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It is common knowledge that Maxwell’s electromagnetic equations are invariant under relativistic
transformations. However the relativistic invariance of Maxwell’s equations has certain heretofore over-
looked peculiarities. These peculiarities point out to the need of reexamining the physical significance

of some basic electromagnetic formulas and equations.
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1. Introduction

Maxwell’s electromagnetic equations are the four dif-
ferential equations

V-D=p, (N
V-B=0, ?2)
VxE=_9B 3)
ot
and
V><H=J+§Q, 4)
ot

where E is the electric field vector, D the electric dis-
placement vector, H the magnetic field vector, B the mag-
netic flux density vector, J the electric current density
vector, and o the electric charge density. For fields in a
vacuum (the only fields with which we shall be concerned
in this paper), Maxwell’s equations are supplemented by
the two “constitutive equations”

D=¢yE ®))
and
B=uyH, (6)

where € is the permittivity of space and p is the perme-
ability of space.

As is known, in the special relativity theory one
distinguishes between the “proper” charge density 0,
measured when the charge under consideration is at
rest relative to the observer, and the “nonproper”, or “rel-
ativistic”, or “Lorentz-contracted” charge density de-
fined as

Q - Q() (l —M2/C2)_I/2, (7)

where u is the velocity of the charge under consideration
relative to the reference frame from which g is observed.

Maxwell’s equations were developed many years be-
fore the advent of the theory of special relativity, and @
in the prerelativistic equation (1) represented the electro-
static charge density even if the charge under considera-
tion was moving [1]. Since the electrostatic charge den-
sity is the same as the proper charge density g, of the
theory of special relativity, we can write (1) as

V'D=Qo. (8)

Naturally, itis possible to write (1) so that g in it becomes
the relativistic charge density. To do so one only needs
to replace g in (1) by the right side of (7), which gives

V.-D=o, (1 -u?c?"?, 9)

It is common knowledge that Maxwell’s equations are
invariant under relativistic transformations. Butis (1) in-
variant when written as (8) or is it invariant when writ-
ten as (9)? In this connection it is important to note that
Einstein (as well as Lorentz, Larmor, and Poincaré, who
preceded Einstein in the development and use of relativ-
istic transformations and in the demonstration of the in-
variance of Maxwell’s equations under these transforma-
tions) used prerelativistic Maxwell’s equations, in which
the charge density was meant to be the electrostatic
charge density. Therefore, in terms of the notation de-
fined above, the pioneers of relativity only showed that
(8) was invariant under relativistic transformations, but
they did not consider (9) or any equation equivalent to
(9) at all. Moreover, even now, the authors of the very
few textbooks on relativity and electromagnetic theory
in which the invariance of Maxwell’s equations is actu-
ally shown use Maxwell’s equations in their original form
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[2] [thatis, they actually use (8) rather than (9)] and, what
is most important, use as the transformation equation for
o the equation

o=v[o' + (VIcH ] (10)
rather than the equation
00 (1=121c3) ™2 = y (06 (1=u"?Ic?) 72
+(vIcH) J]], (1

where the Lorentz contraction of moving charges is ex-
plicitly taken into account [the unprimed quantities in
these equations refer to the stationary reference frame %,
the primed quantities refer to the moving reference frame
2, uis the velocity of the charge measured in X, u”is the
velocity of the charge measured in X, v is the velocity
of X'relative to y=(1- e Ve aad B

The purpose of this paper is to determine which partic-
ular “Maxwell’s equations™ are invariant under relativis-
tic transformations and to investigate whether by express-
ing (1) in the form of (8) or (9) we may discover some
heretofore neglected consequences of the relativistic in-
variance of Maxwell’s equations. To make clear the dis-
tinction between the prerelativistic Maxwell’s equations
and Maxwell’s equations incorporating Lorentz-contract-
ed charge densities, we shall use in the discussion that fol-
lows (8) or (9) in lieu of (1). We shall then refer to (8),
(2), (3), and (4), when used together, as the “original
Maxwell’s equations;” similarly, we shall refer to (9), (2),
(3), and (4), when used together, as the “relativistic
Maxwell’s equations”. Furthermore, for reasons that will
become clear later, we shall refer to g as the “electro-
static charge density™.

2. Invariance of the Original Maxwell’s Equations
under Relativistic Transformations

Let us first show that the original Maxwell’s equations
(with o = g representing the electrostatic charge density)
remain invariant under relativistic transformations. For
this purpose we shall use (8), (2), (3), (4) and transforma-
tion equations listed in the Appendix (the latter equations
are identified by the prefix “A”). Observe that two types
of transformation equations for charge and current den-
sities are given in the Appendix. Equations (A11)-(A13)
are the conventional equations except for the subscript “0”,
which indicates that we are using them specifically for
transforming electrostatic charge densities (the only
charge densities known in the prerelativistic electromag-
netism). Equations (A22)—(A24) are equations written ex-
plicitly for the Lorentz-contracted charge densities.
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Transformation of V- D = @,. Remembering that, by
(5),D = g, E and writing Maxwell’s equation (8) in terms
of Cartesian components, we have

oE, oE, oF,

— +g Z=0p.
B By Mgy o0

Using (A17), (A1), (A18), (A3),(A19), (AS),and (A12),
we can write (12) as

12)

£ OE; —€ laE-‘+e ci, +£ va—Bl
Oyax’ RPERER Oya)" 0 dy
E. an | v

+€ gV ——=—09+— J, . 13

Oyaz’ 0" %z yQO 2t W

Rearranging, we have
© dey EL !
1 aeoE‘+ 0 \+8£0EZ =lg(’)
yl| ox’ ay’ 0z’
JB. aB\ v agoE

—EgV| — - +—|J, +——= . (14)

0 [ dy oz ) c? [ ' ot :

However, since, by (6), B = o H, since &y py = 1/¢2, and
since &y E = D, the last two terms in (14) are simply the
x component of the expression

%(—VXH+J+88—D).

G t

(15)

which, by Maxwell’s equation (4), is zero. Hence, drop-
ping the last two terms in (14), cancelling y, replacing
€y E’by D', and restoring the vector notation, we obtain

V.D'=9g,. (16)

Thus the original Maxwell’s equation (8) is invariant
(retains its form) under relativistic transformations
with (A12) used for the transformation of the charge
density.

Transformation of V- B = 0. Writing Maxwell’s equa-
tion (2) in terms of Cartesian components, we have
0B, : 9B, 9B, _
dx dy Jz
Using (A17), (A6). (A18), (A8), (A19), and (A10), we
can write (17) as

+

0. (17)

0By v 9B, 9Bl y OE,
yox' ¢* ot yoy c¢? oy
‘ JE,
A e N (18)

+ b= —
ydz" c¢* 0z
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Multiplying by y and rearranging, we have

OB, OB\ 0B
ey QT Y
ox’  dy’ 97’

v |(9E. 9E, , 9B,
}/ 2 dy Jz or |

However, the expression in the brackets is simply the x
component of the expression

(V E+aB)
ot

19)

(20)
c?

which, by Maxwell’s equation (3), is zero. Replacing the

right side of (19) by zero and restoring the vector nota-
tion, we obtain

V-B'=0 (21)

Thus Maxwell’s equation (2) is invariant under rela-
tivistic transformations and, since in deriving (21) we
did not use transformation equations for charge or cur-
rent densities, the invariance of (2) does not depend on
the transformation equations for charge or current den-
sities.

Transformation of V x E = — 0B/dt. Writing Maxwell’s
equation (3) in terms of Cartesian components, we
have

0E, OE,) . ( JE, OE, j
dy 0z dz  ox

JE, OE, .0B, .9B, 0B
Bl e e 80 50 (9B @y
i (ax ay] S g e ¥R

Using (A18), (A19), (Al), (A2), (A4), (A6), and (A20),
we can write (22) as

; aE oB,  JE; , 9B,
— Vv - A <
# y a_\'l y azl y azl

OE;

a ’

5
4 7 : _% +k aE‘ _%
N o B oY

Z_.[ JB, VaB(J_.aB,-_kaBZ
o T

" o 23)

According to (21), the terms with the derivatives
0B,/0x', dB,/dy', dB./dz' in (23) vanish, so that the equa-
tion simplifies to
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y aE YBE(- . ;| 9Ex _9E.
8 2 07 4 dz”  ox
J0E, OE 0B, .90B, 0B
Bl =X | gp@e ;T g O
b [ax ay'] Tor T T

(24)
Using (A4), (A2), (A7), and (A9), we can write (24) as
JOEL OB | |3E; (B -VE)
a 4 07’ J 07’ ox

a(E\ -V B:) aE/ .
+k _ 2 o ef X =
{}’ ox ay’ } o

0B,
ot’

9(B. -V E!c? (B, -V E.c?
—J}’ ( 'y VL, C)—ky (h v _‘/C) (25)
ot ot

or, rearranging, as

g yaE;_yaE,’- v aE;_y OE. , v 9E;
ay’ a7’ a9z’ ox c¢* ot
oE; y JE{ | OE, ;4
k ¥ s X
+{"[ax+za] 8yj| Ay
i [BB aB aBZJ’ -

ox
which, by (A16) and (A21), is
il y 9B yaE L | OEx _9E;
ay’ 07’ 4 0z ox’

+k[£_§£’_

27

w8 o T T o

Comparing the x, y, and z components of the left side
of (27) with those of the right side, we find that the com-
ponents have the same form as the components of (22)
(the factor y in the x components cancels if one compares
only the individual components of the left and the right
side of the equation). It is interesting to note, however,
that although the Cartesian components of Maxwell’s
equation (3) are invariant under relativistic transforma-
tions, the vector equation itself is not invariant because
y is only present in the x components of (27) but not in
the y and z components [therefore y cannot be cancelled
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from (27), and (27) does not have the same form as (22)
or (3)]%

Since in deriving (27) we did not use transformation
equations for charge or current densities, the invariance of
the Cartesian components of (3) does not depend on the
transformation equations for charge or current densities.

Transformation of V x H=J+0D/dt. Remembering
that D=¢, E and writing Maxwell’s equation (4) in terms
of Cartesian components, we have

oH, OH,) . ( oH, OH, )
_— 4 J — A
dy 0z 0z ox

+k(aH‘. _aH_r]:ijx+jJ‘,+kJ,
ox dy - L
JE, oE, oF,
. ke @8
+1 & 3 ot L af

Using (A18), (A9), (A19), (A7), (A6), (Al), (A20), and
(A13)-(Al5), and remembering that B=pu, H, we can
write (28) as

| oH. O oH, . OE
i - - .
¥ ay’ Lo c29y’ ¥ d97’ ,uo czaz
.| 0H, OH, oH, 9H.
+j 9% g 9
07" ox dx 9y’

=iy(Jy+voo)+jJi+kJ +igy

_ (aE; L OE; 29)

L 1+j¢e i —+ke OB,
a o " T o

According to (16), taking into account that 1/ c*= &,
the terms with 0E;/dx', dE;/dy’, 0E;/dz’ and g in (29)
vanish, so that the equation simplifies to

; oH. ¥ % +j a—H;“ai
3’ & 0" ox
n it oH, _()H‘.J:iyj;+jj(_+k1§
a_\' a)', '
+iy & — L2 +J & ai+k €o oL, (30)
ot ot 8[

* It should also be noted that Lorentz, Larmor, Poincaré, and
Einstein used Maxwell’s equations in their scalar form. There-
fore they only showed the invariance of the Cartesian compo-
nents of Maxwell’s equations but not the invariance of the vec-
tor form of Maxwell’s equations.
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Using (A9), (A7), (A2), and (A4), we can write
(30) as

5y OH; oH;
dy 97
[om: _aH +vEIuy Y
. _ :
d 0z’ ¥ ox
- ya(H;-vE;_/uo <)) 9H,
ox ay’

’

=iyJi+jJi+kJ.+iye %Ef
: t

Jd(E. +Vv B, J(E.-Vv B,
+jeoy——( 2 ")+k£0y———( £ ’).

ot ot

Noting that &, B=H/c?, noting that 1/u, c*=¢,, and re-
arranging, we obtain

aH oH;
i ]
av ¥ 0z’
ey oH,, _y oH. . oH.,
07’ ox ¢ ot
oH| v oH) | OH;
k ¥y |0
' |:J/[ ox +c2 t] 9y’

=iyJi+jJli+kJ+iye a(_f

8E;+v8E_\'. +kye€ aE£+vaE;
YRR Rk b i "S-

which, by (A16) and (A21), is
B oH.
ox’

]—tyj + J I vk Iy

(€2Y)

’

+j¥e

oH

- oH; OH{ +j| 9H:
ay’ 97 0z’
+k aH a—H—
ox” 9y’

. JE,
+1Y €& FY +J €&

JE; /
tkay 2,
o’ o’

(33)

Comparing the x, v, and z components of the left side
of (33) with those of the right side, we find that the
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components have the same form as the components of
(28) (the factor y in the x components cancels if one
equates only the individual components of the left and
the right side of the equation). Thus the Cartesian com-
ponents of Maxwell’s equation (4) are invariant under
relativistic transformations, but the vector equation it-
self is not invariant because y is only present in the x
components of (33) (therefore y cannot be cancelled
from (33), and (33) does not have the same form as (28)
or (4)).

Note that in deriving (33) we used (A13) which only
contains the electrostatic charge density.

3. Noninvariance of the First and the
Fourth Original Maxwell’s Equations under
Relativistic Transformations involving
Lorentz-contracted Charges

As was shown in the preceding section, the invari-
ance of Maxwell’s equations (2) and (3) does not
depend on the transformation equations for charge or
current densities. Therefore in the discussion that
follows we shall only consider Maxwell’s equations (8)
and (4).

By examining (12)—(15) we see that if we transform
(8) by using (A24) (written explicitly for the Lorentz-con-
tracted charge densities) instead of by using (A12), the
transformed equation will not be of the form V’- D'= gy,
Therefore the original Maxwell’s equation (8) (where g,
is the electrostatic charge density) is not invariant under
relativistic transformations involving Lorentz-contract-
ed charges.

By examining (28)—(33) we see that the transition
from (29) to (30) depends on (16) and therefore depends
on the invariance of (8). Hence, if (8) is not invariant
under a particular set of transformations, then (4) is
also not invariant under the corresponding transformati-
ons. Therefore (4), just like (8), is not invariant under rel-
ativistic transformations involving Lorentz-contracted
charges.

4. Invariance of the Relativistic Maxwell’s
Equations under Relativistic Transformations
involving Lorentz-contracted Charges

Starting with (9) and repeating the transformations
used in (12)—(15), but employing now (A23) instead of
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(A12), we find by inspection of (12)—(16) that (9) trans-
forms into

V.D'=g4 (1-u'¥cH 2, (34)

Thus (9), which is the relativistic form of the original
Maxwell’s equation (8) [or of (1)], is invariant under
relativistic transformations involving Lorentz-con-
tracted charge densities. Consequently, as explained in
Sect. 3, (4) (in its scalar form; see Sect. 2) is also invar-
iant under these transformations. And, of course, as ex-
plained in Sect. 2, (2) and (3) (in its scalar form; see
Sect. 2) are also invariant. Hence the relativistic
Maxwell’s equations (9), (2), (3), and (4) (the last two
in their scalar forms only) are all invariant under these
transformations.

5. Discussion

As we have seen, contrary to the general perception,
the invariance of Maxwell’s equations under relativistic
transformations is not clear-cut. First, which is a minor
point, theequations V x E = — dB/dtand V x H = J+ d D/dt
are not invariant in their vector form. Second, which
is very important, the original, prerelativistic, equation
V- D = (where g = 0y is the electrostatic charge den-
sity) is only invariant if the charge density is transformed
by means of (A12) (or by means of an equivalent equa-
tion). Third, the relativistic form V-D =g, (1- w?cH)~1?
of the equation V- D= is invariant provided that the
charge density is transformed by means of (23) (or by
means of an equivalent equation), where Lorentz con-
traction of moving charges is explicitly taken into ac-
count.

Therefore, if moving charges are Lorentz contracted,
as is now generally believed, the prerelativistic
Maxwell’s equation V- D=0, where g is the electrostat-
ic charge density, is wrong because it does not satisfy the
requirement that physical laws must have the same form
in all inertial reference frames (Einstein’s principle of rel-
ativity). The relativistically correct Maxwell’s equations
must then be

V.-D=0, (1-u?/c?»'72, (35)

V-B=0, (36)

V><E=—aa—l:, (37)
and

VxH=J+aa—?. (38)
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Clearly. if accepted”®, the relativistic modification of
the equation V- D =g into V- D=9, (1- u?/c?)™"* will
have profound effects on the theory of many electromag-
netic phenomena involving rapidly moving electric
charges. What is especially important, this modification
will affect not only the theory of charges moving at con-
stant velocities (the domain of the special theory of rel-
ativity), but also the theory of charges moving with ac-
celeration.

We can obtain an insight into some of the consequenc-
es of replacing V- D=0 by V- D=0, (1-u?/c*™"* by
examining the following equations representing the gen-
eral solution of Maxwell’s equations for a vacuum [3]

__ | lo]l 1 8@} g
E_4JT8()J‘{)‘3+' {at } o

T

4megce

1 [(J1, 1 [d]
Ej{r_‘ - [a]}xrdv (40)

rcclLot

(39)

H:

These equations have been obtained by assuming that the
charge density o in (1) is the electrostatic charge density
(does not depend on the velocity of the charge) and by
assuming that J= o u“. Therefore, in terms of the nota-
tions used in this paper, ¢ and J in these equations are
0=0 and J =0 u, respectively, and the equations can
be written as

e (e [ o
JT &y ) t

I 1[8(90 ")}dvz
r

5
4:7'8()('_ ot

E=

(41)

® Jam not aware of any publications expressing Maxwell’s equa-
tion V- D=p (which represents Gauss’s law in its differential
form)as V- D=9, (1 -u~ 2/¢*)~"2 It is remarkable that although
most authors of books on electromagnetic theory and relativity
emphasize the idea of Lorentz contraction, they express Gauss’s
law as V- D=, with a clear implication that g is the electro-
static charge density, and do not even mention the possibility
of expressing Gauss’slawas V- D=, (1-u %/c*)712 where the
Lorentz contraction of moving charges is taken into account.
¢ Equations (39) and (40) are closely related to the retarded po-
tential equations

[Q *39
¢= 4.7t €y J‘ i ( )

and
Ko ¢ [J] 40
_41'[-[ r s

which were first obtained (in a different notation) by Ludwig
Lorenz in 1867, and the meaning of ¢ and J in (39) and (40) is
the same as that in Lorenz’s equations (*39) and (*40).

(*40)
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and

et {[Qou]+L{a(Qou)
(&

i - = erdv. (42)

r r

However, if ¢ in Maxwell’s equation V- D= is the
Lorentz-contracted charge density 0=, (1- u?/c?)~?,
(39) and (40) become

- L [Qo(l—u/cz)"”]+l
47e

r

e
2 -1/2
_[3{00(1 u’lc?) }} v

g | Hoou (-urc) 2] o)
4Jl'£0 c? ot '

(43)

and

LI {[Qou(l—uz/cz)_”z]+L

47 = re

27 2\-1/2
.[a{pouu—aur/c) }erdv,. w

The difference between (41), (42) and (43), (44) is pro-
found. The electric and magnetic fields given by (41) and
(42) are quite distinct from the fields given by (43) and
(44). In particular, the presence of additional u’s in (43)
and (44) makes the time derivatives in (43) and (44) com-
pletely different from those in (41) and (42). This means,
among other things, that the electric and magnetic fields
for charges in accelerated motion (and therefore all radi-
ation fields and associated effects) computed from (43)
and (44) are fundamentally different from the fields com-
puted from (41) and (42).

It is important to emphasize that (39) and (40) are the
general solutions of Maxwell’s equations. Therefore the
differences manifested by comparing (41) and (42) with
(43) and (44) will be inevitably replicated in all formu-
las and equations for rapidly moving charges (regardless
of the actual method of derivation) depending on wheth-
er these formulas and equations are based on the prerel-
ativistic Maxwell’s equations or on Maxwell’s equations
corrected for Lorentz contractions of moving charges.

But can we be absolutely certain that the relativistic
modification of the equation V-D=p and the corre-
sponding modification of the various electrodynamic
equations are necessary? It has been recently shown [4]
that the main equations of the special theory of relativ-
ity can be obtained without invoking Lorentz contraction
of moving bodies. Similarly, the relativistically correct
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expressions for the electric and magnetic fields of mov-
ing point and line charges can be obtained without as-
suming that moving charges are Lorentz-contracted [5,
6]. Furthermore, it is known that the relativistic transfor-
mation equations for all electromagnetic quantities can
be derived from the prerelativistic Maxwell’s equations
by assuming that these equations have the same form in
all inertial frames [7]. It is also well known that the phys-
ical significance of Lorentz contraction has been the sub-
ject of considerable controversy and re-interpretation [8].
However, the controversy and the re-interpretation have
not at all affected the theory of relativity as such. There-
fore, although the idea of Lorentz contraction is impor-
tant in Einstein’s approach to the formulation of the spe-
cial relativity theory, it does not appear to be an indis-
pensable element of the theory of relativity itself.

There may be a simple explanation why the controver-
sy about Lorentz contraction and the different re-inter-
pretations of its physical significance have had no effect
on the theory of relativity. If one accepts the theory of
relativity as the body of equations, methods, and tech-
niques whereby physical quantities measured in one in-
ertial reference frame can be correlated with physical
quantities measured in any other inertial reference frame,
then the interpretation of this or that relativistic formula
or equation does not affect the theory, since a mere inter-
pretation of a formula or equations does not change the
formula or equations. Therefore the fact that the original
Maxwell’s equations are not invariant under relativistic
transformations involving Lorentz-contracted charge
densities may not necessarily mean that the original
Maxwell’s equations are incorrect, especially in view of
the fact that they are invariant under relativistic transfor-
mations not involving Lorentz-contracted charge den-
sities. This brings us to (A11) and (A12). If interpreted
as relations between proper charge densities, these equa-
tions are wrong because proper charge densities are in-
variant by definition. However, if interpreted as charge
density transformation equations disregarding Lorentz
contraction (thereby eliminating the distinction between
proper and nonproper charge densities), they cannot be
objectively rejected unless the reality of Lorentz contrac-
tion is proved beyond any doubt®.

Thus the above analysis of the relativistic invariance
of Maxwell’s equation presents us with a dilemma: ei-

4 Itisimportant to emphasize that the modification of Maxwell’s
equation V- D= into V- D =0, (1-u?/c*)"""* does not depend
on(All)and (A12)oron theirinterpretation. Therefore, the con-
siderations concerning (39)—(44) presented above remain valid
regardless of the meaning or validity of (A11) and (A12).
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ther we accept Maxwell’s equations in their original form
and once again question the physical significance of Lo-
rentz contraction, or we modify Maxwell’s equations and
question the validity of many formulas and equations de-
rived from the original Maxwell’s equations. At this time
it is hardly possible to resolve the dilemma on the basis
of theoretical considerations. In all probability the reso-
lution of the dilemma will come from new experiments
withrapidly moving charges and from comparing the two
alternative theoretical models with the experimental data.
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