
On Diffusion in Some Biological and Economic Systems 

E. Ahmeda'b and S. Z. Hassanb 

a Mathematics Department, Faculty of Science, Al-Ain, P.O.Box 17551, UAE 
b Mathematics Department, Faculty of Science, Mansoura 35516, Egypt 

Reprint requests to E. A.; E-mail: magd45@yahoo.com 

Z. Naturforsch. 55 a, 669-672 (2000); received April 17, 2000 
It is argued that diffusion in biological and economical systems is better modelled by Cattaneo's 

equation where memory effects are included. Reaction diffusion equations using Cattaneo's system 
are derived for prisoner's dilemma (PD) and hawk-dove (HD) games. Nonlinear wave solutions 
are derived for them. As expected the asymptotic solution for the PD case is insufficient. Hence a 
cellular automata motivated by Cattaneo's system is used to show the existence of cooperation in 
the case of local game. 
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1. Cattaneo's Diffusion 

The standard diffusion equation depends on the 
continuity equation and Fick's law 

j(x,t) = -Ddc(x,t)/dx, (1) 

where j is the diffusing object (e. g. technology, con-
cept, etc...), c is the distribution function of this object 
and D is the diffusion constant. The resulting standard 
diffusion equation is 

3c(x, t)/dt = Dd2c(x, t)/dx2. (2) 

A basic weakness of this equation is that the flux j 
reacts simultaneously to the gradient of c and conse-
quently an unbounded propagation speed is assumed. 
This manifests itself in many solutions to (2) e.g. 
c(x,t) = l/V47rB<exp(-x2/4£)<), c(rr,0) = 8(x), 
i.e. c(x,t) > OVx, V< > 0. This is unrealistic spe-
cially in biological and economical systems where it 
is known that propagation speeds are typically small. 
To rectify this weakness Cattaneo [1] replaced Fick's 
law (1) by 

j + rdj/dt = Ddc/dx. (3) 

The resulting Cattaneo's diffusion equation is 

rd2c/dt2 + dc/dt = Dd2c/dx2, (4) 

where r is a time constant which measures the 
memory effect as will be shown. The corresponding 
Cattaneo's reaction diffusion is [2] 

rd2c/dt2 + (\-rdf/dc)dc/dt = DV2c + f(c). (5) 

The time constant r can be related to the memory 
effect of the flux j as a function of the distribution c 
as follows [3]: Assume 

j(x,t) =- [ K(t-t')dc(x,t')/dxdt', (6) 
Jo 

hence j + rdj/dt = -TK(0)c(x,t) - f0(rdK(t -
t')/dt + K(t - t'))dc/dx dt'. This equation is equiva-
lent to Cattaneo's (3) if Kit) = D/T e x p ( - t / r ) . 

This further supports that Cattaneo's diffusion is 
more suitable for economic and biological systems 
than the usual one since, e. g., it is known that we take 
our decisions according to our previous experiences 
so memory effects are quite relevant. 

2. Cattaneo's Reaction-Diffusion for 
Hawk-Dove Game 

Hawk-dove (HD) game is an interesting one 
both mathematically and biologically [4, 5]. It 
has two strategies H, D and the payoff matrix is 
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. This means that (for two 
H D 

H 1 /2(v — c) v 
D 0 v/2 

similar players) every player can play hawk (H) or 
dove (D). if both play hawk then each of them gets a 
reward (v — c)/2. If one plays hawk and the other plays 
doth then the first gets v while the other gets zero. If 
both play dove then each gets v/2 For 0 < c < v 
the solution is to adopt H. But if 0 < v < c the 
max-min solution of von-Newman et al is to adopt D. 
However It has been shown [5] that this solution is 
unstable since a mutant adopting H in a population 
of doves will win so much that it will encourage oth-
ers to mutate. This will continue till the number of 
hawks is large enough for fights between them be-
coming frequent. Hence they start losing (payoff = 
1/2(v - c) < 0). Then H is no longer adopted. At 
steady state the fraction p of hawks is obtained by 
equating the payoffs of both strategies and one gets 
p = v/c. 

Considering the spatial effects, Cattaneo's re-
action-diffusion equation (5) for the HD game is 

rd p/dt2 + (1 - rdf/dp)dp/dt = DV2p + f(p), 

f(p) = -p( 1 - p)(pc - v)/2. 
(7) 

In general, for 2x2 symmetric games with payoff 
matrix [atj] f(p) is given by 

f(p)=p( 1 -p)[(al2 - a22) 

+ p{a\\ + a22 - ai2 - )]• 

We look for a wave solution of the form p = p(Q, £ = 
x - cot. The function f(p) satisfies /(0) = /(1) = 
f(v/c) = 0, / '(0) > 0, / ' (1) > 0, f'(v/c) < 0, 
where f = d / / d ( . There are two expected waves 
in this system. The first begins at p = 0 and ends at 
p = v/c while the second begins at p = 1 and ends at 
p = v/c. Equation (7) now becomes 

TC2P" - co[l - rdf/dp]p' = Dp + f(p). (8) 

Using the standard analysis of nonlinear waves [2] 
one gets: 
Proposition 1. a) The necessary conditions for the 
existence of a wave solution for (8) starting at p = 0 
and ending at p = v/c are 

TV < 2, and Co > yJlvD/[(1 - TV)2 + 2TV]. (9) 

b) The necessary conditions for the existence of a 
wave solution for (8) starting at p = 1 and ending at 
p = v/c are 

r(c - v) < 2, and 

co 

(10) 

> yj2(c - v)D/[{\ - r(c - ü)}2 + 2r(c - v)]. 

An interesting choice is Co = \JD /T which reduces 
(8) to first order and the solution is given implicitly by 

pa{\-p)ß{p-v/c)-i =AexV(-yJr/DO, O D 

a - 2/v — r, ß = 2/(c — v) — r, 

7 = 2/[v{\ — v/c)] + r, 

and A is a constant to be determined by the initial 
conditions. 

It is clear that this solution does not exist for 
the standard reaction diffusion since r = 0 in this 
case. Also it is clear that the nonlinear wave solu-
tions (9), (10), (11) give the correct asymptotic solu-
tion p = v/c. 

3. Cattaneo's Reaction-Diffusion for Prisoner's 
Dilemma Game 

Prisoner's dilemma (PD) is a 2 x 2 symmetric game 
in which two possible strategies cooperate (C) or de-

I" C D ' 
feet (D). The payoff matrix is C R S , where 

D T U 
T > R > U > S a n d 2 # > T + S. Define7 = U-S 
and a = R + U — S — T. Then 7 > 0 while a can be 
positive, negative or zero. Then f(p) for PD is 

fip) = -p{ 1 -p){7 - ap). (12) 

We look for nonlinear wave solutions, hence it is 
assumed that p = p(Q, ( = x - cot. Choosing 
CO = \/D/T one gets the implicit solution 

p < T + I / 7 > ( 1 _ p ) [ T + l / < a - 7 > ] \ p - 1 / a [r+a/{7(a—r)}] (13) 

= AexpiC^r/D), 

where A is a constant to be determined from ini-
tial conditions. A wave starting at p ~1 (almost all 
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cooperate) as t —• — oo(£ —• oo) and ending at 
p = 0 as t —• oo is represented by (13) provided that 
r < 1 / (7 - a) . Notice that if a > 0 then 7 / a > 1 
hence p < 7 / a . 

For the case a = 0 the choice Co = y/D/r gives 

p ( T + l / 7 ) ( 1 _ p ) ( T - l / 7 ) = A e x p 

Again this solution represents a wave starting from 
p and ending at p = 0 provided that r < 1 / 7 . 

For the standard reaction diffusion case (r = 
0, 7 > 0 > a ) an exact solution can be obtained 
in the form (here we set D = 1 for simplicity) 

p(x,t) = l / { l + e x p [ - x y / \ a \ / 2 + f ( 7 - a / 2 ) ] } . (15) 

As 2 increases, p —0. 
All the previous solutions agreed on the asymptotic 

solution p = 0 i.e. all defect which is unrealistic. It has 
been shown [6] that in local PD games cooperation 
exists, hence in the next section we will use a cellular 
automata (CA) motivated by Cattaneo's idea [7] to 
model local PD games. 

4. Cattaneo CA 

CA [8] is a quite useful tool in studying dy-
namic and/or nonequilibrium [9], and/or spatially in-
homogeneous [10, 11] systems. In this sense it com-
plements differential equations. A standard CA in 
nonequilibrium statistical mechanics is the Domany-
Kinzel (DK) model [12] which is a probabilistic CA 
model with the following rules: Consider a 1 - d ring 
with N sites. Let Xi(f) G {0,1} be the state at site i at 
time t and let sum = xi(t)+xl+\(t). Then the updating 
rules are 

1) If sum = 0 then xt(t + 1) = 0. 
2) If sum = 1 then xl(t + 1) = 1, with probability p\. 
3) If sum = 2 then xx(t + 1) = 1, with probability p2. 

Recently Bagnoli et al. [13] have proposed another 
CA with the following rules: Let sum = Xi(t)+Xi+1 (t)+ 
Xi-i(t). Then 
1) If sum = 0 then x,{t + 1) = 0. 
2) If sum = 1 then xl(t + 1) = 1, with probability p\. 
3) If sum = 2 then xx(t + 1) = 1, with probability p2. 

4) If sum = 3 then xr(t + 1) = 1. 
Both these models correspond to the stochastic re-

action-diffusion equation 

dc/dt = DV2C + f(C) + y/CE, (16) 

where c is the concentration of live (xi(t) = 1) sites, 
e is a zero-mean Gaussian random variable with unit 
variance. As we argued before constructing a CA cor-
responding to Cattaneo's system is an important prob-
lem. Discretizing (7) the following CA (we call it Cat-
taneo CA) is proposed: Define sumi = xl(t) + xl+i(t), 
sum2 = xl(t + 1) + xi+i(t), u G [0,1], 

sum = int[a; * sumi + (1 - UJ) * sum2 -1- .5], (17) 

where int[x] is the integer part of x. Then 
1) If sum = 0 then xx(t + 2) = 0. 
2) If sum = 1 then xt(t + 2) = 1 with probability p\. 
3) If sum = 2 then xt(t + 2) = 1 with probability P2. 

The corresponding mean field dynamical system is 

x(t+\) = y(t), (18) 

y(t+ 1) = uj{pdy(\ - aO + ar(l - y)]+Piyx) 

+ (1 - uj)[2pix(\ - x) + p2x2] 

The steady states are x = 0,(2p\ — \)/(2p\ — p2). 
The second solution exists only if p 1 > 0.5. Stability 
analysis shows that c = 0 is stable if p\ < 0.5 while 
the nonzero solution is stable if pi > .5 therefore the 
transition between the two phases is expected to be of 
second order. 

Now we explain the CA in terms of PD game. 
Identify xz = 1 (0) with a cooperator (defector), re-
spectively. It is resonable to assume that a player will 
cooperate with probability p\ if one of his neighbors 
cooperates. The case when both neighbors cooperate 
is interesting because if the player i is "nice" he will 
cooperate as well i. e. p2 is large. If he is "exploiting" 
then P2 is very small. In our simulations we counted 
the denisty of cooperators after a long time of play and 
we found that for the case of "nice" players (p2 ~ 1) 
cooperation exists for p\ > 0.5 while for "exploiters" 
cooperation persists if pi > 0.8 for different values of 
UJ. In our numerical simulations N = 500, T = 10000. 
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