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Recent theoretical and experimental studies on the third-order optical nonlinearities of higher
fullerenes including Cso, C76, Csa, Css, Coo, Cos and Cos are briefly reviewed. The extended Su-
Schrieffer-Heeger model is introduced and applied to study the third-order optical nonlinearity
of chiral carbon nanotubes (CCN), where the average contribution I" of one carbon atom to
the third-order optical nonlinearity of each CCN is calculated and compared with that of a well
characterized polyenic polymer. It is found that (i) the smaller the diameter of a CCN, the larger
the average contribution I'; (ii) the metallic CCN favors larger third-order optical nonlinearity than
the semiconducting one; (iii) CCN can compete with the conducting polymer achieving a large
third-order optical susceptibility. Also the doping effect on the second-order hyperpolarizability of
a tubular fullerene is investigated. It is found that the doping effect increases greatly the magnitude
of the second-order hyperpolarizability of tubular fullerene.
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I. Introduction

It is known that molecules with large third-
order optical nonlinearities, characterized by large
second-order hyperpolarizabilities v, are required for
photonic applications including all-optical switch-
ing, data processing, and eye and sensor protection
[1 - 11]. However, the v magnitudes of most third-
order optical materials are usually smaller than those
required for photonic devices. Hence, recent research
effort in physics, chemistry and engineering has been
devoted to finding potential third-order materials with
large nonlinear optical (NLO) response.

It has been shown, both theoretically and experi-
mentally [1 - 9], that conjugated 7-electron organic
systems and quantum dots are potentially important
in photonics owing to their large third-order optical
nonlinearities. Recently, the advent of the technol-
ogy for the production of bulk quantities of fullerenes
C,, [12 - 14] and carbon nanotubes [12, 15 - 17] has
provided us another class of completely conjugated
materials, which have quantum dot nature and pos-
sess a large number of delocalized 7-electrons but

are uniquely composed of carbon atoms. A further
desirable characteristic of these carbon materials in
comparison with organic or polymer NLO material is
that there is no C-H or O-H bond, which would oth-
erwise induce absorption and limit their use in non-
linear optics. Naturally, these feature make fullerenes
and carbon nanotubes appealing NLO materials for
photonic applications and stimulates the theoretical
and experimental researchers in physics, chemistry
and engineering to study the third-order optical non-
linearities of fullerenes and carbon nanotubes.

The extensive studies were triggered by the first
experimental measurement on the third-order optical
nonlinearity of Cgp by Blau et al. [18] in 1991, al-
though it was later found out that an error by more
than three orders of magnitude for the final hyperpo-
larizability was incorporated in their measurements
[19, 20]. This error seems to be quite indicative
of the later development with numerous measure-
ments using different experimental techniques obtain-
ing data for the third-order optical susceptibilities x>
of Cego [21 - 41]. In Table I we collect some of the
reported third-order optical susceptibilities x$)__ of

TTTT

0932-0784 /99 / 10000645 $ 06.00 © Verlag der Zeitschrift fiir Naturforschung, Tiibingen - www.znaturforsch.com



646

Table I. Third-order optical susceptibilities & . (in units
of 10~ "esu) of Cg measured by different experimental
techniques, where A (um) is the wavelength.

A XS;u Technique Year Ref.
0.532 1 DFWM 1998 [59]
0.85 150 THG 1992 [22]
1.06 70 DFWM 1992 [24]
600000 DFWM 1991 [18]

33000 DFWM 1992 [23]

140 THG 1992 [27]

2000 THG 1991 [21]

820 THG 1992 [22]

720 THG 1992 [29]

1.32 300 THG 1992 [27]
610 THG 1992 [22]

1.50 300 THG 1992 [29]
1.91 160 EFISHG 1992 [26]
90 THG 1992 [27]

320 THG 1992 [22]

2.00 370 THG 1992 [29]
2.37 40 THG 1992 [27]

Cqo at a few selected wavelengths \ measured by de-
generate four-wave mixing (DFWM), third-harmonic
generation (THG), or electric-field-induced second-
harmonic generation (EFISHG). It is important to rec-
ognize that because the third-order optical responses
are very sensitive to many experimental factors such
as the measurement techniques adopted, the incident
laser power, and even the sample preparation method,
it is rather difficult for us to make a direct comparison
of experimental results on nonlinear optical proper-
ties of Cgg obtained from different groups by different
experimental techniques. In general, there is reason-
able agreement between the experimental values of
x$),. of Cgo measured by THG and EFISHG, al-
though some variation in the magnitudes of ) .
is apparent (other reviews on the nonlinear optical
properties of Cg are also available in the recent liter-
atures, for example, by Nalwa [7], Rustagi et al. [10],
and Belousov et al. [11]). In spite of the discrepancy
of several orders in the third-order optical susceptibil-
ities existing in the experimental data, it has recently
been shown that Cgy possesses a small value of the
second-order hyperpolarizability [42, 43]. An upper
bound of 3.7 x 10~ esu of the second-order hyperpo-
larizability for C¢p was measured by nondegenerate
four-wave mixing by Geng and Wright [42], and a
9.0 x 10~ %esu upper limit was determined by the
femtosecond optical Kerr effect (OKE) by Gong and
his coworkers [43].
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However, higher fullerenes, compared with Cg,
have attracted less attention on their third-order op-
tical nonlinearities. Theoretical calculations [33, 34,
36, 44 - 57] and a few experimental results [28, 29
- 31, 35, 37, 40, 58, 59] have shown that higher
fullerenes possess a larger third-order optical non-
linearity than Cg. In the following section, we briefly
review recent theoretical and experimental studies
on the third-order optical nonlinearities of higher
fullerenes. In Sect. III, we introduce the extended Su-
Schrieffer-Heeger (SSH) model and apply it to study
the third-order optical nonlinearity of the chiral car-
bon nanotube (CCN). In Sect. IV, by including the
effect of dopant ions into the extended SSH model,
we turn to study the substitute doping effect on the
second-order hyperpolarizability of armchair tubular
fullerenes. Finally, Sect. V presents our conclusion.

II. Third-order Optical Nonlinearity of Higher
Fullerenes

A) Theoretical Calculations

Based on the geometries optimized by AMI
semiempirical technique [60], Shuai and Bredas [49]
exploited the valence-effective-Hamiltonian (VEH)
method to study the electronic structures of Cgp and
C0. The valence-electronic density of states calcu-
lated is found to be in excellent agreement with
the high-resolution energy-distribution curves ob-
tained from synchrotron-photoemission experiments
in terms of both positions and relative intensities of
the peaks [49]. The maximum difference in peak po-
sition between theory and experiment is 0.4 eV, which
shows that the VEH method provides a very reason-
able description of both Cg and Cyo. Further they
applied the VEH-Sum-Over-State (SOS) approach to
study the nonlinear optical response of Ceo and Crp.
Their numerical results showed that the off-resonance
third-order optical susceptibility Y is on the order
of 10~'2 esu [49]. Their calculations are fully con-
sistent with the EFISHG and THG measurements by
Wang and Cheng [26] and the DFWM measurements
by Kafafi et al. [20, 24], but about three to four orders
of magnitude lower than the data reported by Blau et
al. [18] and Yang et al. [30].

Recently, available theoretical studies predicted
that the second-order hyperpolarizability of a higher
fullerene scales with the mass of the all-carbon
molecule [44, 47, 50 - 56]. Knize [44] applied the
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free electron gas model to study the second-order hy-
perpolarizability of fullerene molecules. The magni-
tude of the calculated polarizabilities of Cgp and Crg
molecules were found to be in reasonable agreement
with some of the experiments, and the second-order
hyperpolarizability of the larger fullerene molecules
is predicted to increase as the cube of the number
of carbon atoms [44]. With the SOS-CNDO/S CI
approach, a power dependence of the second-order
hyperpolarizabilities of fullerenes versus the number
of carbon atoms was observed by Fanti et al. [50],
where the observed exponent is four. Then, using
a sum-over-molecular-orbitals (SOMO) approach at
the Hartree-Fock level with a 6 — 31G* basis set,
Fanti et al. [51] further calculated the static second-
order hyperpolarizabilities of the eight carbon cages
now available in macroscopic quantities: Cgp, C79, one
isomer of Cy¢, three isomers (1,2,3) of C7g, and two
isomers (22 and 23) of Cg4. Concentrating on either
the molecular mass (the number IV of carbon atoms)
or the number of partial double bonds (3 N — 60), they
found two different scaling laws [51]:

N 3.5

A = (@) o (1
QN-—60 1.5

,y(bond) = ( 2 30 > 7607 (2)

where 7% is the static v value of Cg. Later, based
on the extended Su-Schrieffer-Heeger model, Xie
and his coworkers predicted that the static y values
of armchair (Cgp4ix10) and zigzag (Ceosix18) tubular
fullerenes of small size obey the exponent laws [52]

ix 10\>P

v = <1+ 60> 5%, 3)
ix 18y

y = <1+ 60) +%, @)

repsectively, and larger third-order optical nonlinear-
ities of armchair and zigzag tubular fullerenes can be
observed in the infrared region [45, 46]. Also Hari-
gaya [53 - 56] theoretically investigated the nonlinear
optical properties of Cgp, extracted higher fullerenes
C70, C76, C7s, and Cg4 by using the exciton formalism
and the SOS method. It is found that the off-resonant
third-order susceptibilities of higher fullerenes are a
few times larger than those of Cgy [53 - 56], where
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the magnitude of the optical nonlinearity increases as
the optical gap decreases for higher fullerenes, and
the optical nonlinearity is nearly proportional to the
fourth power of the carbon number when the on-site
Coulomb repulsion is 2¢ or 4¢ (¢ being the nearest-
neighbour hopping integral). The theoretical calcula-
tions of both Xie [45, 46, 52] and Harigaya [53 - 56]
indicate the important roles of Coulomb interactions
in higher fullerenes and agree very well with quantum
chemical calculations for higher fullerenes. Very re-
cently, Luo [47] re-examine the reported data for the
second-order hyperpolarizabilities of fullerenes cal-
culated by Fanti et al. [S1] and Jonsson et al. [36].
It is found that, if Cg is excluded, a perfect power
law dependence for the second-order hyperpolariz-
ability versus the number N of carbon atoms is ob-
served [47]:

1 1N2.4
7= 100000 )
for the data of Fanti et al. [51] and
4N0.75
= 6
=135 (6)

for the data of Jonsson et al. [36]. Luo [47] also in-
dicated that Cg has the most exceptional electron
localization among fullerenes.

It is well-known that molecular symmetry has a
great effect on the nonlinear optical properties of
molecules. In order to identify this issue, of course,
C7s would be very interesting and a better candi-
date for examing this effect than others since the
C7s molecule has five topologically distinct struc-
tures: two with C,, symmetry, two with D3, sym-
metry, and one with D3 symmetry, each having 29
six-membered rings and 12 five-membered rings. For
convenience, the five isomers of C;3 are denoted by
D3n(1), D3n(2), D3, C2y(2), Cay(1). Very recently, us-
ing the SOS method, Wan et al. [61] calculated the
third-order optical nonlinearities for the five C7g iso-
mers. Although the Coulomb interactions among -
electrons have not been taken into account, their nu-
merical results really indicate that both the symmetry
and the arrangement of atoms have great influences
on the third-order optical nonlinearities of Cyg iso-
mers. It is found that the static -y values (in units of
10732 esu) of Day(1), D3p(2), D3, Ca(1), and Cpy(2)
are 0.0480, 0.2096, 0.0681, 0.2034 and 0.0507, re-
spectively [61]. As we know, the D3y(1) structure is
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similar to the D3 structure except that the former has
one more symmetry plane than the latter, which makes
its energy levels move to each other and the degen-
eracy of its energy levels be higher than that of D
isomer. But the THG spectra of the D3,(1) and Ds
isomers are greatly different due to their different
symmetry. In the THG spectrum of the D3 isomer,
there is a big peak located at 3w = 6.08 eV, and the
~ magnitude is 342.49 x 10~32 esu [61]. However, in
the THG spectrum of the Dsp(1) isomer, the highest
peak is at 3w = 6.592 eV and the corresponding * is
17.50 x 1032 esu, which is 20 times smaller than
that of D3 [61]. Furthermore, they have also shown
that the atom arrangement of the C7g isomers has a
great effect on their NLO properties. We know that
the D3(1) and D3, (2) isomers have the same symme-
try, but their arrangements of atoms are different. It is
found that their THG spectra are different, too. In the
THG spectrum of the D3,(1) isomer, the y magnitude
of the highest peak is only 17.50 x 10732 esu [61]. In
the THG spectrum of the D3,(2) isomer, its v mag-
nitudes at the frequency region, 2.944 eV < 3w <
3.584 eV, are greater than 80x 10~32 esu and its largest
~ reaches even 509.01 x 10732 esu which is 30 times
larger than that of the D3y (1) isomer [61]. Due to the
shape effect, the v magnitudes of C,,(2) and Cy(1)
are also greatly different. In the THG spectrum of the
C,y(1) isomer, there are three peaks with v magni-
tudes greater than 50 x 10732 esu, but the largest 7
magnitude in the THG spectrum of the C,,(2) isomer
is only 15.995 x 10~%2 esu [61].

From a geometric point of view, Moore et al.
[48, 57] analyzed the static third-order polarizabili-
ties y of Cgp, Cro, five isomers of C7g and two isomers
of Cg4 in terms of three properties: (i) symmetry; (ii)
aromaticity; (iii) size. The polarizability values were
based on the finite field approximation (FFA), using a
semiempirical Hamiltonian, and applied to the molec-
ular structures obtained from density functional the-
ory calculations. Symmetry was characterized by the
molecular group order. The selection of six-member
rings as aromatic was determined from an analysis
of bond lengths. The maximum interatomic distance
and surface area were the parameters considered with
respect to size. Based on triple linear regression anal-
ysis, it was found that the static linear polarizabil-
ity a and second-order hyperpolarizability vy in these
molecules respond differently to geometrical proper-
ties [48, 57]: a depends almost exclusively on the sur-
face area, while v is affected by a combination of the
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Table II. Static -y value of higher fullerenes calculated by
different theoretical techniques.

Molecule v (10737 esu)  Technique Year  Ref.
Gy 452 FFA 1992 [34]
8623 SOS 1992 [49]

13000 SOS 1994 [33]

8570 SOS 1995 [50]

545 FFA 1996  [48]

6400 SOS 1997 [45]

2945 SOS 1997 [51]

10500 SOS 1997 [61]

754 RPA 1998 [36]

Cre 3681 SOMO 1997  [51]
Cs(D3) 3619 SOMO 1997 [51]
6810 SOS 1997 [61]

C73(Cay(1)) 3699 SOMO 1997 [51]
20340 SOS 1997 [61]

Cq3(Cov(2)) 4407 SOMO 1997 [51]
5070 SOS 1997 [61]

Cq8(D3p(1)) 4800 SOS 1997 [61]
Crs(D3(2)) 20960 SOS 1997 [61]
Cga 18120 SOS 1995 [50]
636 FFA 1996 [48]

Cg4(D») 4269 SOMO 1997 [51]
Cga(D2g) 4606 SOMO 1997 [51]
Cga 824 RPA 1998 [36]
Ce0+9x 10 85000 SOS 1998 [45]
Capeiseik 68600 SOS 1998 [46]

number of aromatic rings, length and group order, in
decreasing importance. In the case of «, valence elec-
tron contributions provide the same information as
all-electron estimates [48, 57]. For the second-order
hyperpolarizability v, the best correlation coefficients
are obtained when all-electron estimates are used and
when the dependent parameter is In(7y) instead of
[48, 57].

Very recently, Jonsson et al. [36] have studied the
third-order optical nonlinearities of Cgp, C79, and Cgy4
on the random phase approximation (RPA) level with
a 6-314++G basis set. The calculated static 7y values
for Cgo, C70, and Cgs are 55.0, 75.4, 82.4 x 10~ esu,
respectively.

In Table II we collect the static second-order hy-
perpolarizabilities of higher fullerenes calculated by
different theoretical techniques. A direct comparison
between the calculated results shows significant dif-
ferences. It seems that all of the SOS approaches give
a second-order hyperpolarizability which is about an
order of magnitude larger than that predicted by the ab
initio calculations. This discrepancy may arise from
the truncation of the expansion in excited states in the
explicit summation of contributions to the second-
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order hyperpolarizability in SOS calculations [36]. In
contrast, the second-order hyperpolarizabilities ob-
tained in the FFA methods[48, 34] are of the same
order of magnitude. The described problems are ab-
sent in the analytical RPA approach [36].

B) Experimental Measurements

Neher et al. [29] studied the second-order hyper-
polarizabilities «y of the buckminsterfullerenes Cyq at
three different wavelengths measured by THG in a
toluene solution, and the third-order optical suscepti-
bilities x)_ . of Cyo at 1.06, 1.50 and 2.00 pm were
determined to be 1.4 x 1072 esu, 5.4 x 10710 esu,
and 9.1 x 10~ '!esu, respectively. Their experimental
results were compared with those of Cegp. Based on
this, they observed strong effects with v exceeding
5 x 10732 esu in the three-photon resonant regime.

Wang and Cheng [26] reported the determination
of the second- and third-order optical nonlineari-
ties of fullerenes and fullerene//N,N-diethylaniline
(DEA) charge-transfer complexes by solution-phase
DC EFISHG measurements with 1.91-pum radiation.
The third-order polarizabilities, 7y;111(—2w, w, w, 0),
of Cgo and C;9 were determined to be (7.5 £+ 2) x
103 esu and (1.3 & 0.3) x 10733 esu, respectively.
They also found that the second-order polarizabilities
of fullerenes are zero due to their centrosymmetric
structures. However, the formation of charge-transfer
complexes with IV, N-diethylaniline breaks the center
of symmetry and induces second-order optical nonlin-
earity. The dipole projection of the second-order po-
larizability, 3,,, of the C¢o/DEA charge-transfer com-
plex was determined to be (6.7 £ 2) x 10~% esu, as-
suming yy111(—2w, w,w, 0) to be approximately the
same in toluene and DEA [26]. With due consider-
ation to molecular size, the optical nonlinearities of
fullerenes are comparable to those of linearly conju-
gated organics. Their experimental results are encour-
aging enough to warrant further study of the nonlinear
optical properties of fullerenes and properly substi-
tuted fullerene derivatives.

Kafafi and coworkers [31, 37] studied the third-
order optical nonlinearities of Cgp and Cyy. Time-
resolved DFWM experiments were conducted on
films of pure Cg and C;p by using a pi-
cosecond tunable dye laser. The fullerenes ex-
hibit a two-photon resonantly enhanced third-order
optical response which is primarily laser-pulse-
limited [37], their dynamics show wavelength and
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fluence dependence[31], and in detail the third-order
optical susceptibilities ) __ (inunits of 10~!! esu) of
Cyo at 1.064, 0.675, and 0.597 um are measured to be
1.2[37],64+£20[31], and 210 £ 10[31], respectively.

Gong and his coworkers [30] studied the nonlinear
third-order optical susceptibility of Cyo in a toluene
solution which was measured for the first time by the
method of DFWM using 10 ns laser pulses at 1.06 pm.
The third-order susceptibility X(131)11 was measured to
be 5.6 x 10~'2 esu for a Cy toluene solution at a con-
centration of 0.476 g/1. The corresponding magnitude
of the second-order hyperpolarizability v;1;; of the
Cq0 molecule is 1.2 x 1073 esu.

Thin film of pure C7( has also been studied by time-
resolved DFWM using femtosecond optical pulses
with a wavelength of 0.633 um [35]. Large optical
nonlinearities of C7o were measured with x§) = =
3 x 1079 esu at 0.633 um.

Sun et al. [40] studied the third-order optical non-
linearity of Cg4 by using the time-resolved optical
Kerr effect (OKE). They got a large instantaneous
nonlinear optical response of Cg4 using 150-fs laser
pulses with a wavelength of 647 nm. Comparing the
nonlinear optical response with that of the CS, refer-
ence, they acquired a large second-order hyperpolar-
izability for Cg4,Cq0 and Cgg with Y1111 of 5.2 x 10—31,
4.7x 1073 and 1.6 x 1073 esu, respectively [40]. In
contrast to the 7;;;; increment of Cyg to Cgp, the small
accretion of the optical Kerr response of Cg4 in com-
parison to Cyo seems to be a puzzle. It is claimed that
the sample purity was not satisfactory [58]. In their
experiment, Cgq was obtained from fullerite soot. The
separation and purification were carried out by means
of liquid phase chromatography combined with a re-
crystallization technique. Their NMR spectra showed
that the main impurities include C7g, Cg;, Cgs and
Cyo, although the purity of Cg4 was greater than 85%.

Recently, Yang and his coworkers[58] have made
DFWM measurements on the third-order optical non-
linearities of the higher purity Cog (> 97% in their
mass spectrum) and Cep. They reported that Cog shows
a large third-order nonlinear optical response at 0.532
pum in comparison to that of Cey. The concentration
of the fullerenes and the incident laser power were
found to be vitally important in the DFWM mea-
surements and were therefore optimized. They mea-
sured the UV-VIS absorption spectra of Cep and Cgy
in CS,. Their spectrum of Cg is identical with that
of Diederich et al. [62], confirming the high purity
of their sample. The spectrum of Cgy exhibits the
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strongest peak around 450 nm in the spectral range
400 - 800 nm. It is apparent from a comparison of the
two spectra that the long wavelength absorption edge
is significantly red-shifted from Ceg to Cgg. This may
be attributed to the narrowing of the HOMO-LUMO
gap due to the increased size of the m-conjugated
system and the reduction in the fullerene symmetry.
Since their excitation wavelength (0.532 pm) is near
the absorption peaks of Cgp and Cgp, the linear ab-
sorption should not be ignored in their DFWM mea-
surements. From the set of X(131)11 values, the second-
order hyperpolarizability of Cgy was determined to be
(1.8 £ 0.6) x 1073 esu through a statistical analy-
sis in which three times the standard deviation (£30)
was taken for the uncertainty [58]. For comparison,
the second-order hyperpolarizability of Cgp was mea-
sured to be (2.2 + 0.6) x 103! esu using the same
procedure. Since there are more highly delocalized
m-conjugated electrons over the spherical-like sur-
face in Cyyp compared to Cgp, the larger v value of
Cy is expected. Surely, the eightfold increase in the
third-order optical polarizability from Cg to Cop is
consistent with the trend in the theoretical predic-
tions [50 - 56]. However, the predicted increase in the
second-order hyperpolarizability v from Cgg to Cgo
is somewhat lower than the measured eightfold in-
crease. This suggests that other factors contributing
to the increased second-order hyperpolarizability may
be important as well.

Furthermore, Yang and his coworkers [59] have
systematically studied the nonlinear optical response
of other higher fullerenes including C76, C7s, Ca4,
Css, Cosq and Cog by performing the DFWM measure-
ment on those fullerene series dissolved in CS,. The
DFWM measurements were carried out using 70 ps
laser pulses at a wavelength of 0.532 um under op-
timized experimental conditions. The second hyper-
polarizabilities ;11 (in units of 107 esu) of Cg,
C7(), C76, C7g, Cg4, C86, C94 and C96 were determined
to be 0.22 £ 0.06, 1.3 £ 0.4, 0.8 £0.3, 1.5+ 0.3,
1.2+0.3,1.3£0.5,1.94+0.6,and 2.1 + 0.6, respec-
tively [59], and the ratios for the second-order hyper-
polarizabilities for C70/C6(), Cg4/06(), and C34/C7()
were found to be 3.63, 5.45 and 0.92, respectively,
where overall they increase smoothly with the carbon
cage size except for C79 and C7g. Their experiments
confirmed the high nonlinear efficiency of Cy and
they found that C7g possesses a larger y than the other
fullerene cages. The number of 7-conjugated elec-
trons, geometrical structure, and resonance enhance-
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Table I11. Third-order optical susceptibilities x< . . (in units

of 10~ esu) of higher fullerenes measured by different
experimental techniques, where A (um) is the wavelength.

(&8 A xg;u Technique Year Ref.
Cro 0.532 43 DFWM 1998 [59]
0.597 21000 DFWM 1992 [31]

0.633 3000 DFWM 1992 [35]

0.647 87000 OKE 1995 [40]

0.675 6400 DFWM 1992 [31]

1.064 120 DFWM 1993 [37]

56 DFWM 1992 [30]

14000 THG 1992 [29]

1.50 5400 THG 1992 [29]

1.91 440 EFISHG 1992 [26]

2.00 910 THG 1992 [29]

Crs 0.532 2.8 DFWM 1998 [59]
Crg 0.532 59 DFWM 1998 [59]
Cg4 0.532 39 DFWM 1998 [59]
0.647 80000 OKE 1995 [40]

Cgs 0.532 49 DFWM 1998 [59]
Cyo 0.532 72 DFWM 1997 [58]
Coq 0.532 6.0 DFWM 1998 [59]
Cyg 0.532 6.7 DFWM 1998 [59]

ment were discussed as possible factors responsible
for the observed third-order optical nonlinearities of
the fullerenes [59].

Table III collects some experimental data obtained
by different measurements on the third-order optical
nonlinearities of higher fullerenes discussed above.

III. Third-Order Optical Nonlinearity of
Chiral Carbon Nanotubes

Bisides the armchair and zigzag tubules[12], a large
number of chiral carbon nanotubes (CCNs) [12] can
be formed with a screw axis along the axis of the
tubule and with a variety of “hemispherical”-like caps.
These carbon nanotubes can be specified mathemat-
ically in terms of the tubule diameter d, and chiral
angle 6, as shown in Fig. 1 where the chiral vector

Cy, = pa; +qa, @)

is shown as well as the basic translation vector T for
CCN. The vector C}, connects two crystallographi-
cally equivalent sites O and A on a two-dimensional
graphene structure. The construction in Fig. 1 shows
the chiral angle 6 of the tubule with respect to the
zigzag direction ( = 0) and two units, a; and a,,
of the hexagonal honeycomb lattice. An ensemble of
possible chiral vectors can be specified by C}, in terms
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Fig. 1. The chiral vector OA or C1, = pa +qa; is defined on
the honeycomb lattice of carbon atoms by the unit vectors
a, and a; and he chiral angle  with respect to the zigzag
axis (# = 0). Also shown is the lattice vector T = OB of
the 1D tubule unit cell.

of pairs of integers (p, ¢) [12, 63 - 65]. Each pair of
integers (p, q) defines a different way of rolling the
graphene sheet to form a carbon nanotube. In detail,
the cylinder connecting the two hemispherical caps
of the armchair, zigzag, or chiral tubule is formed by
superimposing the two ends OA of the vector Ch,.
The cylinder joint shown in Fig. 1 is made by join-
ing the line AB’ to the parallel line OB, where lines
OB and AB’ are perpendicular to the vector C}, at
each end. The CCN thus generated has no distortion
of bond angles other than distortions caused by the
cylindrical curvature of the CCN. Differences in the
chiral angle # and the tubule diameter d, give rise to
differences in the properties of the various carbon nan-
otubes. In the (p, ¢) notation for specifying the chiral
vector CY, the vectors (p,0) denote zigzag tubules,
and the vectors (g, ¢) denote armchair tubules, and all
other vectors (p, q) correspond to CCNs [12, 63 - 65].
In terms of the integers (p, q), the tubule diameter d,
is given by [12]

\/3(p2+pq+q2)a

™

d( = Ch/ﬂ' = C-C) (8)

where ac_c is the nearest-neighbor C-C distance

(=1421 A in graphite [12]), C,, is the length of the
chiral vector C},, and the chiral angle fis given by [12]

V3q
o1
6 = tan (q+2p ) 9)
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Let m be the largest common divisor in p and ¢. Then,
the atom number n per unit cell is equal to

e 4(p* +pq + ¢%)

(10
m
if (p — ¢) is not a multiple of 3m, or
2 2
n=4(p +pg+4q°) an

3m

if (p — ¢) is a multiple of 3m.

Based on their experimental observations, Iijima
and co-workers [66] claimed that most of single-
walled carbon nanotubes show chirality. Using a sim-
ilar technique to lijima’s, Dravid et al. [67] also found
that most of their carbon nanotubes have a chiral struc-
ture. Therefore, it is very interesting to examine the
chiral effect on the third-order optical nonlinearities
of CCNs in the view of their practical application.

The Su-Schrieffer-Heeger (SSH) model [68] has
been successfully applied to describe conducting
polymers and Cg [69 - 71]. Since the Coulomb inter-
action effect plays an important role in the physical
understanding of the electronic and optical proper-
ties of higher fullerenes and carbon nanotubes, we
have recently extended the SSH model, where the
Coulomb interaction is included, to describe higher
fullerenes and Cgp-based nanotubes [45, 46, 52]. The
total Hamiltonian can be written as [45, 46, 52]

H= Z Z (—to — aoys;) (cl,scj,s + h.c.)
(i) s

ko 2
LY D vh+uo Yl jeiel ey

<ij> 1

§ : § i t
+ o Ci,sCi’st,s,Cj’sl,

<ij> s,s’

12)

where the sum (i) is taken over the nearest neighbors
for the C-C bond, ¢, represents the hopping integral
for the C-C bond, « the electron-phonon coupling
constant related to the C-C bond, ko the spring con-
stant corresponding to the C-C bond, y;; the change of
the bond length between the ith and jth atom; the op-
erator C; (Cz,s) annihilates (creates) a 7 electron at
the :th atom with spin s (s =T, ), uo is the usual
on-site Coulomb repulsion strength, and v, is the
Coulomb interaction between the nearest and next-
nearest atoms.
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Fig. 2. The second-order hyperpolarizability  spectra
of a single substituted armchair tubular fullerene. (a)
Cor9x10-1N (Eg = 0.136 €eV) and (b) Co+9x10-1B

(E4 =0.647 eV), where Ej is the energy gap of the corre-
sponding tubule.

Within the SOS approach discussed by Orr and
Ward [72], the second-order hyperpolarizability  for
the THG process can be written as [see Fig. 2 of [73],
taking into account six diagrams in total]

Y(=3wsw,w,w) =72 +73+Y1 +7+77+7%, (13)

where +; is given in [49]. Since the ratios between
different components of « are not known, a spatial
average of +y is given by [48]
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Y= (14)

Yzzzz T Yyyyy +Vzzzz + 2')'zz:yy T 2"Yyyzz + 2'7zz:m:
5 .

Here we turn to study CCNs with finite atom num-
bers N. In these cases the tubule edge effects cannot
be neglected. A finite CCN with one or several unit
cells is open with a row of dangling bonds at each
end. So an atom at an edge site may have fewer than
three neighbors. However, for the real carbon nan-
otubes, the tubule length is long enough to neglect
the edge effect. Taking this into account, we have ap-
plied periodic boundary condition for the tubule axis,
and each carbon atom at the end of the finite CCN
can still find its three neighbors by imagining that
the two ends of the tubule are connected. In Fig. 1, a
unit cell is defined along the tubule axis, and C', and
T = OB construct the basis vectors of the unit cell,
where B is the first lattice point of the 2D graphitic
sheet through which a line through O and perpendic-
ular to C}, passes. Based on the electronic structures
obtained in the above model, we calculate the static
~ values of 17 CCNs, which have different diameter
d, and chiral angle 6. Then, we calculate the average
contribution I" of one carbon atom to the third-order
optical nonlinearity of a CCN,

Ir= (15)

N b
where N is the total atom number in the studied CCN.
We note that for carbon nanotubes with smaller diam-
eters than that of Cg there are no caps containing only
pentagons and hexagons which can be fitted contin-
uously to such a small carbon nanotube (p, ¢). For
this reason it is expected that the observation of very
narrow (< 7 A) carbon nanotubes is very unlikely
[12, 15]. For example, the (4,2) chiral vector does not
have a proper cap and therefore is not expected to
correspond to a physical carbon nanotube. Therefore,
in view of practical application, we pay our attention
to physical tubules including the (6,5) tubule which
is the smallest diameter CCN. In detail, our numer-
ical results are listed in Table IV. Therein we have
also given the corresponding diameter dy, the chiral
angle 6, the atom number 7 per unit cell, and the total
atom number NV in the calculated tubule, from which
we may examine the effect of size, chiral angle, and
diameter on the third-order optical nonlinearities of
the CCN. In Table IV, s and m in (p, ¢)° and (p, ¢)™
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Table IV. The static +y (in units of 107 esu) value and av-
erage contribution I” (in units of 10~ esu) of the 17 chiral
carbon nanotube, where s and m in (p, ¢)°* and (p, ¢)™ de-
note semiconducting and metallic nanotubes, respectively.
n, N, d; (A), and 8 are the atom number per unit cell, the
total atom number calculated, the diameter, and the chiral
angle of a chiral carbon nanotube, respectively.

®,9) n N d; 0 o r

Ceo - 60 7.10 - 0.5612  0.9353
(6,5) 364 364 747 04711 6.3556  1.7461
9,1y 364 364 747 00909  5.1997 14285
(7,4)m 124 372 756 03674 22999  6.1827
(8,3)° 388 388 772 02669 54013 13921
9,2 412 412 795 01715 57198  1.3883
(1,5 436 436 8.18 04276 60172  1.3801
(10,1)™ 148 444 825 00822 250398  5.6396
(8,4) 112 448 829 03334  6.1766 1.3787
9,3)m 156 468 847 02425 22.1879 4.7419
(10,2)° 248 496 872 0.1561  6.7049  1.3518
(7,6) 508 508 8.83 04792  6.8504  1.3485
(8,5)m 172 516 890 03911 181596 3.5193
9,4) 532 532 903 03050 69155  1.2999
(10,3 556 556 924 02221 68811 12376
(8,6)° 296 592 953 04413 68157 11513
9,5) 604 604 9.68 03601 67642 1.1199
(10,4™ 104 624 979 02810 14.8830  2.3851

denote the semiconducting and metallic CCNs, re-
spectively.

It has been shown that the optical nonlinearities of
fullerenes decrease with increasing space dimensions.
For example, the 3D Cgp molecule possesses smaller
-y values than a 1D conducting polymer with the same
number of atoms. The substitute doping effect reduces
the effective space dimension of Cy, and thus their
optical nonlinearities are greatly enhanced [85]. Here
we see that the 1D CCN will roughly become a 2D
graphite sheet with increase of its diameter. So it is
expected that the smaller the diameter of a CCN, the
larger its -y value. Table IV tells us that the I value for
semiconducting CCN (p, ¢)° increases with decreas-
ing diameters, i.e., the average contribution of one
carbon atom to the third-order optical nonlinearity of
a semiconducting CCN is gradually enhanced with
the decrease of its diameter. A similar conclusion is
got for metallic CCNs.

From Table IV, we know that (6, 5)° and (9, 1)° have
the same diameter (d; = 7.47 A) and the same atom
number per unit cell (n = 364) as well as semicon-
ducting properties. The only difference between these
two CCNes is the chiral angle 6 (8 = 0.4711 for (6, 5)°
and 0 = 0.0909 for (9, 1)° ). In this case, if the total
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Table V. Seven different molecular weights (MW) with the
experimentally derived ~ (in units of 107> esu) values of
a well characterized polyenic polymer, where I" (in units
of 10~ esu) is the average contribution of a carbon atom
to the third-order optical nonlinearity of the polymer. The
number N of carbon atoms is obtained from the molecular
weight by dividing by 12 and rounding up the result to the
closest integer multiple of 10.

MW N ¥ r
2800 230 35 1.5
4100 340 5.4 1.6
5400 450 7.8 1.7
7500 620 155 25
10000 830 26.7 32
17600 1460 62.9 43
27900 2320 85.4 3.7

atom number N is the same, both CCNs will have
the same height but the length of the base helix of
(6, 5) is shorter than that of (9, 1). Thus, the atoms
in (6, 5)* are situated along a more straight line than
those in (9, 1)°, and thus (6, 5)° has lower space di-
mensions than (9, 1)°. Therefore we expect that (6, 5)°
possesses a larger «y value than (9, 1)*. From Table IV,
we find that the I" value of (6, 5)° is bigger than that
of (9, 1)%, i.e., the y value of (6, 5)* is larger than that
of (9, 1)% if their total atom number N is the same.
The periodic boundary conditions for the 1D CCNs
permit only a few wave vectors to exist in the circum-
ferential direction [12]. If one of these passes through
the zone corner in the Brillouin zone, then metallic
conduction results; otherwise the CCN is semicon-
ducting and has a band gap. Recently it has been
shown that when the total atom number N of a car-
bon nanotube is increased greatly, a large energy gap
for a semiconducting CCN is still available, but the
energy gap for a metallic CCN approaches zero [12].
In this case it is expected that, if the total number
N of carbon nanotubes is the same, a metallic CCN
possesses a larger -y value than a semiconducting one.
It is seen from Table IV that the I" value of a metallic
CCN is larger than that of a semiconducting CCN.
Finally, comparing the I" value of Cgy with that of
carbon nanotubes, we see that the carbon nanotube
has a larger I" value than Cg. This means that carbon
nanotubes possess a larger NLO response than Cg.
Well characterized conjugated m-electron organic
systems are important materials for nonlinear optics
because their typically large third-order optical non-
linearities make them likely candidates for compo-
nents of technological devices. As an example, in
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Table V, we list the experimentally derived ~y values
and the average contributions I" of a well character-
ized polyenic polymer for seven different molecular
weights [74]. Comparing their I" values with our cal-
culated ones for 17 CCNs, one may find that CCNs
also predict much higher NLO responses and can
compete with polyenes for nonlinear optical applica-
tions. Since CCNs are uniquely composed of carbon
atoms and therefore do not have any residual infrared
absorption which the polymeric materials possess due
to overtones of C-H stretching vibrations, they will be
ideal candidates among all third-order materials for
photonic applications. During the recent years, large
quantities of single-walled [75] and multi-walled [12,
15 - 17] carbon nanotubes have been produced by ex-
perimental researchers. Despite this progress, a num-
ber of physical properties of single- or multi-walled
carbon nanotubes have not been examined carefully
so far. In particular, this applies to the nonlinear opti-
cal properties of carbon nanotubes, which determine
the nonlinear dependence of the polarizability of car-
bon nanotubes on the intensities of incident electro-
magnetic waves. In the view of photonic applications,
experimental studies on the NLO properties of carbon
nanotubes are expected to be performed.

Very recently, Ye and his coworkers [76] have stud-
ied the third-order optical nonlinearity of carbon nan-
otubes by using the technique of backward DFWM.
The light source was an Nd:YAG laser with a 30-ps-
wide single pulse output or an Nd:YAG laser with
an 8-ns-wide single pulse output. The wavelengths
used in the experiments for each laser were 1064 and
532 nm. The magnitudes for the tensor component
X(131)11 of their solutions and solvent were measured via
a comparison with that of reference sample CS,. First,
the typical absorption spectrum of carbon nanotubes,
after they removed the contribution of the solvent,
was measured with one of their solutions. They found
that there exists some absorption at both 1064 nm and
532 nm [76]. Then, with the 30 ps laser, xﬁ)” was ob-
tained for their solutions and solvent at both 1064 nm
and 532 nm. They observed that X(131)1 , of all their solu-
tions was larger than that of the solvent, and especially
that a linear concentration dependence of X(131)11 exists
for their solutions at both 1064 nm and 532 nm. By
subtracting x(131)“ of the solvent from that of their solu-

tions, X(131)1 ; of carbon nanotubes in different solutions
can be obtained. Typical results for one of their solu-
tions at 1064 nm and 532 nm are 6.460 x 104 esu
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and 6.303 x 10~'* esu, respectively [76]). The re-
sults of similar experiments by using an 8-ns-wide
laser at 1064 nm and 532 nm are 1.179 x 10~!! esu
and 0.309 x 10~!! esu, respectively [76]. Since it is
very difficult to know the exact number of carbon
nanotubes solved in their solution because of the dif-
ficulty in obtaining carbon nanotubes with the same
size, they could not calculate the third-order optical
nonlinearity of a single nanotube. But instead, from
the mass of carbon solved in the solution, they eval-
uated the average contribution of one carbon atom
to the third-order optical nonlinearity of carbon nan-
otubes. As shown before, one result of x\7), of carbon
nanotubes at 1064 nm is about 6.460 x 10~# esu,
and considering the local field correction, they found
that the average contribution I" per carbon atom to
the third-order optical nonlinearity of the carbon nan-
otube is about 0.6 x 1073 esu [76]. For Cgo, whose
Y111 is 3.0 x 10734 esu at 1064 nm [24], the aver-
age contribution I” per atom to the third-order optical
nonlinearity of Cgg is 0.5 x 10~ esu. Clearly, the
average contribution of one carbon atom in carbon
nanotubes is longer than that in Cgy. Enhancement
of the third-order optical nonlinearity occurs in car-
bon nanotubes. This conclusion agrees with our above
theoretical prediction.

IV. Third-order Optical Nonlinearity of Doped
Tubular Fullerenes

Recently, doped fullerenes [12] and carbon nan-
otubes [77] have stimulated a great interest of physi-
cists and chemists to investigate their structural, elec-
tronic, optical and other properties. Besides the alkali
metal doping, there is another type of doping, named
substitute doping (SD), i. e., substituting one or more
carbon atoms of fullerenes and carbon nanotubes by
other atoms. For example, boron and nitrogen atoms
have been successfully used to replace carbon atoms
of fullerenes [12] and carbon nanotubes [77]. Avail-
able studies [18 - 87] have shown that the lattice and
electronic structures of fullerenes change with sub-
stituted doping; the band gaps between the highest
occupied molecular orbitals (HOMO) and lowest un-
occupied molecular orbitals (LUMO) and the elec-
tronic polarization of the substituted fullerenes vary
greatly with different SD; the distribution of 7-elec-
trons on the surface of a fullerene is changed due
to the SD effect; the original delocalized 7-electrons
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in the pure fullerene become more localized around
the substituted atoms. Obviously, these factors have
also a large effect on the NLO properties of fullerenes
and carbon tubules. Therefore it would be interesting
and useful to investigate theoretically the SD effect
on the NLO properties of fullerenes [85] and carbon
nanotubes [86, 87] from the view point of practical
application. In this section we pay our attention to the
doping effect on the third-order optical nonlinearity
of armchair tubular fullerenes.

The above extended SSH model has been used to
describe higher (and tubular) fullerenes and CCNs.
But it should be modified to include the effect of
the dopant ions in order to describe the substituted
fullerenes and carbon nanotubes. The total Hamilto-
nian for the single substituted tubules can be written
as [85, 86, 87]

H=HD o+ HP (16)

Héolc = z Z (—to — aoyij) (CI,st,s + h.C.)

(17) s

ko 2 t
o D oyh+ue) el ey
(i5) i

§ :E : i 1
+ vy ci,sci,scj’s,cj,s/,

(i5) s’
H)((lic = Z Z (—~t1 — aly,-j) (CI’SCJ-’S + h.C.)
(ij) s
k
+ ?1 ; ylzj + g Z CI,TCi,TCI,lci,l
i 1

i 1
E :Ci,sci,scj,s'cj,S’v
(17) s,s’

a7

+ v

(18)

where X denotes the substituted atom, and the sum
(¢j) is taken over the nearest neighbors for both the
C-Cand X-Cbonds. ty (¢1), ap (a1), and kg (k) repre-
sent the hopping integrals, the electron-phonon cou-
pling constants and the spring constants correspond-
ing to the C-C (X-C) bonds, respectively. ug (u) is the
usual on-site Coulomb repulsion strength, and vg (v;)
is the Coulomb interaction between the nearest and
next-nearest atoms. Since there is only one substituted
impurity atom (i. e., X) in tubules, H,((IZC plays a per-
turbational role, and as an approximation the original
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Table VI. The ratio ¢ = 4'™/~® of several doped armchair
tubular fullerenes, where '™ is the calculated static -y value
of the doped tubule C((,()H'xlo)_lx X= B or N), ")’p is the
static v value of the corresponding pure case and given
by the empirical formula v? = (1 +7 x 10/60)***4%, and
% =5.6 x 10734 esu is the static 7 value of Ceo.

X 1=0 i=1 i=2 i=9 i=18
N 30.5 30.7 324 36.8 412
B 39 43 49 7.6 8.5

empirical parameters (%o, v, ko, uo, Vo) in Héolc are
assumed not to change due to the substitute doping
(taken to be the same in this numerical calculation as
those in the pure cases), u; = uop, and v; & vp.

The choice of the three parameters (¢, ay, k;) for
the X-C bonds is important [85 - 87]. The best way to
doitis to determine them by comparison between the-
oretical calculations and experimental measurements.
But to the best of our knowledge, there has not been
an experimental measurement on the nonlinear optical
properties of doped carbon tubules. Recently, by us-
ing a molecular orbital method with Harris functional
and spin-restricted approximations [88], where the to-
tal electron density of the system can be approximated
by a superposition of electron densities of the isolated
atoms with a first-order energy correction of the den-
sity error and quadratic errors in the electron Coulomb
repulsion and exchange-correlation energies are par-
tially canceled, Kurita et al. [80] have optimized the
structures of CsgN and CsoB and at the same time
investigated their electronic properties. They found
that the optimized structures and binding energies for
CsoN and Cs9B were almost the same as those for
Ceo, and the energy levels near the Fermi level were
remarkably changed by doping. In our recent work
[85 - 87], by using the above theoretical model, we
also investigated the structural and electronic prop-
erties of the same substituted doped fullerenes by
carefully adjusting the values of the three parameters
(t1, a1, and k). It is found that our numerical calcu-
lations can accurately reproduce the results obtained
by Kurita et al. if t; = 1.17 €V, a; = 6.04 eV/A, and
k; = 51.1 eV/A? for CsoB, and ¢; = 1.05 eV, a; =
6.13 eV/A, and k = 49.6 eV/A? for CsoN.

Based upon the electronic structure obtained in
the above theoretical model, we calculated the
static second-order hyperpolarizabilities (7'™) of the
single substituted armchair (Cgo+ix10)—1X) tubular
fullerenes, where X = B or N. The results are shown
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in Table VI. Here the x axis is directed to the impurity
ion X. In order to see the substitute doping effect on
the NLO response of tubular fullerenes, we list the
ratio ¢ between '™ and 4? in the table:

im

v

o (19)

q:

where 7P denotes the static «y value of the correspond-
ing pure case, which is given by the empirical for-
mula 4P = (1 +i x 10/60)>v% for armchair tubu-
lar fullerenes [52] and Y% = 5.6 x 1073 esu is the
static v value of Cgp. It is seen that the static v value
of Ceo+ix10)—1B is several times larger than that of
the corresponding pure one; and the static -y value of
C60+ix 10)—1N is more than 30 times larger than that of
the corresponding pure one. This means that substi-
tute doping, especially for the case of X = N, greatly
increases the nonlinear optical polarizability of car-
bon tubules. Here it should be mentioned that owing
to the distortion of the 7-electron distribution in the
substituted tubules, especially around the substituted
dopant B or N, the difference between the z and z
(or y) components of v for those substituted tubules
is much more pronounced than that for pure cases.

The dynamical nonlinear optical response of a
doped armchair tubule Co49x10)—1X has also been
investigated by calculating the THG spectrum, and
the results are shown in Figs. 2(a) and (b) for X =N,
B, respectively. The first peaks appearing in Figs. 2(a)
and (b) are located at 3w = 0.129, and 0.653 eV, re-
spectively, and their corresponding v magnitudes are
47.9 and 25.3 x 10732 esu, which are three and 1.6
times larger than that (= 15.6 x 10732 esu [45, 46])
of pure armchair tubules. As in the pure case, we find
that the first peak in the v spectrum of the substituted
armchair tubule is also caused by a three-photon reso-
nance between two energy levels (a and b) near Fermi
levels with one in the conduction band and the other
in the valence band.

Moreover, Fig. 2(a) and (b) show that the high-
est peaks in the 7 spectra are located at 3w =
0.437,1.783 eV, respectively, and their corresponding
Ymax Magnitudes are about 792.45 x 1073° esu and
172.18 x 103 esu, which are about 60 and 13 times
larger than that (= 13.44 x 1073 esu [45, 46)) of the
highest peak of the pure armchair tubule. These peaks
are caused by one-, two-, and three-photon resonance
enhancement. The other peaks with larger v magni-
tudes are produced by two- or three-photon resonance.
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For example, in Fig. 2(a), the three-photon peaks with
larger vy are located at 3w = 0.387,0.423,0.465 €V,
and the two-photon peaks with large v are located
at 3w = 0.409,0.451,0.487 eV. Also we notice from
Fig. 2(a) and (b) that the major response peaks with
large «y concentrate on a narrow region, where the op-
tical frequency is near the energy gap. The reason is
the same as that for the pure case, i.e., a lot of one-,
two-, and three-photon resonance enhancement pro-
cesses can be observed in the doped tubule, but only
those transition processes that occur between the en-
ergy levels near Fermi levels are able to contribute
large v magnitudes.

Based on our previous calculation, we know that
the substituted dopant ions (X = B or N) attract or
repel electrons [85, 86, 87] and thus may cause a dis-
tortion of the m-electron distribution on the tubule’s
surface, which mainly happens around the dopant ions
(this effect can be called an inductive effect). On the
other hand, the dopant ions cause greater localization
of the original delocalized m-electrons around them,
and therefore may reduce the effective space dimen-
sions of fullerene tubules (this effect can be called
reduction effect). Our numerical results have shown
that both effects make the NLO properties of the sub-
stituted tubule different from the corresponding pure
one and enlarge greatly its v magnitudes. In addition,
the localization effect of the N impurities is stronger
than that of the B ones [85 - 87]. So the inductive and
reduction effects of the effective space dimension in
the nitrogen-doped tubule are stronger than those in
boron-doped tubule, which explains why a nitrogen-
doped tubule has larger y values than a boron-doped
one. Surely, it would be very interesting to see what
would happen if heavier substitute doping is done.
Based on the calculated results, this process will raise
the v magnitude further.

V. Conclusion

In this paper, we have reviewed recent theoreti-
cal and experimental studies on the third-order opti-
cal nonlinearities, characterized by the second-order
hyperpolarizability -y, of higher fullerenes including
C7(), C76, C34, Cg6, Cgo, C94 and C96. The extended
SSH model was introduced and applied to study the
third-order optical nonlinearity of CCNs, where the
average contribution I" of one carbon atom to the
third-order optical nonlinearity of each CCN is calcu-
lated and compared with that of a well characterized
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polyenic polymer. It is found that the smaller the dia-
meter of a CCN, the larger the average contribution
I'; the metallic CCN favors larger «y values than the
semiconducting one; CCN can compete with the con-
ducting polymer achieving a large v value which is
required for photonic applications. Then, by includ-
ing the effect of dopant ions into the extended SSH
model, we have studied the substitute doping effect on
the static and dynamical second-order hyperpolariz-
abilities of armchair tubular fullerenes. It is found
that the substitute doping effect increases greatly
the v magnitude of armchair tubular fullerene. Very
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recently, the generation of boron- or nitrogen-doped
carbon nanotubes has been reported [77]. In the light
of the experimental progress, the above theoretical
studies are significant for photonic applications of
those doped nanotubes.

Acknowledgements

We would like to thank Dr. K. Suenaga and Prof.
Dr. Q. H. Gong for their reprints. R.H. X. and Q.R.
acknowledge financial supports from Alexander von
Humboldt Foundation and Nanchang Telecom Bu-
reau, respectively.

[15] T. W. Ebbesen, Carbon Nanotubes, CRC Press, Boca

Raton, Florida 1997.

M. Endo, S. lijima, and M. S. Dresselhaus, Carbon

Nanotubes, Pergamon Press, Oxford 1996.

[17] P. M. Ajayan, and T. W. Ebbesen, Rep. Prog. Phys.
60, 1025 (1997).

[18] W.J.Blau, H.J. Byme, D.J. Cardin, T. J. Dennis, J. P.
Hare, H. W. Kroto, R. Taylor, and D. R. M. Walton,
Phys. Rev. Lett. 67, 1423 (1991).

[19] R. J. Knize, and J. P. Partanen, Phys. Rev. Lett. 68,
2704 (1992).

[20] Z. H. Kafafi, E. J. Bartoli, J. R. Lindle, and R. G. S.
Pong, Phys. Rev. Lett. 68, 2705 (1992).

[21] H. Hoshi, N. Nakamura, Y. Maruyama, T. Naka-
gawa, S. Suzuki, H. Shiromaru, and Y. Achiba, Japan.
J. Appl. Phys. 30, L1397 (1991).

[22] F. Kajzar, C. Taliani, R. Zamboni, S. Rossini, and
R. Danieli, Syhth. Met. 54, 21 (1993).

[23] Q. Gong, Y. Sun, Z. Xia, Y. H. Zou, Z. Gu, X. Zhou,
and D. Qiang, J. Appl. Phys. 71, 3025 (1992).

[24] Z. H. Kafafi, J. R. Lindle, R. G. S. Pong, F. J. Bartoli,
L. J. Lingg, and J. Milliken, Chem. Phys. Lett. 188,
492 (1992).

[25] G. B. Talapatra, N. Manickam, M. Samoc, M. E. Or-
czyk, S. P. Karna, and P. N. Prasad, J. Phys. Chem.
96, 5206 (1992).

[26] Y. Wang, and L. T. Cheng, J. Phys. Chem. 96, 1530
(1992).

[27] J.S.Meth, H. Vanherzeele, and Y. Wang, Chem. Phys.
Lett. 197, 26 (1992).

[28] Z. Zhang, D. Wang, P. Ye, Y. Li, P. Wu, and D. Zhu,
Opt. Lett. 17, 973 (1992).

[29] D. Neher, G. I. Stegeman, F. A. Tinker, and
N. Peyghambarian, Opt. Lett. 17, 1491 (1992).

[30] S.C. Yang, Q. Gong, Z. Xia, Y. H. Zou, Y. Q., Wu,
D. Qiang, Y. L. Sun, and Z. N. Gu, Appl. Phys. B 52,
51(1992).

(16]



658
(31]
(32]
(33]
[34]
(35]

(36]
[37]
(38]
[39]
[40]
(41]
[42]
[43]

(44]
(45]

[46]

[47]
(48]

[49]
[50]
[51]

[52]
(53]

(54]
[55]
[56]
[57]
[58]
(59]
[60]
(61]

S. R. Flom, R. G. S. Pong, F. J. Bartoli, and Z. H.
Kafafi, Phys. Rev. B 46, 15598 (1992).

J. Lj, J. Feng and J. Sun, Chem. Phys. Lett. 203, 560
(1993).

J. Li, J. Feng and C. Sun, Int. J. Quantum. Chem. 52,
673 (1994).

N. Matsuzawa and D. A. Dixon, J. Phys. Chem. 96,
6241 (1992).

M. J. Rosker, H. O. Marcy, T. Y. Chang, J. T. Khoury,
K. Hansen, and R. L. Whetten, Chem. Phys. Lett. 196,
427 (1992).

D. Jonsson, P. Norman, K. Ruud, H. Agren, and
T. Helgaker, J. Chem. Phys. 109, 572 (1998).

J. R. Lindle, R. G. S. Pong, F. J. Bartoli, and Z. H.
Kafafi, Phys. Rev. B 48, 9447 (1993).

N. Tang, J. P. Partanen, R. W. Hellwarth, and R. J.
Knize, Phys. Rev. B 48, 8404 (1993).

W.Ji, S. H. Tang, G. Q. Xu, H. S. O. Chan, S. H. Ng,
and W. W. Ng, J. Appl. Phys. 74, 3669 (1993).

F Sun, S. Zhang, Z. Zia, Y. H. Zou, X. Chen, D. Qiang,
X. Zhou, and Y. Wu, Phys. Rev. B 51, 4614 (1995).

P. Norman, Y. Lu, D. Jonsson, and H. Agrcn, J. Chem.
Phys. 106, 8788 (1997).

L. Geng and J. C. Wright, Chem. Phys. Lett. 249, 105
(1996).

J. Li, S. Wang, H. Yang, Q. Gong, X. An, H. Chen,
and D. Qiang, Chem. Phys. Lett. 288, 175 (1998).

R. J. Knize, Opt. Commun. 106, 95 (1994).

R. H. Xie and J. Jiang, Appl. Phys. Lett. 71, 1029
(1997).

R. H. Xie and J. Jiang, Chem. Phys. Lett. 280, 66
(1997).

Y. Luo, Chem. Phys. Lett. 289, 350 (1998).

C. E. Moore, B. H. Cardelino, and X. Q. Wang, J. Phys.
Chem. 100, 4685 (1996).

Z. Shuai and J. L. Bredas, Phys. Rev. B 46, 16135
(1992).

M. Fanti, G. Orlandi, and F. Zerbetto, J. Amer. Chem.
Soc. 117, 6101 (1995).

M. Fanti, P. W. Fowler, G. Orlandi, and F. Zerbetto,
J. Chem. Phys. 107, 5072 (1997).

R. H. Xie, J. Chem. Phys. 108, 3626 (1998).

K. Harigaya, J. Phys.: Condens. Matt., 10, 6845
(1998).

K. Harigaya, J. Lumin. 76, 652 (1998).

K. Harigaya, Synthetic Metals. 91, 379 (1997).

K. Harigaya, Japan J. Appl. Phys., 36, L485 (1997).
C. E. Moore, B. H. Cardelino, D. O. Frazier, J. Niles,
and X. Q. Wang, Theochem-J. Mol. Struct. 454, 135
(1998).

H. Huang, G. Gu, S. Yang, J. Fu, P. Yu, G. K. L. Wong,
and Y. Du, Chem. Phys. Lett. 272, 427 (1997).

H. Huang, G. Gu, S. Yang, J. Fu, P. Yu, G. K. L. Wong,
and Y. Du, J. Phys. Chem. 102, 61 (1998).

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J.
P. Stewart, J. Amer. Chem. Soc. 107, 3902 (1985).
X. G. Wan, J. M. Dong, and D. Y. Xing, J. Phys. B
30, 1323 (1997).

(62]
(63]
(64]
[65]
[66]
(67]

(68]

[69]
(70]

[(71]

[72]
(73]

(74]

[75]

[76]

(771

(78]

[79]
(80]
(81]
(82]

[83]
[84]

[85]
(86]
(87]
(88]

Report

F. Diederich and R. L. Whetten, Acc. Chem. Res. 25,
119 (1992).

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys.
Rev. B 45, 6234 (1992).

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus,
Phys. Rev. B 47, 16671 (1993).

R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and
G. Dresselhaus, Phys. Rev. B 51, 11176 (1995).

S. lijima and T. Ichihashi, Nature (London) 363, 603
(1993).

V. P. Dravid, X. Lin, Y. Wang, X K. Wang, A. Yee,
J. B. Ketterson, and R. P. H. Chang, Science 259, 1601
(1993).

W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev.
B 22, 2099 (1990).

K. Harigaya, J. Phys.: Condens. Matt. 3, 8855 (1991).
K. Harigaya and M. Fujita, Phys. Rev. B 47, 16563
(1992).

K. Harigaya and S. Abe, Phys. Rev. B 49, 16746
(1994).

J. Orr and J. F. Ward, Mol. Phys. 20, 513 (1971).

Z. Shuai and J. L. Bredas, Phys. Rev. B 46, 4395
(1992).

[. D. W. Samuel, I. Ledoux, C. Dhenaut, J. Zyss, H. H.
Fox, R. R. Schrock, and R. J. Silbey, Science 265,
1070 (1994).

F. Kokai, K. Takahashi, M. Yudasaka, R. Yamada,
T. Ichihashi, and S. Iijima, J. Phys. Chem. 103, 4346
(1999), and reference therein.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie,
P. Ye, J. Fan, and M. Wan, Appl. Phys. Lett. 74, 164
(1999).

K. Suenaga, M. P. Johansson, N. Hellgren, E. Broit-
man, L. R. Wallenberg, C. Colliex, J. E. Sundgren,
and L. Hultman, Chem. Phys. Lett. 300, 695 (1999),
and references therein.

T. Takahashi, S. Suzuki, T. Morikawa, H. Katayama-
Yoshida, S. Hasegawa, H. Inokuchi, K. Seki,
K. Kikuchi, S. Suzuki, K. Ikemoto, and Y. Achiba,
Phys. Rev. Lett. 68, 1232 (1992).

N. Kurita, K. Kobayashi, H. Kumahora, and K. Tago,
Phys. Rev. B 48, 4850 (1993).

N. Kurita, K. Kobayashi, H. Kumahora, K. Tago, and
K. Ozawa, Chem. Phys. Lett. 198, 95 (1992).

T. Guo, C. Jin, and R. E. Smalley, J. Phys. Chem. 95,
4948 (1991).

Y. Chai, T. Guo, C. Jin, R. E. Haufler, L. P. F. Chibante,
J. Fure, L. Wang, J. M. Alford, and R. E. Smalley,
J. Phys. Chem. 95, 7564 (1991).

W. Andreoni, F. Gygi, and M. Parrinello, Chem. Phys.
Lett. 190, 159 (1992).

Z. Chen, K. Ma, Y. Pan, X. Zhao, and A. Tang, Can.
J. Chem. 77, 291 (1999).

R. H. Xie, Phys. Lett. A, 258, 51 (1999).

R. H. Xie, Z. Naturforsch. 54a, 348 (1999).

R. H. Xie, Chem. Phys. Lett. 310, 379 (1999).

J. Harris, Phys. Rev. B 31, 1770 (1985).



