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To find nontrivial high dimensional integrable models (especially in (3+l)-dimensions) is one 
of the most important problems in nonlinear physics. A systematic method to find some nontrivial 
high dimensional integrable models is established by means of noninvertible deformation relations. 
Starting f rom a noninvertible Miura type transformation, we find that the (l + l)-dimensional sinh-
Gordon model appearing in many physical fields is a deformation of the (0+l)-dimensional Riccati 
equation. A high dimensional Miura type deformation (including two different (3+l)-dimensional 
reductions) of the heat conduction equation is proved to be Painleve integrable. Some special types 
of explicit exact solutions, like multi-plane and/or multi-camber soliton solutions, multi-dromion 
solutions and multiple ring soliton solutions, are obtained. 

Key words: Noninvertible Deformation; High Dimensional Integrable Models; Camber Solitons; 
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1. Introduction 

Because of the wide application of soliton theory 
in almost every branch of physics, like field theory 
[1], condensed matter physics [2], fluid mechanics 
[3], plasma physics [4], optics [5] etc., various physi-
cists and mathematicians have focused their attention 
on the study of integrable systems. However, because 
of the difficulty to find high dimensional integrable 
models, especially in (3+l)-dimensions, most of the 
studies on soliton systems are restricted in the lower 
dimensions (1 + 1 and 2+1 dimensions). Recently, one 
of the present authors (Lou) had pointed out some 
possible ways to get higher dimensional integrable 
models: (i) Based on the fact that all known (2+1 )-di-
mensional integrable models possess a common gen-
eralized Virasoro type symmetry algebra [6], 

[<r ( / l ) , = c r ( / 2 / l - / 1 / 2 ) , (1) 

where o ( f ) with / being an arbitrary function of a 
single independent variable, is a symmetry of the in-
tegrable models, we proposed a general method to get 
some integrable models in the sense that they possess 

the generalized Virasoro symmetry algebra (1) [7, 8]. 
(ii) Using a recursion operator of a (l + l)-dimensio-
nal integrable model, the breaking soliton [9] equation 
can be extended to any dimensions [8, 10]. (iii) Using 
the inner parameter dependent symmetry constraints, 
one can also get some types of integrable models in 
the same or even higher dimensions [11]. (iv) Some 
quite general higher dimensional conformal invariant 
models are integrable, i.e. they possess the Painleve 
property [12]. (v) In [13- 15], taking the Kadom-
tsev-Petviashvili equation, Schwartz KdV equation 
and nonlinear Schrödinger equation as seed integrable 
models and using an extended Painleve analysis, var-
ious higher dimensional Painleve integrable models 
especially in (3+l)-dimensions have been obtained. 
Using the extended Painleve analysis, we can also 
use some kinds of high dimensional Painleve inte-
grable conformal invariant models to solve the real 
high dimensional physical models [16]. 

Usually one can use some suitable limit procedures 
to get simple theories from a complicated theory. For 
example, most of quantum theories will be reduced 
to a classical one by ignoring the Planck constant h, 
and a relativistic theory will be simplified to a cor-
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responding nonrelativistic one by assuming infinite 
light velocity. Inversely, deforming a simple theory 
to a complicated one is quite difficult. Fortunately, 
in some special cases it is possible to get significant 
complicated theories by deforming a simple theory. 
For instance, the classical Yang-Baxter equation may 
be evolved into the quantum Yang-Baxter equation. 
Some critical phenomenon theory treated by confor-
mal field theory, where the mass is zero, may be de-
formed to a theory for the non-zero mass case [17]. 
And some special types of solutions of some simple 
nonlinear Klein-Gordon field equations like the single 
sine-Gordon and 04 fields can be deformed to those of 
the complicated nonlinear Klein-Gordon field equa-
tions like the double sine-Gordon, 06, q!>5 and 0? + 04 

models [18-21], 
In nonlinear physics one can obtain various lower 

dimensional integrable models from higher dimen-
sional ones via some types of different approaches. In 
this paper we try to deform some lower dimensional 
simple integrable models to some higher dimensional 
ones especially in (3+l)-dimensions. 

In Sect. 2 of this paper we discuss the general 
aspect of a noninvertible deformation approach and 
propose a special Miura type deformation relation. 
In Sect. 3, starting from a (0+l)-dimensional Riccati 
equation and the Miura type deformation relation, 
we obtain the general 1 + 1 dimensional sinh-Gordon 
(SHG) and Mikhailov-Dodd-Bullough (MDB) equa-
tion. In Sect. 4 we discuss a deformation of the heat 
conduction equation. The Painleve integrability of the 
obtained high dimensional model is proved in Sect. 5. 
In Sect. 6, we point out that the same result can also 
be obtained from the deformation of a nonintegrable 
nonlocal heat conduction equation by introducing the 
kernels of the transformation operator. Some spe-
cial types of localized solutions, like multi-plane and 
multi-camber soliton solutions, multi-dromion solu-
tions and multiple ring soliton solutions are listed and 
plotted in Sect. 7. The last section is a short summary 
and discussions. 

2. General Deformation Relation 

Let 0 = (j)(x\,x2i yi, yi, -,ym,t) and 

<Pt = A'(0), (2) 

where A'(0) = A"(0, 0 y i , 0 y , , ..., 0yi(i) is a function 
of 0 and its derivatives with respect to y3 but not xr 

dependent explicitly, be a lower dimensional integr-

able model, then a general deformation relation 

B ( ß i , y j , t , 0, V, <f)Xi , 0 y j , VXi , Vyj , <j)x.x. , 0 y . y- , (3) 

vXiXj, VytV] ,...) = B(<j>, v) = 0, or, 0 = <f)(v) 

will change the original model equation (2) to a new 
one. When saying the model (2) is "lower" dimen-
sional one means (2) is not Xi-dependent explicitly. 
In the deformation relation (3), B(4>, v) = 0 may be 
xr dependent explicitly. The new equation can be ob-
tained in the following way. Firstly, differentiating the 
transformation relation (3) with respect to time t and 
then replacing <pt by A'(0) because of (2), the final 
result has the form 

vt = ( B X ' B ' . m U ^ + Mv) = J(v), (4) 

(B'vMv) = 0), 

where the partial linearized operators B'v, and B'^ are 
defined as 

B'vf = ^-B(cj),v + ef)e=o, 
E (5 ) 

J\(v) is the kernel function of the operator B'v and 
B'v(B'v)~l = 1. The inverse deformation relation with 
respect to (3) and (4) is 

(f>t = A'(0) + ATK0) = M(0), ( B ; ^ ) = 0), (4') 

where A'(0) is the kernel of the operator B'^. 
From (2), (4) and (4'), one can see that the deforma-

tion relation (3) is only invertible if the kernels J\(v) 
and A'i(0) are taken to be zero. In general, the defor-
mation relation (3) can not preserve the integrability 
because of the appearance of the transformation ker-
nels. On the other hand, because of the appearance 
of the kernels, one may obtain some new types of 
integrable models from some simple ones. 

It is worth to emphasize that if there exist some 
more independent variables in the deformation rela-
tion (3) which do not appear explicitly in the original 
seed equation (2), then we say we have obtained a 
higher dimensional model (4) by the deformation of 
a "lower" dimensional one. 

In the next steps we may get various new integrable 
models from the deformation relation (3) in two dif-
ferent ways. 
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(I) One may fix a simple source equation (2) to get 
many significant models by selecting various different 
deformation relations. In [22], we have obtained some 
interesting (1 + 1 )-dimensional and (2+1 )-dimensional 
SHG and MDB equations by applying some different 
deformation relations to a quite simple (0+1 ̂ dimen-
sional Riccati equation 

(6) 

which is equivalent to a linear equation utt = 0, 0 = 
—(Inu)t. However, we have not yet found a suitable 
deformation relation to get a possible (3+ ^-dimen-
sional integrable model from the Riccati equation (6). 

(II) We may also get some new integrable models 
by fixing the deformation relation (3) and selecting 
different source equations. 

In this paper, we try to obtain some new integrable 
models (especially in (3+l)-dimensions) by using the 
second approach. More concretely, we will fix the 
deformation relation (3) as 

1 1 
— v XX V2

x = B(^V) = 0.(1) 
a 

It is well known that the Miura transformation 

A , 
(8) 

changes the solutions of the potential modified KdV 
(MKdV) equation (vt + vxxx — = 0) to those of 
the KdV equation (ut + + uxxx = 0). On the 
other hand, the relation 

(9) 

changes the solutions of the Schwartz KdV equation, 

~ + { 0 ; x } = 0 , {</>; x} = 3 0 L 
2 61 

(10) 

to those of the KdV equation for a = ±2. Canceling 
the function u in (8) and (9), we get the deformation 
relation (7). Actually, the Miura transformation (8) is 
linked with not only the KdV and the MKdV equa-
tions but also many other significant physical models. 
For instance, both the Sawada-Kortera equation and 
the Kaup-Kupershmidt equation are linked with the 
Fordy-Gibbon equation by the Miura transformation 
(8) for suitable selections of constants A and a [23]. 

To deform the model (2) to a new one by using the 
Miura transformation related deformation approach, 
we differentiate (7) once with respect to the time t. 
The resulting equation reads 

_2 2 _ 2 1 _, 
e *v(e°vvxt)x = (t>x "(<f>£(<f>x (t>xt)x)x, ( 1 1 ) 

i . e . 

vxt = e ~'v e-v(f)Xx
a (<f>£, {<I>X*KXI (0))x, k, dz i 

+ CQ 
b=<t>(v) , (12) 

where Co = co(<, y, z,...) is an arbitrary x independent 
function. From (7), one can easily express the function 
0 = 4>{v) explicitly: 

/

X px 

evuadx\ + C3, u = c\ / e~da;' + C2, 
(13) 

where and C3 are all ^-independent arbitrary 
functions. Using (12) and (13), we can obtain a corre-
sponding deformed equation, whence a source equa-
tion (2) is given. According to (13), (11) can also be 
written as 

Kxm+=m = -evua(vt + autu~l). (14) 

3. Sinh-Gordon Equation Obtained from the 
Riccati Equation 

The simplest example can be obtained by selecting 
the source equation as the (0+l)-dimensional Riccati 
equation 

<Pt =/202+/l0 + /o, (15) 

where /o, /1, fi may be arbitrary functions oft. After 
considering that 0 is not only a function of t but also 
a function of x, substituting (15) into (11) yields 

- i i > / 1» \ 2 a / 2 e " (e<* vxt)x = < 2 + a (16) 

with 4> being given by (13). If c\ of (13) is taken to be 
zero, (16) becomes 

v " = + c ° e ~ 2 v / a • (2 + a)z 
(17) 
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For Co = 0, (17) becomes the known Liouville field 
equation. For Co 0, (17) can be changed to 

wXT = cw - e~2w'a, r = 
2a2f2ca

2c{ 

0a + 2)2 

a/2 

W = V + In a 2 h c a
2 

2 +a co(a + 2 ) 2 ' 
(18) 

Fora = 2 and a = l,(18)isjustthe(l+l)-dimensional 
SHG equation, and the MDB equation respectively. 

It is known that for a ¥ 1,2, (18) is not an integrable 
model though it is obtained from the deformation 
of the trivial C-integrable Riccati equation (2). The 
reason is that the coe~2v^a term is the kernel term of 
the transformation (7). In [22] we have pointed out 
that the general equation (16) with (13) for a = 1 or 
a = 2 is integrable. In other words, the transformation 
(7) preserves the integrability for the Riccati equation 
(15) if either the transformation kernel is taken to be 
zero or the transformation is restricted as a = 1 and 
a = 2. 

4. High Dimensional Nonlinear Models from the 
Deformation of the Heat Conduction Equation 

From (18) we know that (a) even if the source 
model is quite simple (which is equivalent to a lin-
ear ordinary differential equation), we can still ob-
tain some interesting integrable nonlinear models; 
(b) though the source model, is an integrable model 
the result equation may also be nonintegrable. Ac-
cording to the above fact we try to obtain some high 
dimensional integrable models from the linear heat 
conduction equation 

n 

(f)t=A(f) = Y/K:y, 09) 
k=\ 

by using the deformation relation (7) with a = 2. 
Substituting (19) and a = 2 into (11) we have 

— 2uux(ux(ut + c2t — Au) + 2Vw • Vux) 

+ 2u2Vu • Vu = 0 (21) 

for c 1 ¥ 0. Equation (20) is a symmetrical extension 
of the (l-t-l)-dimensional potential Burgers equation 
vt = Vyy+v2 to (n+1 )-dimensions. The integrability of 
the high dimensional potential Burgers equation (20) 
is trivial because the transformation v = ln(/) will 
transform it back to a linear equation (which is equiva-
lent to the original source equation (19)). The integra-
bility of the model equation (21) is more significant 
for us because we can not change the model back to 
the original source equation. This fact is caused by the 
noninvertibility of the deformation relation (7). Actu-
ally, it is known that the usual Miura transformation 
(8) is also noninvertible if yk ¥ x f ° r all k. It is inter-
esting that the dimension of (21) is higher than that of 
the original source equation (19). More precisely, the 
implicit variables of (19) have become explicit ones 
in (21). In two special cases, {n = 2,y\ = y,y2 = zj 
and {n = 3,yi = x,y2 = y,yi = z j , (21) describes 
two nonequivalent (3+l)-dimensional models. 

5. Painleve Integrability of the High Dimensional 
Equation (21) 

Now we are interested in whether the obtained Eq. 
(21) is integrable or not. To clarify the integrability of 
a given partial differential equation (PDE), the stan-
dard Weiss, Tabor, and Carnevale (WTC) Painleve 
analysis is one of the most effective methods. Accord-
ing to the WTC approach, if all solutions of a PDE 
are single valued about an arbitrary movable singu-
lar manifold, then the model possesses the Painleve 
property. Many kinds of other integrable properties 
are linked with the Painleve property [24]. We say 
a model is Painleve integrable if it possesses the 
Painleve property. 

To check the Painleve property of (21), we may 
expand the field u as 

v t -Av-X7i^v+2(\n c2)t =0, WVv = 
k=1 

(20) 

for ci = 0 and 

ir(uxuxt - uxAux + 2Vux • Vu x - (ln c\)tu2
x) -

= E « i / 
J=0 

j+a (22) 

where a is a negative integer. Because (21) is a third 
order PDE, it possesses the Painleve property only 
if there exists a primary branch with three arbitrary 
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functions among {/ , Uj, j = 0, 1, 2, ...}. Substitut-
ing u ~ uofa into (21) and using the leading order 
analysis, we find that 

a = — 1, with UQ being an arbitrary function (23) 

is an only possible selection of A and UQ. Substituting 
(22) with (23) into (21) leads to the recursion relation 
of the expansion functions Uj\ 

J'O' + DO' - 1 ) u 3 ( 24 ) 

= Fj(uo,uuu2, ...lUj-i, fx, fyk,....) = Fj, 

where F0 is a complicated function of 
uo, U\,U2, ...,-Uj-i and the derivatives of the mani-
fold / . The left hand side of (24) shows us that the 
resonance occurs at j = — 1, 0, and 1. The resonance 
at j = — 1 is related to the arbitrariness of the singu-
larity manifold / . The arbitrariness of UQ shown by 
(23) means that the resonance condition at j = 0 is 
satisfied identically. The detail calculation shows us 
also that the resonance condition at j = 1, F\ = 0 , 
is satisfied identically. In other words, three arbitrary 
functions, / , UQ and U\ can be introduced in the gen-
eral single valued expansion (22) for the third order 
PDE (21). So the model (21) is Painleve integrable. 

We should point out that to get the higher dimen-
sional potential Riccati equation (20) from the heat 
conduction equation (19) one may use the transfor-
mation (7) for arbitrary a and take the transformation 
kernel as zero. However, when the kernel is taken as 
non-zero, the detailed calculation shows us that the 
transformation (7) for the heat conduction equation 
(19) preserves the integrability only for a = 2. 

6. A Heat Conduction Equation with a 
Nonlinear Nonlocal Term 

From the above discussion we know that (21) 
is completely nonequivalent to the original linear 
heat conduction equation. The linear heat conduction 
equation (19) is only equivalent to the potential Burg-
ers equation (20) under the transformation relation (7) 
when the kernel of the operator B'v is taken as zero. 
It is necessary to point out that the final equations 
(20) and (21) can also be obtained by using the same 
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deformation relation (7) from a nonlinear non-local 
heat conduction equation 

/;X NX\ 

<(>Xl d x J 0~1dx2, (25) 

where the last three terms with arbitrary x-indepen-
dent functions CI, C2 and CT, are the kernels of the 
transformation operator B I n other words, the last 
three terms do not offer any contribution to the result 
when we use the deformation relation (7). Though the 
transformation (7) changes (25) to the same Painleve 
integrable (20) and (21), one can prove that (25) is 
not Painleve integrable for C3 4 0. 

7. Special Solutions of the Model Equations 

Usually it is very difficult to find out some spe-
cial solutions of a high dimensional nonlinear model. 
Fortunately, by means of the computer algebras, say 
Maple and Mathematica, we can prove that (21) for 
c2 = constant has a solution in the form 

u, — j , 

1 + u\ Ej=1 AJ e x P ( k j ( x - X0j) + f j ) ) 

where Aj , k j , XQ0 are arbitrary constants , u 1 = 
u\(y\, V2, •••, yn, t) is an arbitrary x-independentar-
bitrary function while f j = f j ( y u y2, ..., y n , <), j = 
1, 2, ..., J are arbitrary solutions of the over-
determined equations 

f j t + ^ f j - ^ f j " A f j - c u + k ] = 0, j = 1 ,2 , . . . , n (27) 

(ki-kj)2+(Vfi)2+(Vfj)2—2X7fi-'Vfj =0,i ^j(28) 

for one of the yk is equal to x, say y\ = x and 

f3t + V / j • V / , - A f j - clt = 0, j = 1,2, . . . , n (29) 

( V / , ) 2 + ( V / , ) 2 - 2 V / j • S / f j = 0 ( 3 0 ) 

for yk 4 x, k = 1,2, . . . ,n. 
It is clear that (30) has a special solution fl = f j = 

f . In the special case, yk 4- x, Vk = 1,2, . . . ,n and 
fi = f j = / , (26) becomes 

1 +mef Y,j=i(Aj exP(kj(x - x 0 j ) ) ) 
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with 

/ t + V / - V / - A / - c l t = 0 . 

A simple special solution of (32) has the form 

Tl 11 
f = ci(t) - In | ^jViVo + 2 t Y l a " 

i,j= 1 i— 1 

M n 

+ + k ) x f ) + j/ot) 
2=1 i=i 

n n 

+ D t cos ( 5 > i < y i ) ) exp ( - Y^ b%t 

(32) 

(33) 

i=i j=i 

+ Ci sin ( e x P ( ~ H 

j=i J=I 

where k3 l ) a^j, bji, Cji, Z?,;, C; and //o? are arbitrary 
constants. 

Because of the arbitrariness introduced by u\ and 
f j , the solution (26) may have a quite rich structure. 
In this paper we list and plot only some special inter-
esting examples of (31) with (33): 

(i) Multiple "plane" and "camber" solitons. 
If we take the arbitrary function u\ as multi-
plane and/or multi-camber solitons in space-time 
{y\. Vi, 2/n, t} then (27) presents multi-
plane and/or multi-camber solitons in space-time 
{x, y2, ..., yn, t}. Usually, "plane" and "cam-
ber" solitons in 2+1 dimensions are really straight 
and curved line solitons [22], Figure la shows a four 
straight-line soliton solution in (2+1) dimensions with 
n = 1, yx = y, f is given by (33) and 

ui = 1, TO = M = 3, A, = A3 = 1, A2 = 2, (34) 

/ci = — 1, k2 = 2, = 5, fcii = 2, Ari2 = 3, k\T, = —2, 

Ci(<) = 0 , X 0 1 = 0 , ^02 = - 1 , Xoi = 1, 

Bi = Ci = aij = y or = 0, 

at time t = 0 for the field u, and Fig. 1 b is a plot of the 
four straight-line soliton solution with the same con-
dition as Fig. la for the potential uy = uy. Figure lc 
is a plot of another type of line soliton solution in 2+1 

dimensions for the field u with n = 1, y\ = y, f given 
by (33) with 

WI = 1, TO = M = N = 2, A, = 1, A2 = 2, (35) 

fc, = -l,fc2 = 2, ku = 2, k\2 = 3, c\(t) = 0, 

xo\ = £02 = -1, Ci = aij = 0, B\ = 3, B2 = 1, 

bii = yoi =0, öi2 = l. 

(ii) Multiple dromion solutions. The multiple 
straight and curved line solitons shown by Fig. la, 
b, and c are not localized in all directions. It is known 
that in 2+1 dimensions, some types of solutions lo-
calized in all directions, dromions, may be driven by 
some straight and curved line soliton solutions for real 
physical fields or some types of potentials [22, 25 -
29], Selecting the function u\ of (31) appropriately, 
we may obtain some types of multi-dromion solutions 
in high dimensions. Here we write and plot down two 
types of point-like dromion solutions for the (21) with 
C2=const. 

The first type of multi-dromion solutions may be 
constructed by selecting 

J n 

u\ = ^ I I s e c h ( D i i 2 / t - vtJt + y O ^ ) , ( 3 6 ) 
j=\ i=i 

where DtJ, vl3, yOl3, i = 1,2, . . . , n , j = 1,2, . . . , J 
are arbitrary constants. 

The 2+1 dimensional two dromion solution for the 
field u shown by Fig. 2 has the same condition as 
Fig. lc but with 

u\ = sech(y - v\\t + 15) + sech(2y — v\2t + 5) (37) 

at time t = 0. 
If we select u\ as 

J n 
sech(^(dijyi - Vijt - y0i:j)2), (38) 

j=i i=l 

where dtJ) vl3 and yOl3 are arbitrary constants, then 
we may obtain a second type of high dimensional 
multi-dromion solutions for some suitable potentials 
if all the constants dl3 are not equal to zero. 

Figure 3 is an equi-potential plot of a single (3+1 )-
dimensional dromion solution for the potential ux = 
—ur with the condition 



Fig. 1. Three types of multiple line soliton solutions, (a) A four straight-line soliton solution (31) in 2+1 dimensions at time t = 0 for the 
field u with conditions (34) and n = 1, y\ = y, while / is given by (33). (b) A plot of the four straight-line soliton solution with the same 
condition as Fig. la for the potential uy = uy. (c) A plot of another type of line soliton solution in 2+1 dimensions for the held u with 
n = 1, ij\ = y. f is given by (33) with the conditions (35) at time t = 0. 

F i g : 1 c 

Fig. 2. A plot of the two dromion solution (31) for the held u 
in 2+1 dimensions at t = 0 with the same condition as Fig. lc 
but with u\ = sech(y — v\\t + 15) + sech(2;y - v\2t + 5). 
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Fig. 3. An equi-potential plot of a single (3+1 )-dimensional 
dromion solution for the potential ux = — ux with the 
condition (39) at time t = 0. The inner small equi-potential 
shell is related to ux = OA and the outside large equi-
potential shell is related to ux = 0.0001. 

m = J = 1, n = 2, y\ =y,y2 = z, (39) 

D7 - C x - ciij = 0, A\ = 1, k\ = 1, k[\ = 2, kn = 1, 

c\(t) = 0, xq\ = 0, y0ii = yQl = 0, 

at time i - 0. The inner small equi-potential shell of 
Fig. 3 is related to ux = 0.1 and the outside large 
equi-potential shell is related to ux = 0.0001. That 
is to say, as r E yjx1 + y2 + z2 increase from ~ 5 
to ~ 10, the potential ux decays rapidly from 0.1 to 
0.0001 and the potential ux is localized in a small 
3-dimensional space {x,y,z}. 

(iii) Multiple ring soliton solutions. For some types 
of well know (2+l)-dimensional integrable mod-
els, like the 2+1 dimensional sine-Gordon equa-
tion [30], Davey-Stewartson equation, Nizhnik-
Novikov-Veselov equation and the Boiti-Leon-
Matina-Penpinelli equation [25], there may be some 
types of the ring soliton solutions (finite only at some 
closed curved) [31]. In 3+1 dimensions, the similar 
ring soliton can be driven by a ghost cylinder soli-
ton and a ghost plane (or a camber) soliton, and the 
ring dromion solution is located at the cross section (a 
closed curve line in 3 dimensions) [29]. If we select 
u\ in (31) as 

J n 
u\ = sech(^ (d i jVi ~ ~ V^j ) 2 ~ rOjj), (40) 

j=l 7=1 
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where dl3, vtJ, yO^ and rO^ are arbitrary constants, 
then we may obtain a special type of high dimensional 
multiple ring soliton solutions for some suitable po-
tentials. Actually, the second type of multi-dromion 
solution (31) with (38) is a special case of the multi-
ple ring soliton solutions when all the radii of the ring 
solitons tend to zero. 

Figure 4a is an equi-potential plot of a single (3+1 )-
dimensional ring soliton solution at time t = 0 for the 
potential ux = —ux = 0.0005 with the condition (39) 
and 

r 0 „ = 5 . ( 4 1 ) 

Figure 4b is a plot of the plane x — 2y — z = 0 
and the cylinder y2 + z2 — 25 = 0 related to the ring 
soliton solution shown by Fig. 4a, and the ring soliton 
of Fig. 4a is located at the cross closed curve of the 
plane and the cylinder shown by Figure 4b. 

8. Summary and Discussion 

In this paper, after selecting a suitable noninvertible 
Miura type transformation, we have obtained some 
higher dimensional Painleve integrable models from 
some simple lower dimensional integrable models. 
The (l + l)-dimensional sinh-Gordon equation can be 
obtained from a (0+l)-dimensional Riccati equation. 
A Painleve integrable model in any space dimensions 
is obtained from a linear heat conduction equation 
and the model possesses two special (3+1 ^dimensio-
nal nonequivalent reductions. 

If we restrict the transformation kernels to zero, the 
transformation is invertible and the resulting equa-
tions can be transformed back to the original ones. 
However, if the transformation kernels are not taken as 
zero, the transformation is noninvertible. Three types 
of effects may be caused by the noninvertibility of 
the transformation. (I) A noninvertible transformation 
may destroy the integrability, say, using the transfor-
mation (7) with a 4 1, 2 to a simple integrable Riccati 
equation (15) leads to the nonintegrable model (17). 
(II) A suitable selection of a noninvertible transfor-
mation will lead to some new nontrivial integrable 
models from some trivial ones. (III). A noninvert-
ible transformation may rule out the nonintegrability 
if the nonintegrable terms are just the kernels of the 
transformation operator, say, the transformation (7) 
changes the non-Painleve integrable model (25) to 
the Painleve integrable ones (20) and (21). 
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Fig. 4. (a) An equi-potential plot of a sin-
gle (3+l)-dimensional ring soliton solu-
tion at time t = 0 for the potential ux = 
-ux = 0.0005 with the condition (39) 
and rOi i = 5. (b) The plan x-2y — z = 0 
and the cylinder y2+z2 - 25 = 0 related to 
the ring soliton solution shown by Fig. 4a. 

A special type of exact explicit solutions of the 
obtained high dimensional Painleve integrable model 
has been obtained also. From the special solution we 
see that there may be some quite rich structures for the 
high dimensional localized solutions. For instance, 
by selecting the arbitrary function u\ appearing in the 
solution appropriately, we can obtain the multiple line 
solitons, dromion solutions and ring soliton solutions. 

Because the (1 + 1)- and (2+l)-dimensional inte-
grable models and their soliton excitations have been 
applied widely in many fields of physics, chemistry, 
biology etc., one hopes that the integrable theory 
may also be developed well in real (3+l)-dimensional 
physical space-time. However, there is little progress 
in the study of the high dimensional integrable theory 
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