On Diffusion in Some Biological and Economic Systems
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It is argued that diffusion in biological and economical systems is better modelled by Cattaneo’s
equation where memory effects are included. Reaction diffusion equations using Cattaneo’s system
are derived for prisoner’s dilemma (PD) and hawk-dove (HD) games. Nonlinear wave solutions
are derived for them. As expected the asymptotic solution for the PD case is insufficient. Hence a
cellular automata motivated by Cattaneo’s system is used to show the existence of cooperation in

the case of local game.
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1. Cattaneo’s Diffusion

The standard diffusion equation depends on the
continuity equation and Fick’s law

j(.’B,t)=—DaC(I,t)/aI, (1)

where j is the diffusing object (e. g. technology, con-
cept, etc...), c is the distribution function of this object
and D is the diffusion constant. The resulting standard
diffusion equation is

dc(z,1)/dt = Dd c(z, t)/0x?. )

A basic weakness of this equation is that the flux j
reacts simultaneously to the gradient of ¢ and conse-
quently an unbounded propagation speed is assumed.
This manifests itself in many solutions to (2) e.g.
c(z,t) = 1//4rDtexp(—z*/4Dt), c(z,0) = §(z),
i.e. ¢(x,t) > 0Vz, Vt > 0. This is unrealistic spe-
cially in biological and economical systems where it
is known that propagation speeds are typically small.
To rectify this weakness Cattaneo [1] replaced Fick’s
law (1) by

Jj+70dj/0t = Doc/dz. (3)
The resulting Cattaneo’s diffusion equation is

70%c/dt? +c/dt = Dd*c/oa?, 4)

where 7 is a time constant which measures the
memory effect as will be shown. The corresponding
Cattaneo’s reaction diffusion is [2]

9%/t +(1 — 7df /dc)dc/dt = DV2c+ f(c). (5)

The time constant 7 can be related to the memory
effect of the flux j as a function of the distribution ¢
as follows [3]: Assume

t
j(z,t) = —/ K(t —t')dc(x,t')/oxdt’, (6)
0

hence j + 795/t = —TK(O)c(z,t) — [, (TOK(t —
t')/dt + K(t — t'))dc/dx dt'. This equation is equiva-
lent to Cattaneo’s (3) if K(t) = D/7exp(—t/T).

This further supports that Cattaneo’s diffusion is
more suitable for economic and biological systems
than the usual one since, e. g., it is known that we take
our decisions according to our previous experiences
so memory effects are quite relevant.

2. Cattaneo’s Reaction-Diffusion for
Hawk-Dove Game

Hawk-dove (HD) game is an interesting one
both mathematically and biologically [4, 5]. It
has two strategies H, D and the payoff matrix is
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H 1/2(v—c¢) v |.Thismeans that (for two
D 0 v/2

similar players) every player can play hawk (H) or
dove (D). if both play hawk then each of them gets a
reward (v—c)/2. If one plays hawk and the other plays
doth then the first gets v while the other gets zero. If
both play dove then each gets v/2 For 0 < ¢ < v
the solution is to adopt H. But if 0 < v < c the
max-min solution of von-Newman et al is to adopt D.
However It has been shown [5] that this solution is
unstable since a mutant adopting H in a population
of doves will win so much that it will encourage oth-
ers to mutate. This will continue till the number of
hawks is large enough for fights between them be-
coming frequent. Hence they start losing (payoff =
1/2(v — ¢) < 0). Then H is no longer adopted. At
steady state the fraction p of hawks is obtained by
equating the payoffs of both strategies and one gets
p=v/ec.

Considering the spatial effects, Cattaneo’s re-
action-diffusion equation (5) for the HD game is

7'82‘1)/8t2 + (1 —7df/dp)op/at = DV*p+ f(p),(7)
f®) = —p(1 = p)(pc — v)/2.

In general, for 2x2 symmetric games with payoff
matrix [a;;] f(p) is given by

f(@) =p(1 - plaz — ax)

+ paj +ax — app — az)l.

We look for a wave solution of the form p = p((), { =
x — cot. The function f(p) satisfies f(0) = f(1) =
fw/e) =0, f'(0) > 0, f'(1) > 0, f'(v/e) < 0,
where ' = df/d(. There are two expected waves
in this system. The first begins at p = 0 and ends at
p = v/c while the second begins at p = 1 and ends at
p = v/c. Equation (7) now becomes

Tcop” — coll — 7df /dplp’ = Dp+ f(p). (8)

Using the standard analysis of nonlinear waves [2]
one gets:

Proposition 1. a) The necessary conditions for the
existence of a wave solution for (8) starting at p = 0
and ending at p = v/c are

v <2, andeo > /20D /[(1 - Tv)? + 270l (9)
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b) The necessary conditions for the existence of a
wave solution for (8) starting at p = 1 and ending at
p=v/care

7(c —v) < 2, and (10)

co > \/2(c —v)D/[{1 — 7(c — v)}* + 27(c — V)].

Aninteresting choice is ¢g = /D /7 which reduces
(8) to first order and the solution is given implicitly by

p*(1 —p)’(p —v/c)™" = Aexp(—\/7/DQ), (11)
a=2/v—1,3=2/(c—v)—T,
v=2/[v(l —v/c)]+T,

and A is a constant to be determined by the initial
conditions.

It is clear that this solution does not exist for
the standard reaction diffusion since 7 = O in this
case. Also it is clear that the nonlinear wave solu-
tions (9), (10), (11) give the correct asymptotic solu-
tion p=v/ec.

3. Cattaneo’s Reaction-Diffusion for Prisoner’s
Dilemma Game

Prisoner’s dilemma (PD) is a 2 X2 symmetric game
in which two possible strategies cooperate (C) or de-

C D
fect (D). The payoff matrixis | C R S |,where
D T U

T>R>U>Sand2R > T+S.Definey=U-S5
anda=R+U — S —T.Then v > 0 while a can be
positive, negative or zero. Then f(p) for PD is

f® =—-p(1 = p)y — ap). (12)

We look for nonlinear wave solutions, hence it is
assumed that p = p((), ( = & — cot. Choosing
co = \/D/7 one gets the implicit solution

p(r+1/7) (l_p)[f+1/(a—7)] lp — ,y/a|[7'+0/{‘7(0—7)}](13)

= Aexp((y/7/D),

where A is a constant to be determined from ini-
tial conditions. A wave starting at p ~1 (almost all
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cooperate) as t — —oo({ — oo) and ending at
p=0ast — oo is represented by (13) provided that
7 < 1/(y — «). Notice that if & > 0 then y/a > 1
hence p < v/a.

For the case a = 0 the choice ¢g = \/D/T gives

p(‘r+l/7) (1 _p)("'—l/’Y) —_ Aexp (C T/D)(14)

Again this solution represents a wave starting from
p ~1 and ending at p = 0 provided that 7 < 1/~.

For the standard reaction diffusion case (7 =
0,y > 0 > a) an exact solution can be obtained
in the form (here we set D =1 for simplicity)

p(z,t) = 1/{1+exp[—z1/|| /2+t(y—a/2)]}. (15)

As t increases, p — 0.

All the previous solutions agreed on the asymptotic
solution p = 01i. e. all defect which is unrealistic. It has
been shown [6] that in local PD games cooperation
exists, hence in the next section we will use a cellular
automata (CA) motivated by Cattaneo’s idea [7] to
model local PD games.

4. Cattaneo CA

CA [8] is a quite useful tool in studying dy-
namic and/or nonequilibrium [9], and/or spatially in-
homogeneous [10, 11] systems. In this sense it com-
plements differential equations. A standard CA in
nonequilibrium statistical mechanics is the Domany-
Kinzel (DK) model [12] which is a probabilistic CA
model with the following rules: Consider a 1 — d ring
with N sites. Let z;(t) € {0, 1} be the state at site ¢ at
time ¢ and let sum = z;(¢) + ;41 (). Then the updating
rules are

1) If sum = 0 then z;(t + 1) = 0.
2) If sum = 1 then z;(t + 1) = 1, with probability p;.
3) If sum = 2 then z;(t + 1) = 1, with probability p;.

Recently Bagnoli et al. [13] have proposed another
CA with the following rules: Let sum = z;(t)+z ;41 (t)+
x;_1(t). Then

1) If sum = 0 then z;(t + 1) = 0.
2) If sum = 1 then z;(t + 1) = 1, with probability p;.
3) If sum = 2 then z;(t + 1) = 1, with probability p,.
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4 If sum=3thenz,(t+1)=1.

Both these models correspond to the stochastic re-
action-diffusion equation

dc/ot = DV?c + f(c) +/ce, (16)

where c is the concentration of live (z;(¢) = 1) sites,
€ is a zero-mean Gaussian random variable with unit
variance. As we argued before constructing a CA cor-
responding to Cattaneo’s system is an important prob-
lem. Discretizing (7) the following CA (we call it Cat-
taneo CA) is proposed: Define sum1 = z;(t) + 41 (%),
sum2 =z;(t+ 1) + z;41(t), w € [0, 1],

sum = int[w * sum1 + (1 — w) * sum2 +.5], (17)

where int[x] is the integer part of z. Then

1) If sum = 0 then z;(¢ + 2) = 0.

2) If sum = 1 then z;(t + 2) = 1 with probability p;.
3) If sum = 2 then z;(¢ + 2) = 1 with probability p;.

The corresponding mean field dynamical system is

z(t+1) =y(), (18)

yt+1) =w{ply(l — z)+z(1 — y)] + p2yz}
+ (1 - w)2p1z(l — z) + prz’]

The steady states are z = 0,2p; — 1)/(2p1 — p2).
The second solution exists only if p; > 0.5. Stability
analysis shows that ¢ = 0 is stable if p; < 0.5 while
the nonzero solution is stable if p; > .5 therefore the
transition between the two phases is expected to be of
second order.

Now we explain the CA in terms of PD game.
Identify x; = 1 (0) with a cooperator (defector), re-
spectively. It is resonable to assume that a player will
cooperate with probability p; if one of his neighbors
cooperates. The case when both neighbors cooperate
is interesting because if the player i is “nice” he will
cooperate as well i. e. p; is large. If he is “exploiting”
then p; is very small. In our simulations we counted
the denisty of cooperators after a long time of play and
we found that for the case of “nice” players (p; ~ 1)
cooperation exists for p; > 0.5 while for “exploiters”
cooperation persists if p; > 0.8 for different values of
w. In our numerical simulations N = 500, 7' = 10000.
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