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We study Hlavaty’s generalization of the Burgers equation
containing certain coefficient functions. We obtain a new auto-
Bicklund transformation and a family of exact analytical solu-
tions along with the constraints on those coefficients.
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In this paper we consider Hlavaty’s variable-coeffi-
cient Painlevé-admissible extension of the Burgers equa-
tion [1, 2]
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where L (x, 1) and S (x, 1) are a couple of analytical func-
tions. Recently, the prolongation structure with the relat-
ed issues for (1) has been studied by Karasu [3].

We will investigate the interesting case of L# 0. Com-
puterized symbolic computation will be used. Firstly we
plan to use to Painlevé expansion [4, 5]
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where J is a natural number and ¢ =0 defines the singu-
lar manifold. Balancing powers of ¢ at the lowest orders
requires that /= 1. Next we truncate the expansion at the
constant level terms, i.e.
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aiming to obtain acertain Backlund transformation and ana-
lytical solutions of (1), disregarding the integrability issue.
Recent work in this direction is seen, e.g. in Ref. [6, 7].

When substituting (3) into (1), we make the coeffi-
cients of like powers of ¢ to vanish, so as to get
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The set of equations (3—5) and (7) constitutes an auto-
Backlund transformation, since the set is solvable. Let us
have some explicitly-solved sample solutions in the fol-
lowing analysis.
Into (5) we substitute a few trial expressions,
o, 1) =v(x) *+B(X) 1+ A(x), (8)
u (x, 1) =8(x) *+y @) 1+ 0(x), )
L(x, 1) =€) >+ 1 (x) 1+ 0(x)

(assumed for a variable coefficient), (10)

where 0 (x), v (x), B (x), 6 (x), ¥ (x), € (x), U (x), @ (x),
and A (x) are all differentiable functions. Then, equating
to zero the coefficients of like powers of # in (5) yields

% 8§ (x)=0, (11)

the choice of € (x)=0 with the understanding that
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t*: v(x)=constant=v, (13)
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— for simplicity we choose v (x)=0 and

B (x) =constant= 3#0, (14)
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where a is a constant. This way, (5) has been satisfied,
so that those trail expressions are allowed. Correspond-
ingly, (7) implies that

S{x =3, 5, ()", (18)
n

where §,, (x)’s are also differentiable. We substitute (18)

into (7) and again equate to zero the coefficients of like

powers of ¢, yielding (21) at the end of this paper.
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Lastly, having considered (3) and (4) and put everything together, we obtain
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with the constraints on the coefficient functions as
L(x,t)=(a+1)u(x), (20)
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where the differentiable functions u (x) and A (x),and the ~ Acknowledgment

constants o and f3 all remain arbitrary, except that
A (x)#0, u(x)#0 and B=0.

In conclusion, for (1) we have obtained the new fami-
ly of exact analytical solutions (19-21), as well as a new
auto-Bicklund transformation as stated above.
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