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A two-dimensional spectroscopic technique is presented. Application of the technique to de-
termine all the relaxation rates for a multi-level quadrupole system is discussed along with ex-
perimental requirements. Theoretical and experimental data are analyzed for the 14N, three level, 
spin 1 system. The analysis shows that all three relaxation rates can be obtained from a single 
two-dimensional spectrum, and that only 3 peaks in the 3 x 3 two-dimensional intensity matrix are 
needed to completely specify the problem. The 4-level spin 3/2 system is also examined. In theory, 
all six relaxation rates can be independently evaluated (for a suitable system) without necessitating 
measurement at the low frequency Zeeman separated levels. 
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Introduction 

Nuclear quadrupole energy level systems present 
an interesting challenge from the point of view of re-
laxation studies. For even in simplest case of a three 
level system the relaxation is biexponential. For an N-
level system the decay should be (N — 1 ^exponen-
tial, each of the exponents being a mixture of the 
N(N — l)/2 independent relaxation rates. The diffi-
culty of separating exponentials is well known and is 
particularly difficult when the two exponents are of 
similar magnitude. Indeed, often a convincing fit to 
a single exponential can be obtained for these multi-
level systems, the individual relaxation rates being 
hidden within the single value exponent. Even in the 
case where the components of a biexponential can 
be extracted there is insufficient information in these 
exponents to allow determination of the individual re-
laxation rates. If relaxation rates between each pair of 
levels could be determined a much clearer picture of 
the processes responsible for the relaxation could be 
obtained. This paper presents a theoretical analysis 
of a two-dimensional variation of the previously de-
scribed technique of double contact cross-relaxation 
[1,2]. The technique in theory allows the N(N — 1 )/2 
relaxation rates for an AMevel system to be deter-
mined. Experimentally this ideal cannot always be 

realized because of Zeeman broadening which is a 
characteristic of cross-relaxation detection. For inte-
gral spin nuclei the Zeeman effect is not a problem 
(except for zero rj) but for half-integer spin nuclei 
it is desirable to work with nuclei that have small 
magnetogyric ratios and low quadrupole resonance 
frequencies. The application of the technique to ob-
tain the three relaxation rates for the three level 14N 
system will be demonstrated, and the extension of the 
technique to more complex systems will be discussed. 

Experimental 

All calculations were carried out on an ordinary PC 
(Digital DEC 466). Because the matrices are small, 
Jacobi's method was used for the diagonalization. 
This method is computationally easy to implement 
and shows high stability. The average (absolute) in-
tensity of off-diagonal peaks (starting from the nor-
malized intensity matrix) was reduced to 2 x l 0 - 5 . 
Single precision arithmetic was used throughout. 

Discussion 

It is convenient to divide the double contact cross-
relaxation experiment into three phases: polariza-
tion, evolution and detection. Polarization takes place 
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immediately after the sample leaves high field, the 
proton energy levels and a pair of quadrupole levels 
are brought into contact by an appropriately chosen 
cross-relaxation field; Rapid energy exchange takes 
place polarizing the Q spins. In the second phase (evo-
lution) the stored magnetization is allowed to evolve 
according to the individual relaxation rates within the 
quadrupole energy level system. Detection takes place 
when a cross-relaxation field is reapplied. Transfer of 
the sample back to high field completes the double 
resonance cycle. To record a normal spectrum, both 
contacts will be at the same magnetic field (and hence 
frequency) and the time spent in zero field will be kept 
to a minimum to prevent relaxation losses. However 
if both cross-relaxation fields can be swept indepen-
dently, a two-dimensional spectrum can be built up 
with one axis being the polarization frequency and 
the other being the detection frequency. Furthermore, 
if the sample is left for an appropriate period in zero 
field, the peak intensities will contain complete infor-
mation on the relaxation rate between all levels of the 
quadrupole system. Only a few points in the two-di-
mensional spectrum will have a non-zero signal, so 
the experiment can concentrate on these and need not 
be too time consuming. 

Three-level System 

The simplest case to study is a three level system, 
for example 14N. Zeeman broadening at the cross-
relaxation condition (except for zero tj cases) can be 
ignored for this nucleus. For such a system 9 non-zero 
points can be observed in the 2D spectrum forming 
a 3 x 3 intensity matrix. As the matrix is symmetric, 
only the upper triangle need be recorded. There is fur-
ther redundancy in the matrix because the intensity of 
the u0 peak plus the intensity of the v_ line equals the 
u+ intensity. So, knowing two values in any row or 
column, the third value can be obtained algebraically. 
This means that only three values need be recorded 
to construct the full 3 x 3 intensity matrix. Analysis 
of the intensity matrix can be carried out in a similar 
manner to a two-dimensional NMR exchange spec-
trum [3, 4], But there are two major differences; first 
the initial intensity matrix is not diagonal, and second 
we are measuring population differences. These dif-
ferences cause each element of the relaxation matrix 
to be a linear combination of all three relaxation rates. 
Furthermore in order to determine correct eigenval-
ues the intensity matrix has to be normalized. At time 

zero, adding the absolute intensities (ignoring nega-
tive signs) of peaks in the upper triangle of the matrix 
should give an answer of 3, the same as the number 
of rows (or columns) in the matrix. Matrices recorded 
with different delay times are scaled according to this, 
and absolute relaxation rates can be calculated. Only 
relative rates can be obtained if this normalization 
step is not included. Measurement of the total matrix 
intensity at time zero can be achieved by measuring 
the intensity of the v+ peak with no (or minimal) evo-
lution time. At time zero all the peak intensities are 
algebraically related. It is also a good idea to mea-
sure the v_ and u0 peaks to ensure that there is equal 
cross-relaxation efficiency for all levels. If this is not 
the case appropriate scaling of rows and columns in 
the two-dimensional spectrum will be needed. 

The differential equations describing a three level 
system can be readily solved (an elegant solution can 
be found in [5]). Using this solution it can be shown 
that the intensity of any peak in the 2D spectrum can 
be expressed: 

r (the evolution time) is the time elapsed between the 
two cross-relaxation contacts. So all the peaks decay 
according to the same two exponents. The exponents 
are the eigenvalues of the intensity matrix, and the 
multiplying constants (A and B) are related to the 
eigenvectors. 

The matrix of relaxation rates can be expressed by 
a similar equation: 

Ä2j — -A-ijlc "I- BlJm. 

Using matrix algebra the problem can be readily 
solved: 

I = X A X~\ R = X \n(A)/r • X~\ 

where A is a diagonal matrix formed from the diago-
nalization of the 2D spectrum intensities (/), X is the 
eigenvector matrix and X~l its inverse (in this case 
X~] = XT). There are only two non-zero elements in 
the A array as the problem has only two eigenvalues. 

The 3x3 matrix R contains relaxation transition 
probabilities. Each element is a combination of all 
the relaxation rates. The exact form is determined by 
the starting conditions. If J is the normalized intensity 
matrix at time zero and Wx , W 2 and W 3 are the three 
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relaxation rates corresponding to the u+, u_ and u0 

transitions, respectively, then 

R 
= Wi X JiX X JjX + W2 X Jl2 x jj2 

+ VK3 X J j 3 X j j 3 . 

The problem can be solved algebraically, but it is 
better to treat the R matrix as an overdetermined set of 
linear equations and find the least squares solution (a 
good description of the method can be found in [6]). 
It is interesting to note that reversing the non-zero 
eigenvalues gives a much simpler R matrix. Each off-
diagonal element depending on only one relaxation 
rate. The least squares method is, however, prefered 
as it includes all matrix elements in the determination 
of the relaxation rates. 

Predetermination is avoided by not using the same 
equations to generate data as were used in the so-
lution. Instead, theoretical two-dimensional intensity 
data were generated numerically from the rate equa-
tions using 100 equal time intervals from zero to the 
evolution time. The following are the intensity matri-
ces at r = 0 and r = 0.1 s using relaxation rates W, = 
1 s _ 1 , W2 = 2 s - 1 and W3 = 3 s" 1 . Both matrices 
have been multiplied by 3. (The mathematical rather 
than the spectroscopic convention has been used, so 
the diagonal runs from top left to bottom right). 

/ x 3(T = 0s) = u_ 
"0 

v+ V - UQ 

2 1 1 
1 2 - 1 ' 
1 - 1 2 

V+ u_ 
1.28 0.72 0.56 

u_ 0.72 1.11 - 0 . 3 8 
"o 0.56 - 0 . 3 8 0.95 

I x 3(r = 0.1s) = 

Diagonalization gives A = 0.652, 7.0x10 8 and 
0.460. ln(yl)/T = -4.28, zero and -7.76 (the small-
est value is always zeroed). 

The calculated R matrix is: 

- 3 - 1 - 2 
R= - 1 - 4 3 . 

- 2 3 - 5 

A least squares analysis returns the original values for 
the relaxation rates. Random variation of the input in-
tensities by up to ± 10% propagates into an error in the 
calculated VK's of about ±10%. It should be noted, 
however, that the evolution time has been optimized 
and there is not a large dynamic range in the relax-
ation rates used. If the relaxation rates are very differ-
ent then measurement at two evolution times may be 
necessary to obtain acceptable answers. When the sig-
nal to noise ratio reaches about 1:1, eigenvalues can 
become negative, which renders the data impossible 
to analyze. 

A three level system can be analyzed from the 
diagonal peaks alone. The number of off-diagonal 
elements in the upper triangle does not exceed the 
number of diagonal elements. One-dimensional spec-
tra have been previously presented for 4-nitrobenzoic 
acid [1]. A relaxation analysis was carried out on the 
basis of decays rates (using 20 delay times). It was 
assumed that two of the three relaxation rates were 
equal and the third small [1, 7]. Using the two-di-
mensional approach it is possible to determine the 
three relaxation rates without such provisos and with 
only one (suitably chosen) delay time. The diagonal 
peaks u+, u_ and u0 at time zero had intensities of 
200, 167, and 124. From which it can be deduced 
that cross-relaxation was not as effective at uQ and 
u_ peaks as at u+. If it is assumed that a constant 
proportion of the magnetization is measured, for each 
peak the peak intensities can be corrected. The peak 
heights are adjusted to give 200, 200, and 200 at time 
zero. The off-diagonal peaks are obtained using the 
relations 

1 
112 = hi = + — 

^13 = hi = ~ ^22 + 

hi = hi = " ^22 ~ 

Analysis of the matrix formed gives the results shown 
in Table 1. For both evolution times the calculated re-
laxation rates are the same within experimental error. 
The results are consistent with the previous analy-
sis [1], Using this method it is possible to show that 
relaxation between the levels 0 and +1 (u+) is slightly 
slower than for relaxation between the 0 and - 1 levels 
(u_). (The previous analysis [1] had to assume these 
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Table 1. Intensities of the diagonal peaks in the two-dimen-
sional cross-relaxation spectrum of 4-nitrobenzoic acid and 
the results of a relaxation analysis (see text). For compar-
ison: In [1] relaxation rates of 0.035, 0.035 and 0.007 s _ 1 

are given. (Note: relaxation time T) = 1/2W). 

Evolution Transition Diagonal Relaxation Relaxation 
time (s) Intensity ( s - 1 ) time (s) 

5 124.6 0.0378 13.2 
5 V 119.5 0.0429 11.7 
5 v() 160.7 0.0017 294 
8 92.5 0.0379 13.2 
8 I> 87.9 0.0437 11.4 
8 140.7 0.0016 312 

rates were equal). Furthermore the relaxation rate be-
tween the+1 and-1 levels (v0) is determined as being 
(almost) zero. The much larger relaxation rate quoted 
in [1] can again be traced to the assumptions made in 
that analysis. 

Four-level System 

As an example a spin, 3/2 nucleus in a non-
zero magnetic field will be considered. An exam-
ple that possesses the desirable characteristics of a 
low resonance frequency and a small magnetogyric 
ratio is 39K. A Zeeman field (away from the cross-
relaxation condition) should be maintained during 
the evolution time to prevent the system from de-
generating to a 2-level system. It may be possible to 
investigate the variation of the relaxation rates with 
the applied magnetic field. The intensity matrix is 
6 x 6 but once again there is some redundancy. Only 3 
elements in each row and column need be collected. 

So the relative populations of the 1/2 -1/2 pair and 
the 3/2 -3/2 pair of levels can be obtained from mea-
surements of the other transitions. This is quite for-
tunate as these pairs of levels never satisfy the cross-
relaxation condition. The analysis can be carried out 
in exactly the same way as for a three level system. 
The normalization condition once again requires that 
at time zero the total (absolute) intensity of the up-
per triangle be equal to the number of rows in the 
matrix, namely 6. Test data were generated numeri-
cally (as described above). As expected three of the 
six eigenvalues are zero - the relaxation is triexpo-
nential. The three lowest values in the diagonal A 
matrix should be zeroed. The final R matrix can be 
analyzed in the same way as for a three level system. 
Each element in the matrix is a linear combination 
of six relaxation rates, so analyzing the matrix di-
rectly using the least squares method is almost ines-
capable. 

There is an extra complication for studies of half-
integral spin nuclei in polycrystalline samples. The 
cross-relaxation frequency will be determined by the 
orientation the crystal axes make with the magnetic 
field. This may be turned to advantage as the orien-
tational dependence of the relaxation rates could be 
investigated. 

For half-integral spin nuclei with large magneto-
gyric ratios it should be possible to obtain some relief 
from the effects of a weakened cross-relaxation sig-
nal. By modulating the cross-relaxation field a range 
of crystal orientations could be made to exchange 
polarization with the protons, thereby increasing the 
storage capacity of the Q system. 
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