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A two-dimensional spectroscopic technique is presented. Application of the technique to de-
termine all the relaxation rates for a multi-level quadrupole system is discussed along with ex-
perimental requirements. Theoretical and experimental data are analyzed for the 1N, three level,
spin 1 system. The analysis shows that all three relaxation rates can be obtained from a single
two-dimensional spectrum, and that only 3 peaks in the 3 x 3 two-dimensional intensity matrix are
needed to completely specify the problem. The 4-level spin 3/2 system is also examined. In theory,
all six relaxation rates can be independently evaluated (for a suitable system) without necessitating
measurement at the low frequency Zeeman separated levels.
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Introduction

Nuclear quadrupole energy level systems present
an interesting challenge from the point of view of re-
laxation studies. For even in simplest case of a three
level system the relaxation is biexponential. For an V-
level system the decay should be (/N — 1)-exponen-
tial, each of the exponents being a mixture of the
N(N — 1)/2 independent relaxation rates. The diffi-
culty of separating exponentials is well known and is
particularly difficult when the two exponents are of
similar magnitude. Indeed, often a convincing fit to
a single exponential can be obtained for these multi-
level systems, the individual relaxation rates being
hidden within the single value exponent. Even in the
case where the components of a biexponential can
be extracted there is insufficient information in these
exponents to allow determination of the individual re-
laxation rates. If relaxation rates between each pair of
levels could be determined a much clearer picture of
the processes responsible for the relaxation could be
obtained. This paper presents a theoretical analysis
of a two-dimensional variation of the previously de-
scribed technique of double contact cross-relaxation
[1,2]. The technique in theory allows the N (N —1)/2
relaxation rates for an N-level system to be deter-
mined. Experimentally this ideal cannot always be

realized because of Zeeman broadening which is a
characteristic of cross-relaxation detection. For inte-
gral spin nuclei the Zeeman effect is not a problem
(except for zero 7)) but for half-integer spin nuclei
it is desirable to work with nuclei that have small
magnetogyric ratios and low quadrupole resonance
frequencies. The application of the technique to ob-
tain the three relaxation rates for the three level '*N
system will be demonstrated, and the extension of the
technique to more complex systems will be discussed.

Experimental

All calculations were carried out on an ordinary PC
(Digital DEC 466). Because the matrices are small,
Jacobi’s method was used for the diagonalization.
This method is computationally easy to implement
and shows high stability. The average (absolute) in-
tensity of off-diagonal peaks (starting from the nor-
malized intensity matrix) was reduced to 2x1073.
Single precision arithmetic was used throughout.

Discussion

It is convenient to divide the double contact cross-
relaxation experiment into three phases: polariza-
tion, evolution and detection. Polarization takes place
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immediately after the sample leaves high field, the
proton energy levels and a pair of quadrupole levels
are brought into contact by an appropriately chosen
cross-relaxation field; Rapid energy exchange takes
place polarizing the () spins. In the second phase (evo-
lution) the stored magnetization is allowed to evolve
according to the individual relaxation rates within the
quadrupole energy level system. Detection takes place
when a cross-relaxation field is reapplied. Transfer of
the sample back to high field completes the double
resonance cycle. To record a normal spectrum, both
contacts will be at the same magnetic field (and hence
frequency) and the time spent in zero field will be kept
to a minimum to prevent relaxation losses. However
if both cross-relaxation fields can be swept indepen-
dently, a two-dimensional spectrum can be built up
with one axis being the polarization frequency and
the other being the detection frequency. Furthermore,
if the sample is left for an appropriate period in zero
field, the peak intensities will contain complete infor-
mation on the relaxation rate between all levels of the
quadrupole system. Only a few points in the two-di-
mensional spectrum will have a non-zero signal, so
the experiment can concentrate on these and need not
be too time consuming.

Three-level System

The simplest case to study is a three level system,
for example '“N. Zeeman broadening at the cross-
relaxation condition (except for zero 7 cases) can be
ignored for this nucleus. For such a system 9 non-zero
points can be observed in the 2D spectrum forming
a 33 intensity matrix. As the matrix is symmetric,
only the upper triangle need be recorded. There is fur-
ther redundancy in the matrix because the intensity of
the v, peak plus the intensity of the v_ line equals the
v, intensity. So, knowing two values in any row or
column, the third value can be obtained algebraically.
This means that only three values need be recorded
to construct the full 3x3 intensity matrix. Analysis
of the intensity matrix can be carried out in a similar
manner to a two-dimensional NMR exchange spec-
trum [3, 4]. But there are two major differences; first
the initial intensity matrix is not diagonal, and second
we are measuring population differences. These dif-
ferences cause each element of the relaxation matrix
to be a linear combination of all three relaxation rates.
Furthermore in order to determine correct eigenval-
ues the intensity matrix has to be normalized. At time

zero, adding the absolute intensities (ignoring nega-
tive signs) of peaks in the upper triangle of the matrix
should give an answer of 3, the same as the number
of rows (or columns) in the matrix. Matrices recorded
with different delay times are scaled according to this,
and absolute relaxation rates can be calculated. Only
relative rates can be obtained if this normalization
step is not included. Measurement of the total matrix
intensity at time zero can be achieved by measuring
the intensity of the v, peak with no (or minimal) evo-
lution time. At time zero all the peak intensities are
algebraically related. It is also a good idea to mea-
sure the v_ and v, peaks to ensure that there is equal
cross-relaxation efficiency for all levels. If this is not
the case appropriate scaling of rows and columns in
the two-dimensional spectrum will be needed.

The differential equations describing a three level
system can be readily solved (an elegant solution can
be found in [5]). Using this solution it can be shown
that the intensity of any peak in the 2D spectrum can
be expressed:

kT mT
I,'j =Aij€ +B.;]‘€

7T (the evolution time) is the time elapsed between the
two cross-relaxation contacts. So all the peaks decay
according to the same two exponents. The exponents
are the eigenvalues of the intensity matrix, and the
multiplying constants (A and B) are related to the
eigenvectors.

The matrix of relaxation rates can be expressed by
a similar equation:

Ri] = Ai]k + Bi]m.

Using matrix algebra the problem can be readily
solved:

I=X-A-X7', R=X -In(4A)/r- X"},

where A is a diagonal matrix formed from the diago-
nalization of the 2D spectrum intensities (1), X is the
eigenvector matrix and X ~! its inverse (in this case
X~!'=XT). There are only two non-zero elements in
the A array as the problem has only two eigenvalues.

The 3x3 matrix R contains relaxation transition
probabilities. Each element is a combination of all
the relaxation rates. The exact form is determined by
the starting conditions. If J is the normalized intensity
matrix at time zero and W, W, and W ; are the three
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relaxation rates corresponding to the v, v_ and v,
transitions, respectively, then
3

=Wy x Jiy x Jj1+ Wy x Jo X Jj
+ W3 X .]13 X Jj}.

The problem can be solved algebraically, but it is
betterto treat the R matrix as an overdetermined set of
linear equations and find the least squares solution (a
good description of the method can be found in [6]).
It is interesting to note that reversing the non-zero
eigenvalues gives a much simpler R matrix. Each off-
diagonal element depending on only one relaxation
rate. The least squares method is, however, prefered
as it includes all matrix elements in the determination
of the relaxation rates.

Predetermination is avoided by not using the same
equations to generate data as were used in the so-
lution. Instead, theoretical two-dimensional intensity
data were generated numerically from the rate equa-
tions using 100 equal time intervals from zero to the
evolution time. The following are the intensity matri-
cesat 7 =0and 7 =0.1 s using relaxation rates W, =
1s7!, W, =2s"!and W, = 3 s~!. Both matrices
have been multiplied by 3. (The mathematical rather
than the spectroscopic convention has been used, so
the diagonal runs from top left to bottom right).

v, U_ I
_ vy 2 1 1
I x3(t=0s)= g ) 2 1>
w 1 -1 2
Vy V_ 120}
~ v, 128 072 056
Ix3r=018= " om0 111 —038°
v 056 —038  0.95

Diagonalization gives A = 0.652, 7.0x10~% and
0.460. In(A)/T = —4.28, zero and -7.76 (the small-
est value is always zeroed).

The calculated R matrix is:

-3 -1 -2
R= -1 -4 3 .
-2 3 -5

A least squares analysis returns the original values for
the relaxation rates. Random variation of the input in-
tensities by up to +10% propagates into an error in the
calculated W’s of about £10%. It should be noted,
however, that the evolution time has been optimized
and there is not a large dynamic range in the relax-
ation rates used. If the relaxation rates are very differ-
ent then measurement at two evolution times may be
necessary to obtain acceptable answers. When the sig-
nal to noise ratio reaches about 1:1, eigenvalues can
become negative, which renders the data impossible
to analyze.

A three level system can be analyzed from the
diagonal peaks alone. The number of off-diagonal
elements in the upper triangle does not exceed the
number of diagonal elements. One-dimensional spec-
tra have been previously presented for 4-nitrobenzoic
acid [1]. A relaxation analysis was carried out on the
basis of decays rates (using 20 delay times). It was
assumed that two of the three relaxation rates were
equal and the third small [1, 7]. Using the two-di-
mensional approach it is possible to determine the
three relaxation rates without such provisos and with
only one (suitably chosen) delay time. The diagonal
peaks v, v_ and v, at time zero had intensities of
200, 167, and 124. From which it can be deduced
that cross-relaxation was not as effective at v, and
v_ peaks as at v,. If it is assumed that a constant
proportion of the magnetization is measured, for each
peak the peak intensities can be corrected. The peak
heights are adjusted to give 200, 200, and 200 at time
zero. The off-diagonal peaks are obtained using the
relations

1

Iy =1 = 5(111 + I — I33),
1

Iy=13 = E(I” — Iy + I33),
1

Ipy=1Iyp= 5(111 — Iy — I33).

Analysis of the matrix formed gives the results shown
in Table 1. For both evolution times the calculated re-
laxation rates are the same within experimental error.
The results are consistent with the previous analy-
sis [1]. Using this method it is possible to show that
relaxation between the levels 0 and +1 (v,) is slightly
slower than for relaxation between the 0 and -1 levels
(v_). (The previous analysis [1] had to assume these
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Table 1. Intensities of the diagonal peaks in the two-dimen-
sional cross-relaxation spectrum of 4-nitrobenzoic acid and
the results of a relaxation analysis (see text). For compar-
ison: In [1] relaxation rates of 0.035, 0.035 and 0.007 s~
are given. (Note: relaxation time 7'} = 1/2W).

Evolution  Transition  Diagonal  Relaxation  Relaxation
time (s) Intensity (shH time (s)
5 v, 124.6 0.0378 132
5 v_ 119.5 0.0429 11.7
5 Ve 160.7 0.0017 294
8 . 925 0.0379 132
8 v_ 87.9 0.0437 11.4
8 v, 140.7 0.0016 312

rates were equal). Furthermore the relaxation rate be-
tween the +1 and -1 levels (v,)) is determined as being
(almost) zero. The much larger relaxation rate quoted
in [1] can again be traced to the assumptions made in
that analysis.

Four-level System

As an example a spin, 3/2 nucleus in a non-
zero magnetic field will be considered. An exam-
ple that possesses the desirable characteristics of a
low resonance frequency and a small magnetogyric
ratio is K. A Zeeman field (away from the cross-
relaxation condition) should be maintained during
the evolution time to prevent the system from de-
generating to a 2-level system. It may be possible to
investigate the variation of the relaxation rates with
the applied magnetic field. The intensity matrix is
6x 6 but once again there is some redundancy. Only 3
elements in each row and column need be collected.
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