a, g(Ay) e ™" sin nz}
m=1

- Rya*Im { Y by g (Ay) e ™" sin nz} )
m=1

Using (3.9) in the above equation, we write

Lw, = Ry a® Re{ Y Ay(A,) e ™ sin Jrz:|
m,n=1
- Rya*Im { Y B, (Ay)e ™ sin nnz:l s
n=1
(3.12)
where
An (A’m) =apy gnl(km)’ Bn(ln) = bm gnl(lm)
and  Dy(Am) = gui(Am)- (3.13)

Also we have

Lsinnmze ™ =L (w)sin nmwz e ™ (3.14)
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where
Lun(@) =" g, +imoo |1+ L] 2 - g2 4 f
P P
(3.15)
with g, =n® 1 +d’. (3.15a)
Using (3.14) and (3.12) gives

oo —imwt
wy=Rya*Re| Y An(Ay) ™7 sinnmz
L,,(w)

m,n=1

09 — imwt
—Roazlm{z B"(—'l"‘)e——sin nﬂz}.

n=1 Lmn ((D)
(3.16)
The equation for w, reduces to
Lw, =—R, a® wo + Ry a* fw,. (3.17)

The solubility condition of (3.17) requires that the right
hand side of it should be orthogonal to sin 7z, therefore

1
Ry=2R, [ fw, sin nzdz, (3.18)
0

where the bar denotes a time average. From (3.8)
; 1
sin Tz =—— Lwy,
f a2R0 1

so that

fwysinmz= w; Lw,
a2R0

oo

A, (A
> (Am)

sin nmwz
m,n=1 Lmn (w)

_ 2
or fwm sinnz=%Re{

: i ;4,, (A,) sin nnz}

m,n=1

2
22 Ro Re[
2

sinnmrz

< Bn A‘m
s (Am)

m,n=1 Lmn(w)

m,n=1

Y B,(An) sinnﬂz},
where ~ denotes the conjugate complex. Then

2p2 o0 2 2p2
B="By ¥ [ A" | @R g,

2 m,n=1 Lmn(w) 2
S | B[
m.;:l Lmn(w)
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2p2 =
or RZ = 4 RO Z l D,,(llm) |2 Cmn(arzn + b'%l) ’
m.n=1 (3.19)
where
_ Ly (@) + Ly (@) (3.20)
mn 2 ‘ Lm" ((l)) i2

Equation (3.17) can be solved for w, and the procedure
continued to evaluate further corrections to w and R.
However we shall stop at this step.

In general R is a function of the horizontal wave num-
ber a and the amplitude of the perturbation ¢, therefore

we write
R(a, &) = Ry(a) + €2 R*(@) 4+ —————— . (321

Let the least value of R be R, at a = a.. This critical val-
ue of a occurs when
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and c) when only the bottom plate temperature is mod-
ulated, the upper plate is held at a fixed constant tem-
perature.

—4nm’ A2,

Let dy,= ;
¢ (A2, + (n=1)2 22 [A%, + (n+1)2 72

4.1)

then from (3.13) and (3.10) we have

for case (a)

4.2)
D,(A,) =d,, ifniseven, =0 ifnisodd,
for case (b) (4.3)

D,(4,,) =0 ifniseven, =d,, if nis odd,

and from (2.11) for case (c)
D, (M) = A

for all values of n. 4.4)

Using (2.24), we can write

2.2 _4 2
8_R=0. (3.22) Idmn12 _ lom“n“m"w .
da [m2w?+ (n-D* a2 [miew? + (n+1)* 7
Also a.=ag+ €a, + €ay +————— . (3.23) : (4.5)
Also, at az=a()7':£2— we have
2,2 D 2 pB 3_6 6
C, = (m“w*/P)y(n"+1/2)a" - (n"+1/2)’7°+(27/8) 4.6)

From (3.21), (3.22), (3.23), and (3.6) we get

2

ag = 77 (3.24)
gnd Rl =Ry % £ By b =nncem i (3.25)
Thus to order &2, R, is determined by (3.25).
4. Results
(7% +d? )3 s b
We have Ry = —a—z——— and aj = 7 therefore

Roy(ag) = Ry, = 657.51.
The values of R,. have been calculated in the follow-
ing three cases:

a) when the plate temperatures are modulated in phase,
i.e. ¢=0,

b) when the plate temperatures are modulated out of
phase, i.e. ¢ = m,

[(m?w* PY(n* +1/12) A2 = (> +1/2)* 28+ 27/8) A% + m*w? (1 +1/ P)? (n? +1/2)*n® "

From (3.19) we get

Ry, =%n'° S |dyl* Con (a2 +b2). 4.7)

myn=1
In the limiting cases, we consider the case when wis very
small i.e. @ = 0.
(ap + bp)
(27/8) P(1+1/P)* 2%

For n=1  |dy| Cpi =

and for n # 1 we get

—16m*n*w?(al + b,%,)

dmn Zcmn _) .
L (n2=1)° [n*+(5/2)n* +13/4] x'°

S0 Ry.=Rp - far, (4.8)
where . _
b= S @b @9
and
/J,:&i — r;:lnz(a,z,,+lz,?,) .
4 (n"=1)"[n"+(5/2)n"+13/4]n
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Then for case (a)

Ry, =—2.703573x107" w?, (4.10)
for case (b)

Roe = Rp, —1.235901x107°w?, 4.11)
and for case (c)

Ry = Rp, —2.715932x 107" ?. (4.12)

Now we consider the temperature profiles as shown in
the Figs. 3 and 4. They are known as saw-tooth function
and step function profiles, respectively.

The Fourier expansion of these profiles is

T(t)= Y, a, cos mwt,

(4.13)
m=1
where
ap =—— (1-cosmmn) (4.14)
T m
and
a, =—2—sin (ma/2) (4.15)
Tm

(Y

(@]
el
»%

IRE

27T 31T
)

Fig. 4.

for the Figs. 3 and 4, respectively. Then (4.7) for the
above profiles reduces to

RZL‘ :_7_22'77:10

S 14 PC 2
64 Z|mn| mn Qm

m,n=1

where a,, is as given above for the two profiles.

Here the values of R, for the three temperature pro-
files have been calculated as functions of w for various
values of P and are compared with Venezian’s [3] results.
In the Venezian results a sinusoidal function was taken
for modulating the boundary temperatures.

5. Discussion

In the limiting case, when the frequency w is very
small, we find that for in-phase modulation the effect of
modulation is to destabilize the system with convection
occurring at an earlier point than in the unmodulated
system. This agrees with the results of Krishnamurty
[17]. The effect of modulation is more destabilizing for
a step function and less destabilizing for a saw-tooth
function than that calculated by Venezian. The least
destabilizing effect was obtained for day-night profiles
as shown in the Figs. 5, 6 and 7. Here the dependence on
the Prandtl number can appear only at large values of w.

When the modulation is out of phase, the effect is
stabilization, decreasing with frequency (Figs. 8 and 9).

P=1 TEMP. MODULATION IS IN PHASE

(%]

%3636¢x STEP—FUNCTION PROFILE
+++++ SINUSOIDAL PROFILE
Aedeskobk SAW-TOOTH PROFILE
#kdehk DAY —NIGHT PROFILE
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P=100 TEMP. MODULATION IS IN PHASE P=1 TEMP. MODULATION IS OUT OF PHASE
2 200
»
50 100 150 200 230 180
0 4
160 006 STEP—FUNTION PROFILE
+++++ SINUSOIDAL PROFILE
=0 1404 stk SAW—TOOTH PROFILE
*sesak DAY—NIGHT PROFILE
—4
o
o 305606 STEP—FUNCTION PROFILE
X s -+ SINUSOIDAL  PROFILE
opdedek SAW—TOOTH PROFILE
*&ax+ DAY-NIGHT PROFILE
-8
-104
-12
Fig. 6.
P=1000 TEMP. MODULATION IS IN PHASE P=100 TEMP. MODULATION IS OUT OF PHASE
-
©
¢ 50 100 150 200 230
0 1 1 - 1 ot 6_.
%eoex STEP—FUNCTION PROFILE
+++++ SINUSOIDAL PROFILE
-2 54 sakfetek SAW—TOOTH PROFILE
o #xask DAY=NIGHT PROFILE
~
i
—4 seexex STEP—FUNCTION PROFILE
+HH SINUSOIDAL PROFILE
#esteshotk SAW—TOOTH PROFILE
e Adedkmr DAY—NIGHT PROFILE
_8 —
_10_
-12
Fig. 7. Fig. 9.

However, when the Prandtl number is very large, Rp, is
sufficiently small and so itis overtaken by the other terms
in the sum (Fig. 10).

But when only the bottom plate temperature is mod-
ulated, there is no significant difference in this case (b)
near P = 1. However for large P, Rp, can become suffi-
ciently small to be overtaken by the other terms in the
sum, as shown in the Figs. 12 and 13.

In case of in-phase modulation the effect of modula-
tion on the onset of convection is zero at zero frequency.
But for out of phase modulation or when the upper plate
is at a fixed constant temperature, the effect is of maxi-
mum stabilization at this frequency.

Also it is clear from (4.7) that due to the term 1/@? in
R, the effect of modulation disappears altogether as
@ —> o=. This behaviour is in qualitative agreement with
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P=1000 TEMP. MODULATION IS OUT OF PHASE

0T
0.6 1
xx36xxX STEP—FUNCTION PROFILE
0.5 4 +++++ SINUSOIDAL PROFILE
Aotk SAW—TOOTH PROFILE
0.4 #anat DAY—NIGHT PROFILE
0.3
U ke
0.2
6.
0.1 4
50 w 100 1%0
0.0 L L v
-0.1 o i
_02 -
-0.3
-0.4
-0.5
Fig. 10.
P=1 UPPER WALL IS AT CONSTANT TEMP.
200
1801
160 »oeex STEP-FUNCTION PROFILE
+++++ SINUSOIDAL PROFILE
140 stttk SAW—TOOTH PROFILE

*anset DAY—NIGHT PROFILE

the results of Rosenblat and Tanaka [5] and with the
experiment of [2] for the analogous rotating cylinder
problem.

For intermediate values of w, the effect of changing
the frequency can be seen in the numerator of C,,,. We
have C,,, = 0, when @ = 77 (78P)""?/2m, so that in case
(a) Ry, should be zero near w = 7r° (78P)"%/2. The peak
negative value of R, occurs near w = 20. Over the entire
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P=100 UPPER WALL IS AT CONSTANT TEMP.
8
6_
xxxx STEP—FUNCTION PROFILE
4 ++++ SINUSOIDAL PROFILE
1 stk SAW—TOOTH PROFILE
5 awins DAY—NIGHT PROFILE
o~ 22
o
' 25 50 W 75 100
0 1 1 1 s E
_2_.
=4
_6—
-8
Fig. 12.
P=1000 UPPER WALL IS AT CONSTANT TEMP.
2
25 50 W 75 100
(6] . L . k
-2
_4—.
(&)
~
& _gl
_8—
%»36x STEP—FUNCTION PROFILE
+++++ SINUSOIDAL PROFILE
—10- spideokk SAN—TOOTH PROFILE
#x#tx DAY—NIGHT PROFILE
)
Fig. 13

range of P, this value is about —11 for the step-function,
—4 for the saw-tooth function, — 1.5 for the day-night pro-
file and —6.5 as calculated by Venezian.

When the frequency of modulation is small, the effect
of modulation is felt throughout the fluid layer. If the
modulation is in phase, the temperature profile consists
of the steady straight-line section plus a time-dependent
part that oscillates with time. It is because of this time-
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dependent part that the convection occurs at lower Ray-
leigh number than that predicted by the linear theory with
steady temperature gradient, (Figures 5—7). Also when
the temperature modulation is out of phase or the upper
plate is at constant temperature, the convective wave
propagates across the fluid layer thereby inhibiting the
instability, and so convection occurs at a higher Rayleigh
number that that predicted by the linear theory with
steady temperature gradient. Different degrees of pene-
tration of the convective waves across the fluid layer, cor-
responding to different temperature profiles are respon-
sible for different graphs in a figure.

The above analysis is based on the assumption that the
amplitude of the modulating temperature is small com-
pared to the imposed steady temperature difference and
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the convective currents are weak, so that non-linear
effects may be neglected. However, violation of these
assumptions would alter the results signficantly at low
modulating frequency.

Thus at low modulating frequency the amplitude of
modulation should be small, and for convective currents
to be weak, the frequency of modulation should be such
that w > &, as suggested by Venezian [3].
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