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The linear stability problem for a fluid in a classic Benard configuration is considered. The applied 
temperature gradient is the sum of a steady component and a time-dependent periodic component. Only 
infinitesimal disturbances are considered. The time-dependent perturbation is expressed in Fourier series. 
The shift in critical Rayleigh number is calculated and the modulating effect of the oscillatory tempera-
ture gradient on the stability of the fluid layer is examined. Some comparison is made with known results. 

1. Introduction 

This paper concerns the stability of a fluid layer con-
fined between two horizontal planes and heated from 
below as well as from above in a periodic manner with 
time. Chandrasekhar [1] has given a comprehensive 
review of this stability problem. Donnelly [2] has inves-
tigated experimentally the circular couette flow, i.e. the 
flow between two coaxially rotating cylinders (Taylor 
instability) when the inner cylinder has a velocity which 
varies periodically with time while the outer cylinder is 
at rest. He found that the onset of instability is delayed 
by the modulation of the angular speed of the inner cyl-
inder with the degree of stabilization rising from zero at 
high frequency to a maximum at a frequency of 0.274 
(v/d2) , where d is the gap between the cylinders and vis 
the kinematic viscosity. 

Since the problem of Taylor stability and Benard stabil-
ity are very similar, Venezian [3] has worked out the ther-
mal analogue of Donnelly's experiment. One of the aims 
of Venezian's paper is to compare his solution with some 
experimental results, obtained by Donnelly. Venezian's 
theory does not give any such finite frequency as obtained 
by Donnelly, but he found that for the case of modula-
tion only at the lower surface, the modulation would be 
stabilizing with maximum stabilization occuring as the 
frequency goes to zero. However in his explanation it 
was suggested by Venezian that linear stability theory 
ceases to be applicable when the frequency of modula-
tion is sufficiently small. 

Rosenblat and Herbert [4] have investigated the line-
ar stability problem in the case of low modulation fre-
quency and provided an asymptotic solution of the prob-
lem. They employed the periodicity criterion and ampli-

tude criterion to calculate the critical Rayleigh number. 
The free-free boundary conditions are used in both the 
above analyses. Rosenblat and Tanaka [5] have used the 
Galerkin procedure to solve the linear problem by using 
the more realistic rigid wall boundary conditions. A sim-
ilar problem has been considered earlier by Gershuni and 
Zhukhovitskii [6]. In their work, however, the tempera-
ture fluctuations obey a rectangular law instead of being 
sinusoidal as used by other researchers. 

Gresho and Sani [7] have treated the linear stability 
problem with rigid boundaries and found that gravita-
tional modulation can significantly affect the stability 
limits of the system. Finucane and Kelly [8] have carried 
out an analytical-experimental investigation to confirm 
the results of Rosenblat and Herbert. Besides investigat-
ing the linear stability, Roppo et al. [9] have also carried 
our the weakly non-linear analysis of the problem. A 
numerical solution of the linear Rayleigh-Benard con-
vection was obtained by Weimin and Charles [10], and 
the results are compared with the analytic solution. Kel-
ly and Hu [ 11 ] have investigated the onset of thermal con-
vection in the presence of an oscillatory, non-planar shear 
flow on linear basis. Recently Aniss et al. [12] have 
worked out a linear problem of the convection paramet-
ric instability in the case of a Newtonian fluid confined 
in a Hele-Shaw cell and subjected to a vertical periodic 
motion. In their asymptotic analysis they have investi-
gated the influence of the gravitational modulation on the 
instability threshold. 

The object of the present study is to find the critical 
conditions for the onset of convection. Here a more realis-
tic modulated temperature profile is being taken, which 
is similar to the variation of the atmospheric temperature 
near to the earth's surface during one complete day-night 
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cycle. The temperature profile has been expressed by a 
Fourier series, and the results of this profile have been 
compared with the results of other profiles as well as with 
the Venezian results. 

2. Formulation Fig. 1. 

fluid 

z = d 

z = 0 

Consider a fluid layer of a viscous, incompressible 
fluid, confined between two parallel, horizontal stress-
free planes, a distance d apart. The system is of infinite 
extent in the horizontal direction. The configuration is 
shown in Figure 1. 

The governing equations in the Boussinesq approxi-
mation are 

dV 1 
dt p R 

= vV2V+ag(T-TH)k, 

TT S3" 
IV> bio 

Fig. 2. 

(2.1) 

V.V=0, 

and ~+V.VT = K V 2 T , 
dt 

(2.2) 

(2.3) 

where pR , v, K , and a are the fluid properties; i.e. the 
reference density, the kinematic viscosity, the thermo-
metric conductivity and the coefficient of volume 
expansion, respectively, k is the vertical unit vector, 
V = (u, v, w) the fluid velocity, g the acceleration due to 
gravity, and pH and TH are the hydrostatic pressure and 
temperature, respectively, and are determined by 

dpu 
dz 

-pug (2.4) 

where co is the modulating frequency and 2 JT/CO the peri-
od of oscillation. The temperature profile shown in Fig. 2 
is similar to the variation of the atmospheric temperature 
near to the earth's surface during one complete day-night 
cycle. 

The Fourier series of the above function is given by 

T(t) = ~ + am cos meat + ]T bm sin mcot, 
m= 1 m= 1 

where 

a0 = 1 4 
12 

(2.6) 

(2.6a) 

and BTh _Kd2TH 

dt dz 
(2.5) 

where p H is the hydrostatic density of the fluid. The 
precise form of TH clearly depends on the nature of the 
applied heating. To write the boundary conditions, we 
consider a temperature profile as shown in Fig. 2 and 
given by 

7X0 = 

2cot 

JT 

\2 [ cot 
IJT 

0 <t< — 
2o) 

< t < — 
2 co 6 co 
5JT ^ ^ 2JT <t< — 
6(0 co 

2 2 m JT 

and bm = 2 2 
M JT 

10 mJT 3 5mJT 
— + cos h — cos 

L 7 2 7 6 

. mJT 3 • 5mJT 
sin 1— sin 

2 7 6 

(2.6b) 

(2.6c) 

By shifting the origin we write 

7X0 = X am c o s ma)t + X bm sin m co t, (2.7) 
m=1 m=1 

where am and bm are as given above. 
Now we write the externally imposed wall tempera-

tures as follows: 
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i) When the temperature of the lower boundary as well where 
as of the upper boundary is modulated, we have 

T(t) = TR+ßd 1 + — <{ X am cos mcot (2.8a) 
m= 1 

+ ^T bm sin m (üt 
m= 1 

at z = 0, 

= TR + ßd | X am cos (m co t + cp) (2.8b) 
m= 1 

+ X bm sin (mcot + cp) 
m= 1 

ii) When the upper boundary is held at a fixed constant 
temperature, then 

T(t) = TR + ßd 1 + E ^ am cos mcot 
m= 1 

+ X bm sin mcot 
m= 1 

= 7 R 

at z = 0, (2.9a) 

at z = d, (2.9b) 

Here e represents a small amplitude, ß is the thermal gra-
dient, cp the phase angle and TR the reference tempera-
ture. For both the cases (i) and (ii), the differential equa-
tion (2.5) can be solved. We write 

TH(z,t) = Ts(z) + eTl(z, t), 

where Ts(z) is the steady temperature field and e the 
oscillating part. Then the solution is 

TS(Z) = TR + AT (z-d) 
( 2 . 1 1 a ) 

and T] (z, t) = Re X a m { a U m ) e 
m= 1 

X bm {a U m ) « - I m 

(2.11b) 
X , n z ! D 

m= 1 

+ a(- km)e-x-z,d}eim0* 

AT 
2 ex'"-e~x'" 

and a(km) = - AT 
- A „ 

for case (i) (2.12) 

for case (ii). (2.13) 

Also Ax, = - im co d2/K. (2.14) 

Here the basic solution of (2.1)-(2.3), (2.8) and (2.9) is 

V=(u,v,w) = 0, T = Th(Z, t) 
and p=pH(z,t). (2.15) 

Our aim is to examine the behaviour of infinitesimal dis-
at z = d, turbances to the basic solution (2.15). With this in view, 

we substitute 

V= (u, V , W ) , T = Th + 0, p = pH + p (2.16) 

into (2.1)—(2.3). If we scale length, time, temperature, 
velocity and pressure by the units d, d2/K, AT, Kid, and 
KvpR/d2, respectively, then the governing equations in 
linear form are 

1 dV + Vp = V2V+ ROk, 
P dt 

V.V=0, 

dt dz 

(2.17) 

(2.18) 

(2.19) 

where P = V/K is the Prandtl number and R = agATd?/ 
VK is the Rayleigh number. In the above equations, the 

(2.10) variables are in their non-dimensional form. 

The temperature gradient d7b 
dz 

dimensionless form of (2.10) is 

dTo , „ 
dz 

, obtained from the 

(2.20) 

where 

/ = Re X a j W « " 
m= 1 

- I m X bm 9 (Am) e 

g(km)=Aam) eXmZ + A(-A m) 

(2.21) 

(2.22) 

(2.23) 
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and A2 = - imoj* and co* = cod2/K 
(non-dimensional frequency) 

Henceforth the asterisk will be dropped and co will be 
considered as the non-dimensional frequency. For con-
venience, the entire problem has been expressed in terms 
of w and 0. 

From (2.17) we write 
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(2.24) 

P dt 

where 

dx2 

v2w = pv?e, 

d2 , d2 , ry2 and V, 
dy2 dz2 

Now from (2.25) and (2.19) we write 

(2.25) 

a y 

±JL_v2~ 
p dt dt 

dT0 

dz 
(2.26) 

Free-free boundary conditions are being applied in this 
problem, therefore at z - 0 and 1, we have 

w = ^ = 0 
dz2 (2.27) 

and also 0 = 0 (externally fixed temperature). 
Then with the help of (2.25) we write 

a2> d\> 
)ZA dr4 dz2 

From (2.26) it follows that 
a6 w 

= 0 for z = 0 and 1. 

Now by differentiating (2.26) we conclude, successive-
ly, that all the even derivatives of w vanish for z = 0 and 
1. Thus 

dl2m)w 
dz(2m) 

= 0 (m = 1,2,3, 

at z = 0 and 1. 

- ) 

(2.28b) 

Equation (2.26) can be solved using the boundary con-
ditions (2.28). For solution we Fourier-analyze the dis-
turbances and write 

w = w(z, t) exp [i(axx + aYy)] etc., 

so that 

Vr w = - a w, 

where a = (ax + a2)1'2 is the horizontal wave-number. 

For the sake conciseness of notation, the exponential fac-
tor will be left out. 

3. Solution 

We seek the eigenfunctions w and eigenvalues R of 
(2.26) and (2.28) for a temperature profile that departs 

d T from the linear profile —2. = _ ] by quantities of 
dz 

order e. For this we write the expansions 
,2 W = H>0 + £VV] + £ w 2 + 

R = R0 + £/?, + e2 R2 + -

, (3.1a) 

(3.1b) 

This type of expansion was first used in connection with 
convection problems by Malkus and Veronis [ 13] to con-
sider the effects of finite-amplitude convection. A simi-
lar expansion has been used among others by Schlüter, 
Lortz, and Busse [14], Ingersoll [15], Roppo, Davis, and 
Rosenblat [9] and by Jenkins and Proctor [16]. Substi-
tuting (3.1) into (2.26) and separating the terms of dif-
ferent powers of e, we get the system as 

Lw0 = 0, 

Lw, = /?, Vfw0 - R0fV2w0, 

LW2 = R, Vfwl + R2 Vfw0 - R\fV2w0 

0 at z = 0 and 1. (2.28a) where 

L = 

-R0fVfWl, 

1 d 
P dt 

- V ' d_ 
dt 

VZ - Rn V( 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The function w0 is the solution of the classical Benard 
problem (e = 0). The marginally stable solutions for that 
problem are 

Wo"' = sin njrz, 

which correspond to the eigenvalues 

(n) ( n V + a 2 ) 3 

K 0 ^ . 

For a fixed value of a, the least eigenvalue is 

(2.29) 

(2.30) 

( J T 2 + A 2 ) 3  

corresponding to 

w0 = sin JTZ • 

(3.6) 

(3.7) 
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Here (3.6) and (3.7) will serve as the starting solution. where 
The equation for w^ reduces to 

Lwj = R^a2 sin NZ + RqCI f sin JTZ. (3.8) 

2 2 
Lmn (W) = m Qn + im(j> 1 + -

P 

The solubility condition of (3.8) requires that the coeffi- 2 

cient R] is zero. In fact all odd coefficients /?,, R3, with qn = n~ ^ + a . 

2 

qn-qn + q\ 

(3.15) 

(3.15a) 
R5 are zero. 

To find the solution of (3.8) we expand the right hand 
side of it in a Fourier series and thus obtain an expres-
sion for vvj by inverting the operator L term by term. For 
this we write 

g(X) sin kjtz = X 9nk(^) sin njrz, (3.9) 
n = 1 

where 

gnk(k) = 2 J g(A) sin kjzz sin nnz dz, 
o 

-4nkjr2X2
m [l + ( - l ) n + * + 1 < r ' ^ ] 

2 [X2
m + (n-k)2Jt2] [X2

m + (n + k)2jt2] 
for case (i) (3.10) 

2 n2 
and gnk (Am) = 

-AnkJi A 
[X2

m + (n - k)2 ir2] [k2
m + (n + k)2 n2] 

for case (ii). (3.11) 

From (3.8) we write 

Lwi - Rn a 2 Re X amg(Xm)e-im(0tsmjTz 
m- 1 

- /?0 <r Im X bm g (Am) e~'m(t)t sin JTZ 
m= 1 

Using (3.9) in the above equation, we write 

Lw, = R0 a Re X A N A M ) E - I M " " S M JTZ 
m,n = 1 

R0 a 2 Im X Bn i^m) e~'mwt sin nnz 

(3.12) 
where 

= am g„l(Kn)> Bn(K) = bm Qnl^m) 

and Dnam) = gnlam). (3.13) 

Also we have 
L sinn JTZ e~,mwt = Lmn(co) sinn JTZ e'imwt, (3.14) 

Using (3.14) and (3.12) gives 

w, = R0 a Re 

- R0 a2 Im 

V A„(X m )e- i m a t . 
X sin njrz 

i, n— 1 Lmn((D) 

~ Bnqm)e-mm . 
X sin nnz 

n= 1 Lmn((0) 

The equation for vv2 reduces to 

Lw2 = - R2 a2 w0 + R0 a2fwx. 

(3.16) 

(3.17) 

The solubility condition of (3.17) requires that the right 
hand side of it should be orthogonal to sin JTZ, therefore 

l _ 

R2~2RQ J~fw\ sin JTZ dz , (3.18) 
o 

where the bar denotes a time average. From (3.8) 

/ s in JTZ = 
1 

a2R0 
Lw\, 

so that 

f w \ s in JTZ = — J — W\L\V\ 
a RQ 

or /wi sin JTZ = - Re 
2 X ^ ^ - S i n n ^ r z 

j, n = 1 ^ m J ® ) 

X Ä„(Am)sinrc;rz 
m,n- 1 

^ R e 
i, n = 1 Lmniw) 

X ß„(Am)sinn̂ rz 
m, n = 1 

where ~ denotes the conjugate complex. Then 

R2=^-Re £ 
,„ = 1 Lmn((D) 

Bnaj i2 

2 2 r,2 
+ -—— Re 

A„(Am) r , a'Ro 

t,n = l 
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rrRl ^ o and c) when only the bottom plate temperature is mod-
or R = 0 V 1 D (} C (n~ 4- h2 

2 ? Z* I | ulated, the upper plate is held at a fixed constant tem-z m,n = 1 
(3.19) perature. 

where 
JL/Cl YYIYI ^ ^ ^ ^ ^ 5 y 1 y 

r _ L m n ( c o ) + Lnm(co) f 3 2 0 , [AB + ( n - D ;r2][A2
w+ ( n + 1 ) V ] 

~ i | r ,2 • 
2 I I then from (3.13) and (3.10) we have 

Equation (3.17) can be solved for w2 and the procedure for case (a) ^ 2 ) 
continued to evaluate further corrections to w and R. ^ . , ... ~ .r , , 

, „ ,. Dn(Am) = amn if n is even, = 0 if n is odd, 
However we shall stop at this step. 

In general R is a function of the horizontal wave num- for case (b) ^ ^ 
ber a and the amplitude of the perturbation E, therefore 
w e w r i t e Dn(AJ = 0 if m s even, = dmn i f « is odd, 

R(a, s) = R0(a) + e 2 R2(a) + . (3.21) a n d f r o m ^ f o r c a s e <c> 

j , , , f D u D <• rp, • . . • | Dn(km) = dmn for all values of n. (4.4) 
Let the least value of R be Rc at a = ac. This critical val-
ue of a occurs when Using (2.24), we can write 

d R = 0 . (3.22) I d I 2 1 6 m 2 / i W 
DA  M N [m 2(0 2 + (n-\) 4JT4][m2w2 + (n+]) 4JT 4}' 

Also ac = a0 +Eci] + £a2 + . (3.23) ^ (4-5) 

Also, at a2 = an = — we have 
2 

c = (m2co2/ P) (n2 + \/2)JT2-(n2 + \/2)*JT6 + ( 2 7 / 8 ) JT 6  

mn ~ [(m2a)2/ P) (n2 + \/2) J T 2 - (n2 + l / 2 ) 3 ^ 6 + ( 2 7 / 8 ) J T 6 ] 2 + m2a)2(\ + 1 / P)2 (n2 +1 /2)4TT8 ' 

From (3.19) we get 

From (3.21), (3.22), (3.23), and (3.6) we get 7 2 9 - 2 
Rlc = — ^ 2. I «mn I Cmn («m + K) 

- 2 64 m,n = \ 
(3.24) 

2 In the limiting cases, we consider the case when co is very 

and Rc(E) = R0c + £2R2c + . (3.25) small i.e. o> - 0. 

Thus to order £ , Rc is determined by (3.25). ™ r n ~ 1 I "mi I cmi -> ( ? 7 / 8 ) P (1 + l / /> ) 2 / r 6 ' 

and for n 1 we get 

4. Results 2 - \6 m2 n2 io2 (a2, + b2) 
"mn ^mn , 7 .xS r 4 i ~> i i / ^ i 10' 

3 ( f l - - l r [n4 + ( 5 / 2 ) « z + 1 3 / 4 ] j r l u 

( j r + a 2 ) JJ-2 
We have /?0 = 2 and aö = — , therefore So R2c = RPr - ßa?, (4.8) 

Ro(a0) = R0c = 657.51. where ^ 
The values of /?2c have been calculated in the follow- ^ _ 21 JT V + ^2 ^ 

ing three cases: Pr SP (1 + 1 / P)2
 m =, 

a) when the plate temperatures are modulated in phase, a n d 

i.e. 0 = 0, _ 729 y m2n2 (a2, + b;n) 
b) when the plate temperatures are modulated out of ' 4 ( n

2 _ | ) 5 [,7
4 + ( 5 / 2 ) + 1 3 / 4 ] ;r10 

phase, i.e. (P= JT, n = 2 
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Then for case (a) 

R2C = - 2.703573 x l O " V , (4.10) 

for case (b) 

/?2c = Apr -1-235901x1 (T V , (4.11) 

and for case (c) 

ß2c = ß p r - 2.715932 x l O ' V . (4.12) 

Now we consider the temperature profiles as shown in 
the Figs. 3 and 4. They are known as saw-tooth function 
and step function profiles, respectively. 

The Fourier expansion of these profiles is 

T(t) = ^ am cos mcot, (4.13) 
m = 1 

where 
4 

am~—j—Ö-(1-cosmjc) (4.14) 
TC M 

and 

am = ^ - s i n ( m ^ / 2 ) (4.15) 
nm 

1 
7T 
£J 

zn 
u3 

1 1' 
4.7t X 
CO 

Fig. 4. 

for the Figs. 3 and 4, respectively. Then (4.7) for the 
above profiles reduces to 

d _ 729 io Y I , i2 r 2 
64 m,n = 1 

where am is as given above for the two profiles. 
Here the values of R2C for the three temperature pro-

files have been calculated as functions of co for various 
values of P and are compared with Venezian's [3] results. 
In the Venezian results a sinusoidal function was taken 
for modulating the boundary temperatures. 

5. Discussion 

In the limiting case, when the frequency co is very 
small, we find that for in-phase modulation the effect of 
modulation is to destabilize the system with convection 
occurring at an earlier point than in the unmodulated 
system. This agrees with the results of Krishnamurty 
[17], The effect of modulation is more destabilizing for 
a step function and less destabilizing for a saw-tooth 
function than that calculated by Venezian. The least 
destabilizing effect was obtained for day-night profiles 
as shown in the Figs. 5, 6 and 7. Here the dependence on 
the Prandtl number can appear only at large values of co. 

When the modulation is out of phase, the effect is 
stabilization, decreasing with frequency (Figs. 8 and 9). 

P = 1 TEMP. MODULATION IS IN PHASE 
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P = 1 0 0 TEMP. MODULATION IS IN PHASE P = 1 TEMP. MODULATION IS OUT OF PHASE 

200 

100 

Fig. 8. 

P = 1 0 0 TEMP. MODULATION IS OUT OF PHASE 

- 2 

o 'vl 
cr i 

— 4 

- 6 -

- 8 -

- 1 0 -

- 1 2 -

F i g . 7 . 

P = 1 0 0 0 TEMP. MODULATION IS IN PHASE 

* * * * * STEP-FUNCTION PROFILE 
l l I I I SINUSOIDAL PROFILE 

SAW-TOOTH PROFILE 
* * * * * DAY-NIGHT PROFILE 

x x x x x STEP-FUNCTION PROFILE 
I I I I I SINUSOIDAL PROFILE 
t»M«M< SAW-TOOTH PROFILE 
* * * * * DAY-NIGHT PROFILE 

However, when the Prandtl number is very large, RPR is 
sufficiently small and so it is overtaken by the other terms 
in the sum (Fig. 10). 

But when only the bottom plate temperature is mod-
ulated, there is no significant difference in this case (b) 
near P = 1. However for large P, RPX can become suffi-
ciently small to be overtaken by the other terms in the 
sum, as shown in the Figs. 12 and 13. 

In case of in-phase modulation the effect of modula-
tion on the onset of convection is zero at zero frequency. 
But for out of phase modulation or when the upper plate 
is at a fixed constant temperature, the effect is of maxi-
mum stabilization at this frequency. 

Also it is clear from (4.7) that due to the term Mw2 in 
R2C the effect of modulation disappears altogether as 
(O - * oo. This behaviour is in qualitative agreement with 
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0 . 7 

0.6 

0 . 5 

0 . 4 

0 . 3 
o 
rJ 0.2 cc 

0 . 1 

0.0 

- 0 . 1 

- 0 . 2 

- 0 . 3 -

- 0 . 4 -

- 0 . 5 -

Fig. 10. 

P = 1 0 0 0 TEMP. MODULATION IS OUT OF PHASE 

* * * * * STEP-FUNCTION PROFILE 
M i l l SINUSOIDAL PROFILE 

+ + + + + SAW-TOOTH PROFILE 
* * * * * DAY-NIGHT PROFILE 

P = 1 0 0 UPPER WALL IS AT CONSTANT TEMP. 

8-1—— 

- 8 - 1 

Fig. 12. 

- 4 -

* * * * * STEP-FUNCTION PROFILE 
M I M SINUSOIDAL PROFILE 
i"M»M< SAW-TOOTH PROFILE 
* * * * * DAY-NIGHT PROFILE 

P = 1 UPPER WALL IS AT CONSTANT TEMP. 

200-i 

180-

u 
<N 
CC 

Fig. 11. 

P = 1 0 0 0 UPPER WALL IS AT CONSTANT TEMP. 

Fig. 13. 

the results of Rosenblat and Tanaka [5] and with the 
experiment of [2] for the analogous rotating cylinder 
problem. 

For intermediate values of co, the effect of changing 
the frequency can be seen in the numerator of Cmn. We 
have Cm2 = 0, when OJ = JT 2 (78P)1/2/2m, so that in case 
(a) R2C should be zero near co = JT 2 (78P)1/2/2. The peak 
negative value of R2C occurs near co = 20. Over the entire 

range of P, this value is about - 1 1 for the step-function, 
- 4 for the saw-tooth function, - 1 . 5 for the day-night pro-
file and - 6 . 5 as calculated by Venezian. 

When the frequency of modulation is small, the effect 
of modulation is felt throughout the fluid layer. If the 
modulation is in phase, the temperature profile consists 
of the steady straight-line section plus a time-dependent 
part that oscillates with time. It is because of this time-

120 

160 

1 4 0 

* * * * * STEP-FUNCTION PROFILE 
I I I I I SINUSOIDAL PROFILE 

* * * * * SAW-TOOTH PROFILE 
* * * * * DAY-NIGHT PROFILE 
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dependent part that the convection occurs at lower Ray-
leigh number than that predicted by the linear theory with 
steady temperature gradient, (Figures 5 - 7 ) . Also when 
the temperature modulation is out of phase or the upper 
plate is at constant temperature, the convective wave 
propagates across the fluid layer thereby inhibiting the 
instability, and so convection occurs at a higher Rayleigh 
number that that predicted by the linear theory with 
steady temperature gradient. Different degrees of pene-
tration of the convective waves across the fluid layer, cor-
responding to different temperature profiles are respon-
sible for different graphs in a figure. 

The above analysis is based on the assumption that the 
amplitude of the modulating temperature is small com-
pared to the imposed steady temperature difference and 

the convective currents are weak, so that non-linear 
effects may be neglected. However, violation of these 
assumptions would alter the results signficantly at low 
modulating frequency. 

Thus at low modulating frequency the amplitude of 
modulation should be small, and for convective currents 
to be weak, the frequency of modulation should be such 
that co > e, as suggested by Venezian [3]. 
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