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To find nontrivial high dimensional integrable models (especially in (3+1)-dimensions) is one
of the most important problems in nonlinear physics. A systematic method to find some nontrivial
high dimensional integrable models is established by means of noninvertible deformation relations.
Starting from a noninvertible Miura type transformation, we find that the (1+1)-dimensional sinh-
Gordon model appearing in many physical fields is a deformation of the (0+1)-dimensional Riccati
equation. A high dimensional Miura type deformation (including two different (3+1)-dimensional
reductions) of the heat conduction equation is proved to be Painlevé integrable. Some special types
of explicit exact solutions, like multi-plane and/or multi-camber soliton solutions, multi-dromion
solutions and multiple ring soliton solutions, are obtained.
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1. Introduction

Because of the wide application of soliton theory
in almost every branch of physics, like field theory
[1], condensed matter physics [2], fluid mechanics
[3], plasma physics [4], optics [5] etc., various physi-
cists and mathematicians have focused their attention
on the study of integrable systems. However, because
of the difficulty to find high dimensional integrable
models, especially in (3+1)-dimensions, most of the
studies on soliton systems are restricted in the lower
dimensions (1+1 and 2+1 dimensions). Recently, one
of the present authors (Lou) had pointed out some
possible ways to get higher dimensional integrable
models: (i) Based on the fact that all known (2+1)-di-
mensional integrable models possess a common gen-
eralized Virasoro type symmetry algebra [6],

[o(f1), o(f)] = a(f2fi — f1f2), (1)

where o(f) with f being an arbitrary function of a
single independent variable, is a symmetry of the in-
tegrable models, we proposed a general method to get
some integrable models in the sense that they possess

the generalized Virasoro symmetry algebra (1) [7, 8].
(i1) Using a recursion operator of a (1+1)-dimensio-
nal integrable model, the breaking soliton [9] equation
can be extended to any dimensions [8, 10]. (iii) Using
the inner parameter dependent symmetry constraints,
one can also get some types of integrable models in
the same or even higher dimensions [11]. (iv) Some
quite general higher dimensional conformal invariant
models are integrable, i.e. they possess the Painlevé
property [12]. (v) In [13 -15], taking the Kadom-
tsev-Petviashvili equation, Schwartz KdV equation
and nonlinear Schrodinger equation as seed integrable
models and using an extended Painlevé analysis, var-
ious higher dimensional Painlevé integrable models
especially in (3+1)-dimensions have been obtained.
Using the extended Painlevé analysis, we can also
use some kinds of high dimensional Painlevé inte-
grable conformal invariant models to solve the real
high dimensional physical models [16].

Usually one can use some suitable limit procedures
to get simple theories from a complicated theory. For
example, most of quantum theories will be reduced
to a classical one by ignoring the Planck constant 7,
and a relativistic theory will be simplified to a cor-
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responding nonrelativistic one by assuming infinite
light velocity. Inversely, deforming a simple theory
to a complicated one is quite difficult. Fortunately,
in some special cases it is possible to get significant
complicated theories by deforming a simple theory.
For instance, the classical Yang-Baxter equation may
be evolved into the quantum Yang-Baxter equation.
Some critical phenomenon theory treated by confor-
mal field theory, where the mass is zero, may be de-
formed to a theory for the non-zero mass case [17].
And some special types of solutions of some simple
nonlinear Klein-Gordon field equations like the single
sine-Gordon and ¢* fields can be deformed to those of
the complicated nonlinear Klein-Gordon field equa-
tions like the double sine-Gordon, ¢°, ¢’ and ¢* + ¢*
models [18 - 21].

In nonlinear physics one can obtain various lower
dimensional integrable models from higher dimen-
sional ones via some types of different approaches. In
this paper we try to deform some lower dimensional
simple integrable models to some higher dimensional
ones especially in (3+1)-dimensions.

In Sect. 2 of this paper we discuss the general
aspect of a noninvertible deformation approach and
propose a special Miura type deformation relation.
In Sect. 3, starting from a (0+1)-dimensional Riccati
equation and the Miura type deformation relation,
we obtain the general 1+1 dimensional sinh-Gordon
(SHG) and Mikhailov-Dodd-Bullough (MDB) equa-
tion. In Sect. 4 we discuss a deformation of the heat
conduction equation. The Painlevé integrability of the
obtained high dimensional model is proved in Sect. 5.
In Sect. 6, we point out that the same result can also
be obtained from the deformation of a nonintegrable
nonlocal heat conduction equation by introducing the
kernels of the transformation operator. Some spe-
cial types of localized solutions, like multi-plane and
multi-camber soliton solutions, multi-dromion solu-
tions and multiple ring soliton solutions are listed and
plotted in Sect. 7. The last section is a short summary
and discussions.

2. General Deformation Relation

Let o = ¢(x1, T2, ..oy Ty Y1, Y25 -y Ym, t) and
o = K(9), ()
where K (¢) = K (¢, ¢y, 0y,, ..., @y, )1safunction

of ¢ and its derivatives with respect to y; but not z;
dependent explicitly, be a lower dimensional integr-
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able model, then a general deformation relation
B(:Ciy Yj,s t) ¢7 v, ¢zl ) d)yj y Uz s lUy]' ) d)I.'I]' ) d)yiyj ) (3)
Vaizjy Vyiy;» ) = B(9,0) =0, or, ¢ = ¢(v)

will change the original model equation (2) to a new
one. When saying the model (2) is “lower” dimen-
sional one means (2) is not x;-dependent explicitly.
In the deformation relation (3), B(¢,v) = 0 may be
x; dependent explicitly. The new equation can be ob-
tained in the following way. Firstly, differentiating the
transformation relation (3) with respect to time ¢ and
then replacing ¢; by K (¢) because of (2), the final
result has the form

vy = (BL)_IB(;K(¢)|¢=¢@) +J1(v) = J(v), (4)
(B, Ji(v) = 0),
where the partial linearized operators By, and B, are
defined as
) d
B f= d—B(qﬁ, U+ €f)e=0,
: (5)

d
B,f = 7B +cf.v).

Ji(v) is the kernel function of the operator B! and
B! (B!)~! = 1. The inverse deformation relation with
respect to (3) and (4) is

¢r = K(9) + K1(¢) = M(¢), (BxK () =0), (4')

where K(¢) is the kernel of the operator BJ;.

From (2), (4) and (4°), one can see that the deforma-
tion relation (3) is only invertible if the kernels J; (v)
and K| (¢) are taken to be zero. In general, the defor-
mation relation (3) can not preserve the integrability
because of the appearance of the transformation ker-
nels. On the other hand, because of the appearance
of the kernels, one may obtain some new types of
integrable models from some simple ones.

It is worth to emphasize that if there exist some
more independent variables in the deformation rela-
tion (3) which do not appear explicitly in the original
seed equation (2), then we say we have obtained a
higher dimensional model (4) by the deformation of
a “lower” dimensional one.

In the next steps we may get various new integrable
models from the deformation relation (3) in two dif-
ferent ways.
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(I) One may fix a simple source equation (2) to get
many significant models by selecting various different
deformation relations. In [22], we have obtained some
interesting (1+1)-dimensional and (2+1)-dimensional
SHG and MDB equations by applying some different
deformation relations to a quite simple (0+1)-dimen-
sional Riccati equation

¢ = 97, (6)

which is equivalent to a linear equation u;; =0, ¢ =
—(Inu);. However, we have not yet found a suitable
deformation relation to get a possible (3+1)-dimen-
sional integrable model from the Riccati equation (6).

(II) We may also get some new integrable models
by fixing the deformation relation (3) and selecting
different source equations.

In this paper, we try to obtain some new integrable
models (especially in (3+1)-dimensions) by using the
second approach. More concretely, we will fix the
deformation relation (3) as

_ 2
¢rzx _ u&_vxz_ le = B(¢, ’U) =0. (7)

b a 2 a®
o} &

It is well known that the Miura transformation

uw=—Avg, — —vi 8)
a
changes the solutions of the potential modified KdV
(MKdV) equation (v; + vzzz — 503 = 0) to those of
the KdV equation (u; + -ut; + Uz = 0). On the
other hand, the relation

¢CL‘II a—1 QSZ
=—A——+A = 9
h s a ¢ e
changes the solutions of the Schwartz KdV equation,
¢t ¢I(EI 3 2
—+ {2} =0, {p;z} = - === (10)
b t#:o} to:e} ¢z 2 ¢%

to those of the KdV equation for a = £2. Canceling
the function « in (8) and (9), we get the deformation
relation (7). Actually, the Miura transformation (8) is
linked with not only the KdV and the MKdV equa-
tions but also many other significant physical models.
For instance, both the Sawada-Kortera equation and
the Kaup-Kupershmidt equation are linked with the
Fordy-Gibbon equation by the Miura transformation
(8) for suitable selections of constants A and a [23].

869

To deform the model (2) to a new one by using the
Miura transformation related deformation approach,
we differentiate (7) once with respect to the time ¢.
The resulting equation reads

e E e ), = 65 ¢ (02 (07 $etde)es (1)

i.e.

v =t ([ R0t 6h 07 Kan(@e et

" CO) l¢=¢<v>’ (12)

where ¢y = ¢o(t, v, 2, ...) isan arbitrary z independent
function. From (7), one can easily express the function

¢ = ¢(v) explicitly:
o= —/ e'utdzr, +c3, u = ¢ / e%dz’ +ca, (13)

where ¢y, ¢;, and c3 are all z-independent arbitrary
functions. Using (12) and (13), we can obtain a corre-
sponding deformed equation, whence a source equa-
tion (2) is given. According to (13), (11) can also be
written as

Ko ()| p=g() = —€"u(vs + augu™"). (14)

3. Sinh-Gordon Equation Obtained from the
Riccati Equation

The simplest example can be obtained by selecting
the source equation as the (0+1)-dimensional Riccati
equation

¢ = 9" + fid + fo,

where fy, fi1, f» may be arbitrary functions of ¢. After
considering that ¢ is not only a function of ¢ but also
a function of z, substituting (15) into (11) yields

2af2
2+a

(15)

e_%v(e%vvzt)z = ¢zz (16)

with ¢ being given by (13). If ¢; of (13) is taken to be
zero, (16) becomes

(17
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For ¢o = 0, (17) becomes the known Liouville field
equation. For ¢y # 0, (17) can be changed to

£ 2 a,.a/2 2_3"—
_Lw —2w/a _ 2a f2C2C0
Wer =€V —e ,T=— e — ,
; (a+2)

a? frcs

cola+2)?

w=v+

2+a (%)

Fora =2anda = 1, (18)isjust the (1+1)-dimensional
SHG equation, and the MDB equation respectively.

Itisknown thatfora # 1,2, (18)is not an integrable
model though it is obtained from the deformation
of the trivial C-integrable Riccati equation (2). The
reason is that the cpe 2%/ term is the kernel term of
the transformation (7). In [22] we have pointed out
that the general equation (16) with (13) fora =1 or
a = 2 is integrable. In other words, the transformation
(7) preserves the integrability for the Riccati equation
(15) if either the transformation kernel is taken to be
zero or the transformation is restricted as a = 1 and
a=2

4. High Dimensional Nonlinear Models from the
Deformation of the Heat Conduction Equation

From (18) we know that (a) even if the source
model is quite simple (which is equivalent to a lin-
ear ordinary differential equation), we can still ob-
tain some interesting integrable nonlinear models;
(b) though the source model, is an integrable model
the result equation may also be nonintegrable. Ac-
cording to the above fact we try to obtain some high
dimensional integrable models from the linear heat
conduction equation

b =Ap = by, (19)

k=1

by using the deformation relation (7) with a = 2.
Substituting (19) and @ = 2 into (11) we have

vy —Av—=VoVo+2(ne); =0, VoVo EZ’UEZ“ (20)
k=1

for ¢; = 0 and

5
U (Uptpy — UpAy + 2V U, - Vu, — (In cl),ui) -
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— 2ut, (ug(uy + cop — Au) + 2Vu - Vug)

+2ulVu-Vu=0 1)
for ¢; # 0. Equation (20) is a symmetrical extension
of the (1+1)-dimensional potential Burgers equation
vt = Uy +v; to (n+1)-dimensions. The integrability of
the high dimensional potential Burgers equation (20)
is trivial because the transformation v = In(f) will
transform it back to a linear equation (which is equiva-
lent to the original source equation (19)). The integra-
bility of the model equation (21) is more significant
for us because we can not change the model back to
the original source equation. This fact is caused by the
noninvertibility of the deformation relation (7). Actu-
ally, it is known that the usual Miura transformation
(8) is also noninvertible if y, # x for all k. It is inter-
esting that the dimension of (21) is higher than that of
the original source equation (19). More precisely, the
implicit variables of (19) have become explicit ones
in (21). In two special cases, {n =2,y = y,y» = 2}
and {n =3,y; =z, = y,ys = z}, (21) describes
two nonequivalent (3+1)-dimensional models.

5. Painlevé Integrability of the High Dimensional
Equation (21)

Now we are interested in whether the obtained Eq.
(21) is integrable or not. To clarify the integrability of
a given partial differential equation (PDE), the stan-
dard Weiss, Tabor, and Carnevale (WTC) Painlevé
analysis is one of the most effective methods. Accord-
ing to the WTC approach, if all solutions of a PDE
are single valued about an arbitrary movable singu-
lar manifold, then the model possesses the Painlevé
property. Many kinds of other integrable properties
are linked with the Painlevé property [24]. We say
a model is Painlevé integrable if it possesses the
Painlevé property.

To check the Painlevé property of (21), we may
expand the field u as

u=2ujfj+°, (22)
=0

where a is a negative integer. Because (21) is a third
order PDE, it possesses the Painlevé property only
if there exists a primary branch with three arbitrary
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functions among { f, u;, j =0, 1, 2, ...}. Substitut-
ing u ~ uof® into (21) and using the leading order
analysis, we find that

a = —1, with ug being an arbitrary function (23)

is an only possible selection of & and . Substituting
(22) with (23) into (21) leads to the recursion relation
of the expansion functions u;:

JG+ DG = Dy; (24)

= Fj(uo, w1, U2, ..y Uj—1, fz, fyrs o) = Fj
where F; is a complicated function of
Up, Uy, U2, ..., wj— and the derivatives of the mani-
fold f. The left hand side of (24) shows us that the
resonance occurs at j = —1, 0, and 1. The resonance
at j = —1 is related to the arbitrariness of the singu-
larity manifold f. The arbitrariness of uo shown by
(23) means that the resonance condition at j = 0 is
satisfied identically. The detail calculation shows us
also that the resonance condition at 7 = 1, F}| = 0,
is satisfied identically. In other words, three arbitrary
functions, f, uo and u; can be introduced in the gen-
eral single valued expansion (22) for the third order
PDE (21). So the model (21) is Painlevé integrable.

We should point out that to get the higher dimen-
sional potential Riccati equation (20) from the heat
conduction equation (19) one may use the transfor-
mation (7) for arbitrary a and take the transformation
kernel as zero. However, when the kernel is taken as
non-zero, the detailed calculation shows us that the
transformation (7) for the heat conduction equation
(19) preserves the integrability only for a = 2.

6. A Heat Conduction Equation with a
Nonlinear Nonlocal Term

From the above discussion we know that (21)
is completely nonequivalent to the original linear
heat conduction equation. The linear heat conduction
equation (19) is only equivalent to the potential Burg-
ers equation (20) under the transformation relation (7)
when the kernel of the operator B! is taken as zero.
It is necessary to point out that the final equations
(20) and (21) can also be obtained by using the same
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deformation relation (7) from a nonlinear non-local
heat conduction equation

6= B0+Ci+Ca04Cs [ m,dxl/ 671 dzs, (25)

where the last three terms with arbitrary z-indepen-
dent functions C, C, and Cj are the kernels of the
transformation operator By,. In other words, the last
three terms do not offer any contribution to the result
when we use the deformation relation (7). Though the
transformation (7) changes (25) to the same Painlevé
integrable (20) and (21), one can prove that (25) is
not Painlevé integrable for C # 0.

7. Special Solutions of the Model Equations

Usually it is very difficult to find out some spe-
cial solutions of a high dimensional nonlinear model.
Fortunately, by means of the computer algebras, say
Maple and Mathematica, we can prove that (21) for
¢, = constant has a solution in the form

— U1
1+ Z;ﬂ Aj exp(k;(x — zo;) + f;))

(26)

u

where A;, kj;, xo; are arbitrary constants , u; =
u1(y1, Y2, ---, Yn, t)isan arbitrary z-independent ar-
bitrary function while f; = f;(y1, ¥2, ..., Yn, 1), j =
1, 2, ..., J are arbitrary solutions of the over-
determined equations

fit+V iV fi—Afi—cu+k}=0,j=1,2,..,n (27)
(ki =k +(V [ +(V f;)* =2V f;-V f; = 0,4 # j(28)
for one of the y;, is equal to z, say y; = x and
fjt +ij J Vf] — Af] —C1t = O, ] = 1,2, coey T0 (29)
(VP + (VY =2Vf-V=0,i#j (30)
fory, #z, k=1,2,...,n.
It is clear that (30) has a special solution f; = f; =
f. In the special case, yx # z, Vk = 1,2,...,n and
fi = f; = f, (26) becomes

Uy

u = = (31)
1+uef Zj:I(AJ- exp(k;(z — z0;)))
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with
fi+Vf-Vf—=Af —c;;=0. (32)
A simple special solution of (32) has the form
f =c(t) — In { Z a;;Y:Y; + 2t Z A (33)
i,j=1 i=1
M n
+ Z [exp(Z(kjiyj c ¥ k]21t) + in)
=1 =1

+ B, cos (Zn:(bjiyj)) WA ( - Zn: bﬁit)
j=1

J=1

+C, sin (Xn:(cjiyj)> exp < - i Cit)} }’
421

i=1

where kj;, a;;, bji, ¢;i, Bi, C;and yo,; are arbitrary
constants.

Because of the arbitrariness introduced by u; and
f;, the solution (26) may have a quite rich structure.
In this paper we list and plot only some special inter-
esting examples of (31) with (33):

(i) Multiple “plane” and ‘“‘camber” solitons.
If we take the arbitrary function w; as multi-
plane and/or multi-camber solitons in space-time
{y1, v, Yn, t} then (27) presents multi-
plane and/or multi-camber solitons in space-time
{z, y1, Y2, .-y Yn, t}. Usually, “plane” and “cam-
ber” solitons in 2+1 dimensions are really straight
and curved line solitons [22]. Figure 1a shows a four
straight-line soliton solution in (2+1) dimensions with
n=1,y, =y, fis given by (33) and

’LL1=],'ITL=]\J=3, A|=A3=1,A2=2, (34)

ki=—1,ky=2,k3=5k;1 =2,k12=3,k13=-2,
c1(t)=0,20; =0, zgp =—1, xp3 =1,

B;=Ci=ai; =y0i =0,

attime t = O for the field u, and Fig. 1bis a plot of the
four straight-line soliton solution with the same con-

dition as Fig. 1a for the potential v, = uy. Figure 1c
is a plot of another type of line soliton solution in 2+1
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dimensions for the field u withn =1, y; =y, f given
by (33) with

uy=l,m=M=N=2,4;=1, A =2, (35)

ky=—1,ky=2,k;1 =2,k12=3,¢1(t) =0,
201 =0, zp=—-1,Cy=a;; =0, By =3, B, =1,

b1y =yoi =0, by = 1.

(ii) Multiple dromion solutions. The multiple
straight and curved line solitons shown by Fig. la,
b, and c are not localized in all directions. It is known
that in 2+1 dimensions, some types of solutions lo-
calized in all directions, dromions, may be driven by
some straight and curved line soliton solutions for real
physical fields or some types of potentials [22, 25 -
29]. Selecting the function w; of (31) appropriately,
we may obtain some types of multi-dromion solutions
in high dimensions. Here we write and plot down two
types of point-like dromion solutions for the (21) with
cy=const.

The first type of multi-dromion solutions may be
constructed by selecting

J n
uy = Z H sech(Di]-yi — ’Ui]'f =+ inj),

J=1 =1

(36)

where Dij» V5, in]-, 7. = 1,2, ey n, ) = 1,2 aw J
are arbitrary constants.

The 2+1 dimensional two dromion solution for the
field v shown by Fig. 2 has the same condition as
Fig. 1c but with

uy = sech(y — vyt + 15) + sech(2y — vipt +5) (37)

attime t = 0.
If we select u; as

J n
up = Z SeCh(Z(dijyi — vt —y0;)%),  (38)

j=1 i=1

where d;;, v;; and y0;; are arbitrary constants, then
we may obtain a second type of high dimensional
multi-dromion solutions for some suitable potentials
if all the constants d;; are not equal to zero.

Figure 3 is an equi-potential plot of a single (3+1)-
dimensional dromion solution for the potential uz =
—u, with the condition
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Fig. 1. Three types of multiple line soliton solutions. (a) A four straight-line soliton solution (31) in 2+1 dimensions at time ¢ = 0 for the
field v with conditions (34) and n = 1, y; = y, while f is given by (33). (b) A plot of the four straight-line soliton solution with the same
condition as Fig. la for the potential v, = uy. (c) A plot of another type of line soliton solution in 2+1 dimensions for the field u with
n =1,y =y. f is given by (33) with the conditions (35) at time ¢ = 0.
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Fig. 2. A plot of the two dromion solution (31) for the field
in 2+1 dimensions at ¢ = 0 with the same condition as Fig. Ic
but with u; = sech(y — vyt + 15) + sech(2y — vi2t +5).
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Fig. 3. An equi-potential plot of a single (3+1)-dimensional
dromion solution for the potential ur = —u, with the
condition (39) at time ¢ = 0. The inner small equi-potential
shell is related to uz = 0.1 and the outside large equi-
potential shell is related to uz = 0.0001.

m=J=11=29 =YY= 2, (39)

B{ =C1 = a4 =0,.41 = l,kl = 1,]61] =2,l\'12 =1,
c1(t) = 0,201 = 0,901 = yo;, =0,

at time ¢ = 0. The inner small equi-potential shell of
Fig. 3 is related to ux = 0.1 and the outside large
equi-potential shell is related to uz = 0.0001. That
is to say, as 1 = \/x?+y?+ 22 increase from ~ 5
to ~ 10, the potential ux decays rapidly from 0.1 to
0.0001 and the potential ux is localized in a small
3-dimensional space {z,y, z}.

(iii) Multiple ring soliton solutions. For some types
of well know (2+1)-dimensional integrable mod-
els, like the 2+1 dimensional sine-Gordon equa-
tion [30], Davey-Stewartson equation, Nizhnik-
Novikov-Veselov equation and the Boiti-Leon-
Matina-Penpinelli equation [25], there may be some
types of the ring soliton solutions (finite only at some
closed curved) [31]. In 3+1 dimensions, the similar
ring soliton can be driven by a ghost cylinder soli-
ton and a ghost plane (or a camber) soliton, and the
ring dromion solution is located at the cross section (a
closed curve line in 3 dimensions) [29]. If we select
wy in (31) as

] n
up =Y sech(Y (dy;y; — vijt — y0;;)* = 702), (40)
1=1

J=1
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where d;;, v;j, y0;; and 70;; are arbitrary constants,
then we may obtain a special type of high dimensional
multiple ring soliton solutions for some suitable po-
tentials. Actually, the second type of multi-dromion
solution (31) with (38) is a special case of the multi-
ple ring soliton solutions when all the radii of the ring
solitons tend to zero.

Figure 4ais an equi-potential plot of a single (3+1)-
dimensional ring soliton solution at time ¢ = O for the
potential uz = —u, = 0.0005 with the condition (39)
and

rO = 5. 41)
Figure 4b is a plot of the plane z — 2y — z = 0
and the cylinder y? + 2% — 25 = 0 related to the ring
soliton solution shown by Fig. 4a, and the ring soliton
of Fig. 4a is located at the cross closed curve of the
plane and the cylinder shown by Figure 4b.

8. Summary and Discussion

In this paper, after selecting a suitable noninvertible
Miura type transformation, we have obtained some
higher dimensional Painlevé integrable models from
some simple lower dimensional integrable models.
The (1+1)-dimensional sinh-Gordon equation can be
obtained from a (0+1)-dimensional Riccati equation.
A Painlevé integrable model in any space dimensions
is obtained from a linear heat conduction equation
and the model possesses two special (3+1)-dimensio-
nal nonequivalent reductions.

If we restrict the transformation kernels to zero, the
transformation is invertible and the resulting equa-
tions can be transformed back to the original ones.
However, if the transformation kernels are not taken as
zero, the transformation is noninvertible. Three types
of effects may be caused by the noninvertibility of
the transformation. (I) A noninvertible transformation
may destroy the integrability, say, using the transfor-
mation (7) witha # 1, 2 to asimple integrable Riccati
equation (15) leads to the nonintegrable model (17).
(IT) A suitable selection of a noninvertible transfor-
mation will lead to some new nontrivial integrable
models from some trivial ones. (III). A noninvert-
ible transformation may rule out the nonintegrability
if the nonintegrable terms are just the kernels of the
transformation operator, say, the transformation (7)
changes the non-Painlevé integrable model (25) to
the Painlevé integrable ones (20) and (21).
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Fig. 4. (a) An equi-potential plot of a sin-
gle (3+1)-dimensional ring soliton solu-
tion at time ¢ = O for the potential ux =
—u, = 0.0005 with the condition (39)
andr0;; = 5. (b) Theplanz — 2y — z =

and the cylinder y*+2> —25 = Orelated to
the ring soliton solution shown by Fig. 4a.

A special type of exact explicit solutions of the
obtained high dimensional Painlevé integrable model
has been obtained also. From the special solution we
see that there may be some quite rich structures for the
high dimensional localized solutions. For instance,
by selecting the arbitrary function u, appearing in the
solution appropriately, we can obtain the multiple line
solitons, dromion solutions and ring soliton solutions.

Because the (1+1)- and (2+1)-dimensional inte-
grable models and their soliton excitations have been
applied widely in many fields of physics, chemistry,
biology etc., one hopes that the integrable theory
may also be developed well in real (3+1)-dimensional
physical space-time. However, there is little progress
in the study of the high dimensional integrable theory
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