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We present a detailed theoretical and experimental NQR multiple-pulse spin-locking study of 
spin-lattice relaxation and spin diffusion processes in the presence of paramagnetic impurities in 
solids. The obtained diffusion equation was obtained allows to find the time dependence of the 
magnetization in the effective field. The spin lattice relaxation times were calculated, both for 
direct and diffusion regimes, as functions of the correlation time and multiple-pulse parameters. 
Measurements of relaxation times in rotating frame allow to determine the diffusion coefficient 
and the radius of the diffusion barrier in 7-irradiated polycrystalline samples of NaCIO}. 
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1. Introduction 

In the present paper both spin lattice relaxation 
and spin diffusion processes in 7-irradiated polycrys-
talline samples of NaC103 were studied by multiple-
pulse spin-locking technique. The analysis of the nu-
clear magnetization decays for various concentrations 
of PI allows to distinguish between the direct re-
laxation regime and the diffusion relaxation regime 
and to determine coefficients of spin-diffusion for the 
NQR-case. 

2. Theory 

2.1. System Hamiltonian 

The evolution of the spin system, consisting of nu-
clear spins I > 1/2 and Paramamagnetic Impurity 
(PI) spins 1/2, influenced by the external multiple-
pulse r. f. magnetic field acting only on nuclear spins, 
may be described by a solution of the equation for the 
density matrix pit) (in units of h.= 1) 

i ^ ± = [H(t),p(t)] (1) 
at 

with the Hamiltonian 

n(t) = Hq + Hdd + Hp\ + HP + Hbr ( 0 + Hr.f. (t). (2) 

Here Hq is the interaction of the I-spin system with 
the EFG; Hdd and Hp\ are the Hamiltonians of the 
dipole-dipole interaction of nuclear spins and nuclear 
with PI spins, respectively; Hp describes the impurity 
spin system; Hbr (t) = £^=-2 E(~q) (t) Aq, the spin-
lattice interaction Hamiltonian, describes the spin-lat-
tice relaxation caused by torsional vibrations (Bayer 
mechanism) [1], where Aq is a bilinear function of 
the spin operators and E(~q) (t) is a random function 
of time [2]. Hr.t (t) gives the action of the r. f. field 
on the nuclear spin system. 

Using the projection operators and £J
mn 

defined by their matrix elements (m | e ^ n | n ) = 
bm'mK'n a n d KoW) = K'Ja'o' M a n d W) 
are eigenvectors of the operators Hq and Tip , re-
spectively. Introducing a projection density operators, 
Cmn ( t) , for the nuclear spins I , and £ m n ( r ) for PI 
spins, 

emn = 

(r) = ^2ö(r-rJ)£J
mn 

j 
the density of the Hamiltonians Hq, Ha&, and Hp\ can 
be written in the form 

Hq (r) = (2/ + 1)~1 ^ uPmnemm ( r ) , (4) 
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7~(-dd(r)= [ d r y ^ G m n ' ( r — r ' ) Here Z\ is the off set. After the unitary transformation, 
j mn the Hamiltonian of the spin system can be presented as 

mnm n r J 1 

^•mniV^^m'n' ) 

(5) 

H(t) = d r H ( r , w e , t ) (11) 

HPl(r)=[dr' Y , F™n'{r-r') 
where 

mnm n Ti (r, t) = ( a S ) + Tid (r) + Tin (r,uje, t) 
(6) (12) 

(r)£m-„. ( r ' ) , + ^IL 

where = A™ - An, Am is the eigenvalue of the ^ ( r ) = f ( r _ r ' j 
operator and are matrix elements l =_2 < / m n T n , n , 
of the dipole-dipole Hamiltonians and Tipi in • Kl

mn(r) K~l,n, ( r ' ) 
7YQ-representation [3]. 

1 f 
n h T (t) = J 2 J 2 E i ' q ) <*> I dr»emn ( r ) , (7) ^pi (r , 0 = ^ ) d r ' E ( r " r ' 

J /=—1 mnm'n' 

Tir.f. (t) = u)\ (t) cos (a;* + (p) ^ (a • J)T 

/=— 1 mnm'n' (14) 

• e - ^ x , (t)Kl
mn(r)em.n. ( r ' ) , 

/ 
m n ( g ) 1 

drem T 1 ( r ) , WIL ( r , *) = £ £ £ ( r - r ' ) 
/=— 1 g m n (15) 

where a; is the applied frequency, uj\(t) = do6(t) • e~duJete~luJinn \i (t) Kl
mn(r), 

and (f> = 0 for the preparatory pulse, and co\(t) = 
# EZo 6[t-(k+\) tc] and 0 = t t /2 for the remain- « _ 27rn 
ing pulses, d = 7 H\tw, H1 and tw are the amplitude Xi ( 0 = X?e~luln ! = ——, (16) 
and pulse duration of the r. f. pulses ; tc is the period n = - o o 

of the multiple-pulse sequence; a is a unit vector di-
rected along the r. f. field, and 7 is the gyromagnetic n _ (—l)n sin (luetc/2) 
ratio of the nuclear spins. ~ 27rn + luj ttc 

The action of a periodic radiofrequency pulse field 
on a nuclear spin system consists of a preparatory = G m V [ ^ + ^ ( < w + ^ 
(first) pulse taking the spin system out of equilibrium (18) 
and a multiple-pulse sequence which leads to fast + (ßmn, +6 m Ä »)(6 m / n + <5m'n)] 
oscillating terms in the Hamiltonian. It can be shown 
in a way analogous to that used in [3] that by using 
the unitary transformation, these fast oscillating terms 
can be removed. In this case the sum Tin + 7Yr f in (2) , 
can be replaced by the operator u>eS (S is the effective T h e expression of the operator Kmn(r) is rather 
spin operator) if u t = u t a is defined as complicated, and we restrict ourselves to putting 

down only the commutation law: [(aS), Kmn(r)\ = 

COS (uetc/2) = COS (d/2) COS (Atc/2) (9) lKmn(r)-

and . . . _ . _ 
2.2. Spin Diffusion Equation 

a 1 = sin ( f t /2) / sin (ojttc/2) ; a2 = 0; 
(10) To obtain the evolution equation we will use the 

<23 = cos (tf/2) sin (Atc/2) / sin (coetc/2) . method of non-equilibrium state operator [4] which 

fmnn = Fmn &mn + &mn) (6m'n' + Öm'n') (19) 
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has been originally applied to the spin diffusion in 
NMR [5]. The diffusion equation can be obtained by 

dt 
= (DA-Ti-p

l{rj)tft(r,t)-fc) (20) 
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(27) 

' JPJn> (r'Juc - 2 t tn / t c ) . 

with the boundary condition 

V & ( M ) U = 0, 

Here [ t ' ,uj) is spectral density of the impurity's 
spins correlation function 

/

oo 

dr9>Jn, ( r ' , r ) e — ( 2 8 ) -oo 
where b is the radius of the diffusion barrier [6], within 
which the spin diffusion process is quenched. Here it 
is worthwhile to mention that for the NQR-case dis-
tortions of the crystal field (as a result of the inclusion 
of the PI) should be also taken into account. It re-
sults in additional electrical diffusion barriers [7] of 
order ~ ro(Ze2QCi/'yh2)^'x, here r 0 is the distance 
between neighboring nuclei, £ the Sternheimer anti-
shielding factor [8], and the distortion of the electric 
field was assumed to be equivalent to the presence 
of a charge Ze [7], The first term on the right side 
of (20) describes the spin the diffusion process with 
diffusion coefficient 

D = j dr ' £ P ( r - r f £ r - r ' ) 
l=— 1 mnm'n' 

• £ & ( ' - ' ' ) < 2 2 ) 

pqp'q' 
• • S)2, 

and the second term gives the variation of ße(r,t) 
due to the direct relaxation to PI with relaxation time 
Tpi (r), and to the lattice with TiL (r): 

T l - l ( r ) = T ^ ( r ) + T-L
l ( r ) , 

where 

T{i}(r) = r-6B(r), 

i 

/=— 1 mn pq 

• ( I< l mn(r)K; q
l ( r , t ) ) /T r ( a • S)2 , 

P^n(r) = j dr'Y.Y.f™ (r-r1) 
m' n' p' q' ' Stq ( r - r ' ) W ^ i (r', tc) , 

(23) 

(24) 

(25) 

(26) 

and g^J n ' ( f ' ,T) is the correlator of the impurity's 
spins thermal motion 

Ä (r\r) = (en,n. ( r \ t ) s p V ( r ' , t - r ) ). (29) 

The spin lattice relaxation time T^ 1 (r) determines 
the relaxation process due to the thermal modulation 
of the EFG: 

l 

1-— 1 mnm'n' vu' (30) 

• ^ X ' n ' {K l
m n iT)K^ n , (r , *) ) /Tr(a • S)2 . 

The dependence of T^ 1 (r) on the pulse sequence 
parameters and the lattice motion characteristics is 
given by the function 

VW (^mn - l^e) = T Juu'i^mn ~ ~ ~ ^ e ) 
k t c J (31) 

Aq Aq
 v

f c v f c 
mn m'n' A/ A—/; 

where 

J»»' M = / drgvv> (r) (32) 

is the spectral density of the lattice thermal motion 
and 

g ^ ( r ) = ( E ^ ) ( t ) E ^ ' ) ( t - r ) ) (33) 

is the correlator of the lattice motion. 
The diffusion equation (20) describes the spin dif-

fusion and the spin lattice relaxation via PI caused by 
torsional motion in the spin system with a multiple-
level nonequidistant energy spectrum. Equation (20) 
has the same form as for the case of NMR [6] and 
differs from the latter only by the kinetic coefficients. 
Immediately after a disturbance of the nuclear spin 
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system, there is no gradient of ße, and diffusion is 
not of importance [9]. To describe the relaxation, we 
may use (20) without the first term, this is the so 
called direct relaxation regime [10], Further, usually 
the spin-lattice relaxation in NQR in the absence of 
the PI is caused by thermal modulation of the elec-
tric field gradient (EFG) [1]. This relaxation mecha-
nism is very effective, and it is reasonable to suppose 
that at low PI concentrations the influence of the PI 
should not be taken into account, which is implement-
ing when Tjpj1 ( r ) < T ^ 1 (r) , and the character of 
the relaxation regime remains the same. In this case, 
the term which determines the direct relaxation via 
PI, can be neglected and the relaxation process can 
be described exponentially with the relaxations time 

= / d T t ^ 1 (r) . In the case of the exponential 
time dependence of the correlator 

the function ip» (u;mn — lcoe) is 

lPu (Urn» - liüe) = TU (EM2 (0)) 

(34) 

{ 2oJmnrl sin (luetc/2) 

1 +T}u>ln t c ( \ + T ^ 

- Tutc[\ - cos (lujetc/2)] 

[ (1 - TWmn) sinh +2uwT„ 

• sin (ujmntc - lujetc/2) j 

(35) 

(I + t J O [ ~ s h ^ 

1—11 
- cos (Uj m n t c - luetc/2) ] j , 

which gives the dependence of the relaxation time 
T ^ 1 on the correlation time r v and the pulse sequence 
parameters tc and d. 

In the presence of high PI concentration, at the be-
ginning of the relaxation process (20) has the solution 

ßAr,t) = ße(r, oo) (36) 

+ [ßt ( r , 0) - ße ( r , 0)] exp ( - ) 

where ße (r , oo) is the equilibrium local inverse tem-
perature. Assuming that all local inverse tempera-
tures are equal at the initial moment and in the equi-
librium state, the value to be average is R(r,t) = 
[ße (r ,t) - ßt (r , oo) ] / [ße (r , 0) - ße ( r , 0) ] ,the nor-
malized local relaxation function. In the limit as 
the number of PI, iVp —• oo, a volume of sample, 
VL —> oo, and Np/ VL = Cp, the PI concentration, we 
have[9, 11] 

R(t) = exp 
t 

T\L \Tm 

t 
(37) 

where a = d /6, d is the dimensionality of the sample, 
t i l is the spin lattice relaxation time in the absence 
of PI, and 

T1PI = B 
2ird/2r (l -d/6) Cp 

dr (d/2) 

6/d 
(38) 

Here B = (B(r))e ^ is an average over the 
spherical coordinates of the vector r ß V , concern-
ing the yu-th nuclear spin and 77-th PI spin, and 
r (:r) is the Gamma function. The dependence of 
Tjpj1 (r) on the pulse sequence parameters and the 
lattice motion characteristics is given by the function 

/ / 

W , (r',lu)e,tc) in (27). To calculate the spectral 
density J^j n>(r ' , u>) of the correlation function of the 
impurity spins, the correlator function ( t ' , t ) = 

',t — r ) ) is needed. We assume 
that in the high temperature approximation this corre-
lation is exponential with a correlation time r c . This 
leads to 

tipi ~ tu (EM2 (0)> {1 - Tf [1 - cos (luttc/2)] 

sinh (tc/ru) 

cosh ^ ^ — cos (/a;e<c/2)j } (39) 

As the result of direct relaxation regime the local 
inverse temperature ßt (r , t) becomes spatially dis-
tributed over the sample. In this case we consider also 
the first term in the (20). To solve this equation and de-
termine the time dependence we introduce the eigen-
functions (r) of the operator DA - T ^ 1 (r) [12]. 
Assuming the spherical symmetry approximation, the 
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general solution of (20) can be written as an expan-
sion in terms of the ortogonal functions ipn (r) in the 
form 

J n 

where the functions ipn (r) satisfy the equation 

Atpn (r) - (TIPI (r) /D) (r) = -k2
nipn (r) (41) 

with the boundary condition 

Vy>B(r) |r=b= 0. (42) 

Equation (41) is well know in the theory of scattering 
for the low energy limit [13]. It has an asymptotic 
solution ipn (r) ~ sin ( k n r + 6n) fr for r » b, where 
6n ~ kn£ is the phase shift and £ is the scattering 
length [13]. Taking into account the spherical symme-
try (after the averaging over a polycrystalline sample) 
and using the boundary condition (42) we obtain [13] 

1/4 r (3/4) 
2 r (5 /4 ) ' 

Using the last result, for the long time approxima-
tion, b2 / D , we obtain the normalized relaxation 
function for the diffusion-limited regime 

R(t) = ex 
-ML J- ID 

where 

T I D = 2TrCP£>3 /451 /4 r (3/4) 
r (5/4) 

(44) 

(45) 

So we may obtain the expression describes the 
exponential time dependence of ßt (t) with the re-
laxation time 

TiP = 
T\lT\D 

T , L + T 1 D 

(47) 

3. Experimental 

PI in polycrystalline samples of NaCIO} were in-
duced by 7-irradiation (by the courtesy of Dr. I. Zil-
berman, Nuclear Research Center of the Negev) with 
doses of 0.2, 1, 3, 5, 10, 20, and 50 Mrad. The origin 
of PI and their concentration dependence on doses 
were studied by room temperature EPR spectroscopy 
using a Bruker EM 220 digital X-band EPR spec-
trometer (u = 9.4 GHz). The 35C1 NQR spectra and 
the spin-lattice relaxation times in rotating frame T l p 

have been measured at 77 K with a Tecmag Libra 
pulse NMR spectrometer. The spectra have been ob-
tained using Fourier transformation of the Hahn echo 
signals. Spin-lattice relaxation times in rotating frame 
T \ p have been measured using the tt/2-t-[7t/2-t-...- t -
7r/2-]n multiple-pulse sequence. The length of the 7t/2 
pulse was 7.5 fj.s. 

(43) 4. Results and Discussion 

Under an assumption analogous to those in the case of 
the direct relation regime we obtain the dependence of 
TID on the pulse sequence parameters and correlation 
time 

T i D ~ { r „ ( ^ ) 2 ( 0 ) > { 1 - ^ [1 - c o s (Jcje*c/2)](46) 

sinh (tc/Tv) ^ -1/4 
[cosh (tc/Tu) - cos (lu)etc/2)] 

The initial, non-irradiated, sample of NaC103 pow-
der was found to be EPR silent and did not contain 
paramagnetic impurities. Following 7-irradiation re-
sults in removing an electron from the electron shell 
and thus induces an increasing number of PI which are 
clearly detected and identified by EPR. The amount of 
7-induced PI increases linearly with the dose for both 
low and high dose region (Fig. 1) and varies within 
the range of 1016-M018 spin/cm3. 

The NQR frequency and line width in non-
irradiated sample at 77 K were found to be 
30.632450 MHz and 1.2 kHz, respectively. Figure 2 
displays dependencies of the line shift 6u and the 
line width HHFW on the dose of irradiation. The 
line width shows linear dependence on the irradiation 
within the whole range of doses. The line broadening 
is mostly caused by the distribution of EFG, as were 
established in NQR studies of mixed and defected 
crystals [8, 14]. On the other hand, a large amount of 
PI may also produce a static broadening because of the 
dipole-dipole interaction between unpaired magnetic 
moments of the impurities and magnetic moments of 
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Fig. 1. Dependence of the total amount of induced param-
agnetic impurities in 7-irradiated polycrystalline NaClÜ3 
on the irradiation dose. 
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Fig. 2. Dependencies of 35C1 NQR line width (right axis) 
and line shift from the initial frequency v = 30.632450 MHz 
(left axis) on the irradiation dose for polycrystalline NaClÜ3 
at 77 K. 

the resonant nuclei [8]. The changes of the resonance 
frequency bv result from distortions of the electric 

0 100 200 300 400 500 600 

Time (ms) 

Fig. 3. Logarithmic plot of the magnetization decay vs time 
for irradiation doses (a) 1 Mrad and (b) 20 Mrad. 

field gradient (EFG). We note that, at least for small 
doses, our results are in qualitative agreement with the 
literature data on NaC103 [15], where linear depen-
dencies of bv and HHFW on the dose of irradiation 
for doses < 5 Mrad were reported. 

The Spin-lattice relaxation time in the rotating 
frame T\p shows no visible changes for the irradi-
ation doses up to 3 Mrad. Magnetization decays for 
both non- and low dose-irradiated samples are long 
and well described by a single exponential function 
(Fig. 3a). Thus we conclude that up to 3 Mrad the re-
laxation is mostly caused by the thermal fluctuations 
of the electric field gradient [1]. Fitting the mag-
netization decay of the non-irradiated sample with 
the expression R(t) = exp(— t /T\i), we found tIL = 
298 ms. For higher doses of irradiation, the magne-
tization decay becomes shorter and comprises two 
different regimes (Figure 3). This fact shows that 
the irradiation yields additional (to the quadrupole 
contribution) mechanisms of relaxation. According 
to the above theory, the initial part of the decay has 
been attributed to the simultaneous contributions of 
quadrupole relaxation and direct relaxation via para-
magnetic impurities and has been fitted with (37), 
where the t J L value was taken from the measure-
ment on the non-irradiated sample and a = 0.5 in ac-
cord with the spacial dimension of the sample d = 3. 
The logarithmic fit of the magnetization vs. time plot 
for the dose 20 Mrad (Fig. 3b) clearly shows that 
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Table 1. Dependence of the contributions to the spin-lattice 
relaxation in rotating frame on the content of paramag-
netic centers. The accuracy of relaxation time calculations 
is within 12%. 

Dose C P T 1 L (ms) T\?\ t ID Q D 
(Mrad) (spin/cm3) (ms) (ms) (ms) (cm2 /sec) 

0 298 — — 1 — 

10 1.02-1018 298 168 467 0.5 3.29-10-1 3 

20 1.56-10IX 298 94 448 0.5 2 . 1 6 1 0 - 1 3 

50 3.4210 1 8 298 46 345 0.5 1.45-10-13 

at times longer than 120 ms the relaxation regime is 
changed to the diffusion-limited one characterized by 
the single exponential function of time. Similar re-
sults were found for samples irradiated by 10 Mrad 
and 50 Mrad. It is not surprising that this time is 
independent on the dose, because it needs a certain 
characteristic time of establishing of the gradient of 
local inverse temperature. The diffusion-limited part 
of the decay was attributed to the simultaneous con-
tributions of quadrupole relaxation and relaxation via 
paramagnetic impurities due to the spin diffusion and 
fitted with the (44). The values of T\P\, T\o and a are 
given in the Table 1. One can see that the irradiation 
doses above 10 Mrad reduce both TIPI and T\v. Re-
duced values of t I P I with increased PI concentration 
properly reflect the influence of PI to the spin-lattice 
relaxation. The dependence of the relaxation time 7\d 
on the PI concentration is close to inverse proportion-
ality Tj^1 ~ Cp in accordance with the (45). This is 
in a good qualitative agreement with the above the-
ory. Using the experimental results, from the analysis 
of those two regimes we can calculate the diffusion 
coefficient D 

fTx?Ain f TT r ( l / 2 ) \ 2 / V r ( 5 / 4 ) \ 4 / 3
 2 / 3 

-\T?J [er(3/2)) \r(3/4)J L p 

(48) 

for the 7-irradiated polycrystalline samples of 
NaCIO} . The obtained diffusion coefficient D is of 
the order of 10"13 cm2/sec (Table 1), which is close 
to the case of Zeeman energy spin diffusion for in-
organic solids [6, 16]. Taking into account that the 
direct relaxation regime should be valid until the time 
[9] t ~ Bl'2D~2!2, for t ~ 120 ms we can esti-
mate the diffusion barrier radius b ~ 10~7 cm, which 
coincides with the result obtained for I = 3 /2 [7]. 

In summary, we obtained a strong experimental 
evidence that a spin diffusion process takes place in 
solids containing paramagnetic impurities in the case 
of pure nuclear quadrupole resonance. In NaClO^ 
powder, high doses of 7-irradiation produce enough 
paramagnetic impurities to create an inhomogeneous 
distribution of local inverse spin temperatures, which 
allowed to distinguish clearly between the direct 
relaxation and diffusion-limited relaxation regimes. 
Measurements of relaxation times in a rotating frame 
allow to determine the spin diffusion coefficient, 
which was found to be of the same order as for NMR 
in inorganic solids. 
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