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It is common knowledge that Maxwell's electromagnetic equations are invariant under relativistic 
transformations. However the relativistic invariance of Maxwell's equations has certain heretofore over-
looked peculiarities. These peculiarities point out to the need of reexamining the physical significance 
of some basic electromagnetic formulas and equations. 
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1. Introduction 

Maxwell 's electromagnetic equations are the four dif-
ferential equations 

V • D = g, (1) 

V7.fi = 0, (2) 

V x E = 
dt 

and 

V x H = J + di) 
dt 

(3) 

(4) 

where E is the electric field vector, D the electric dis-
placement vector, H the magnetic field vector, B the mag-
netic flux density vector, J the electric current density 
vector, and £> the electric charge density. For fields in a 
vacuum (the only fields with which we shall be concerned 
in this paper), Maxwell 's equations are supplemented by 
the two "constitutive equations" 

and 

D = e0E 

B = fi0H, 

(5) 

(6) 

where e 0 is the permittivity of space and fiQ is the perme-
ability of space. 

As is known, in the special relativity theory one 
distinguishes between the "proper" charge density p0> 
measured when the charge under consideration is at 
rest relative to the observer, and the "nonproper", or "rel-
ativistic", or "Lorentz-contracted" charge density de-
fined as 

g = g0(\-u2/c2yU2, (7) 

where u is the velocity of the charge under consideration 
relative to the reference frame from which g is observed. 

Maxwell 's equations were developed many years be-
fore the advent of the theory of special relativity, and g 
in the prerelativistic equation (1) represented the electro-
static charge density even if the charge under considera-
tion was moving [1]. Since the electrostatic charge den-
sity is the same as the proper charge density g0 of the 
theory of special relativity, we can write (1) as 

V-D = g0. (8) 

Naturally, it is possible to write (1) so that g in it becomes 
the relativistic charge density. To do so one only needs 
to replace g in (1) by the right side of (7), which gives 

V-D=g0(l-u2/c2TU2. (9) 

It is common knowledge that Maxwell 's equations are 
invariant under relativistic transformations. But is (1) in-
variant when written as (8) or is it invariant when writ-
ten as (9)? In this connection it is important to note that 
Einstein (as well as Lorentz, Larmor, and Poincare, who 
preceded Einstein in the development and use of relativ-
istic transformations and in the demonstration of the in-
variance of Maxwell 's equations under these transforma-
tions) used prerelativistic Maxwell 's equations, in which 
the charge density was meant to be the electrostatic 
charge density. Therefore, in terms of the notation de-
fined above, the pioneers of relativity only showed that 
(8) was invariant under relativistic transformations, but 
they did not consider (9) or any equation equivalent to 
(9) at all. Moreover, even now, the authors of the very 
few textbooks on relativity and electromagnetic theory 
in which the invariance of Maxwell 's equations is actu-
ally shown use Maxwell 's equations in their original form 
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[2] [that is, they actually use (8) rather than (9)] and, what 
is most important, use as the transformation equation for 
g the equation 

g = y[g'+(v/c2)J;] (10) 

rather than the equation 

g0(l-u2/c2r1'2 = y[g^(\-u'2/c2rm 

+ (v/c2)j;], (11) 

where the Lorentz contraction of moving charges is ex-
plicitly taken into account [the unprimed quantities in 
these equations refer to the stationary reference frame I , 
the primed quantities refer to the moving reference frame 
2"; u is the velocity of the charge measured in is the 
velocity of the charge measured in 2", v is the velocity 
of I' relative to y = (1 - v2lc2)~m]. 

The purpose of this paper is to determine which partic-
ular "Maxwell's equations" are invariant under relativis-
tic transformations and to investigate whether by express-
ing (1) in the form of (8) or (9) we may discover some 
heretofore neglected consequences of the relativistic in-
variance of Maxwell's equations. To make clear the dis-
tinction between the prerelativistic Maxwell's equations 
and Maxwell's equations incorporating Lorentz-contract-
ed charge densities, we shall use in the discussion that fol-
lows (8) or (9) in lieu of (1). We shall then refer to (8), 
(2), (3), and (4), when used together, as the "original 
Maxwell's equations;" similarly, we shall refer to (9), (2), 
(3), and (4), when used together, as the "relativistic 
Maxwell's equations". Furthermore, for reasons that will 
become clear later, we shall refer to g0 as the "electro-
static charge density". 

2. Invariance of the Original Maxwell's Equations 
under Relativistic Transformations 

Let us first show that the original Maxwell's equations 
(withp = Pq representing the electrostatic charge density) 
remain invariant under relativistic transformations. For 
this purpose we shall use (8), (2), (3), (4) and transforma-
tion equations listed in the Appendix (the latter equations 
are identified by the prefix "A"). Observe that two types 
of transformation equations for charge and current den-
sities are given in the Appendix. Equations (A11 ) - ( A 13) 
are the conventional equations except for the subscript "0", 
which indicates that we are using them specifically for 
transforming electrostatic charge densities (the only 
charge densities known in the prerelativistic electromag-
netism). Equations (A22)-(A24) are equations written ex-
plicitly for the Lorentz-contracted charge densities. 

Transformation of V D = p 0 . Remembering that, by 
(5) ,D = Eq £ and writing Maxwell's equation (8) in terms 
of Cartesian components, we have 

dEx £o — + £o 
dx 

dE, 
—- + En 
ay dz = Q o • (12) 

Using (A 17), (A 1), (A 18), (A3), (A 19), (A5), and (A 12), 
we can write (12) as 

dE'x v dEx dE[. dB, 
ydx c dt ydy dy 

dE: dBx 1 , v , 
+£o ^tt - -T- = - Qo + — Jx • 

ydz dz y c 

Rearranging, we have 

03) 

f d£0 E'X , DGQ E'Y d£P E: ^ -) - j -

-EqV 

dx' 

dB: 

dy 

dV dz' 

dB, 
lh 

J r + 

= - & o 
y 

d£p Ex 

dt 
(14) 

However, since, by (6), B = /LL0H, since £0 FXQ = 1/c2, and 
since E0 E = D, the last two terms in (14) are simply the 
x component of the expression 

- y - V x H + J+M 
dt 

(15) 

which, by Maxwell's equation (4), is zero. Hence, drop-
ping the last two terms in (14), cancelling y, replacing 
£0 E ' by D', and restoring the vector notation, we obtain 

V'-D'=g q. (16) 

Thus the original Maxwell 's equation (8) is invariant 
(retains its form) under relativistic transformations 
with (A 12) used for the transformation of the charge 
density. 

Transformation of V B = 0. Writing Maxwell 's equa-
tion (2) in terms of Cartesian components, we have 

dBx dBx — ^ + 

dx dx dz 
(17) 

Using (A17), (A6), (A18), (A8), (A19), and (A10), we 
can write (17) as 

dB'. dB'x 

ydx' 
dB, dE. 

dt y dr' c2 dy 

dB', v dEr A + + — = 0 . 
y c V dz 

(18) 
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Multiplying by y and rearranging, we have 

c)B[ | dB[. ^ dB'z 

dx' dy' dz' 

= Y 
dE, dE, \ ^ dBx 

dx dz ) dt 
(19) 

However, the expression in the brackets is simply the x 
component of the expression 

v 
2 1 (20) 

which, by Maxwell's equation (3), is zero. Replacing the 
right side of (19) by zero and restoring the vector nota-
tion, we obtain 

V' B'= 0 (21) 

Thus Maxwell 's equation (2) is invariant under rela-
tivistic transformations and, since in deriving (21) we 
did not use transformation equations for charge or cur-
rent densities, the invariance of (2) does not depend on 
the transformation equations for charge or current den-
sities. 

Transformation of Vx E = - dB/dt. Writing Maxwell's 
equation (3) in terms of Cartesian components, we 
have 

. (dEz dEx \ | fdEx dE: 

{ dy dz +JI dz dx 

+k 
(dEy dEx \ . dBx . dBy , dB, 
l dx dy J dt J dt dt 

(22) 

Using (A 18), (A 19), (AI), (A2), (A4), (A6), and (A20), 
we can write (22) as 

dE: dB' dE', dB: 
y—^-yv—7" ~Y—~-yv 

dy' dy' dz' dz' 

+ j 
dE'x dE. 
dz' dx 

' 'dEv dE'^ + k 
dx dy' 

dB' dB 
y —--y v —-

dt' dx' 
. dB, dB, 

dt dt (23) 

According to (21), the terms with the derivatives 
dB'Jdx', dB[./dy', dB'Jdz in (23) vanish, so that the equa-
tion simplifies to 

( , \ 
dE' d E'x 

dy' dz.' + j 
f dE'x dEz ^ 

dz' dx 

+k 
rdEL_dE^ 

dx dy' 
. dB'x . dBv dB 

dt' dt dt (24) 

Using (A4), (A2), (A7), and (A9), we can write (24) as 

+ j 
dE: dEy 
dy' dz' 

dE'x d (E: - v By) 
dz dx 

+k 

- i y 

d(Ex-v B'z) dE'x 

dx dy' 

d{B'x-V E'Jc1) 
dt 

-k y 

. dB'x 
= - i r - r f dt 

d(B'z -vEy/c2) 
dt 

(25) 

or, rearranging, as 

dE', dE'y " y — l
t — y — 

dy' dz' +j 
dE'r 

dz 

+k 

~jY 

dE'y 
~d7 

dE'y 

± Y 

dy' 

/ dE', | v dE'z N 

3JC C dt 

dB'r iy 

( dB'y dB[ ^ 
— - + v — -
dt dx 

-ky dB: dB —S-+ v — 4 

dt 3x 

dt' 

(26) 

which, by (A16) and (A21), is 

f _ , \ dE' dE'y 
y —7 - y —7 dy' dz' + j 

rdE'x dE'z ' 
dz' dx' 

+ k 
r dE'y dE'x " 

dx' dy' 
. dB'x . dBy dB: 

= -i y—--j —--k —i 

dt' dt' dt' 
(27) 

Comparing the x, y, and z components of the left side 
of (27) with those of the right side, we find that the com-
ponents have the same form as the components of (22) 
(the factor y in the x components cancels if one compares 
only the individual components of the left and the right 
side of the equation). It is interesting to note, however, 
that although the Cartesian components of Maxwell's 
equation (3) are invariant under relativistic transforma-
tions, the vector equation itself is not invariant because 
y is only present in the x components of (27) but not in 
the y and z components [therefore y cannot be cancelled 
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from (27), and (27) does not have the same form as (22) Using (A9), (A7), (A2), and (A4), we can write 
or (3)]a . 

Since in deriving (27) we did not use transformation 
equations for charge or current densities, the invariance of 
the Cartesian components of (3) does not depend on the 
transformation equations for charge or current densities. 

(30) as 
/ 

iy dH'z dH'x 

dy' dz' 

Transformation of VxH = J+dD/dt. Remembering 
that D = s 0 E and writing Maxwell 's equation (4) in terms 
of Cartesian components, we have 

JdH? dHx V . f dHr dH 

+ k 

dy dz 
dHx dHx 

dx d\ 

+k 

dz dx 

= i Jx + j Jx +kJz 

dH'x d(H'z+vE'x/p0c2) 
-TT -V T~ dz dx 

D (H'v - v E'J p0 C2) dH[. 
dx 

. dEx . dEx dE, 
+1 £Q + J £o + k £o ^R dt dt dt 

(28) 

iy J'x + j Jy+k J'z + iy £q 

d(E'x + vB'z) 

dy' 

dE'r 

+J £o Y + k £0 y 

dt' 

d(E'z-vB'x) 
( 3 1 ) 

dt " "" ' dt 

Using (A 18), (A9), (A19), (A7), (A6), (AI) , (A20), and Noting that £0 B=H/c2, noting that \/p0 C2=E0, and re-
(A13)- (A15) , and remembering that B = p0H, we can arranging, we obtain 
write (28) as 

dH: dE'x dH'x dE: 
Y - r r + y v — — _ - 7 - — - + y v - , 

dy fiQ c dy dz Pq C dz 

f dH: dH'x ^ y — - y —-
dz' 

+j 
dHx dH. 
dz' dx 

+ k 
f dHy dH'x " 

dx dy' 

= iyU'x+VQo) + j J'v+k J[ +i £Q y 

+j 

+k 

dH'x 

/ 

f dH: v dH:A 
7 + 7 

dx 

dH'v v , V a//: 
dx dt 

dt 

dH'x 
dy' 

dE'x ^ dE'x 

dt' dx' 
. dE, 

+ J £o - r - + k £Q —--dt dt 
(29) dE'r 

According to (16), taking into account t h a t \ / p 0 c 2 = e 0 , 
the terms with dE'x/dx', dE'x/dy', dE'Jdz! and Q'Q in (29) 
vanish, so that the equation simplifies to 

i y J'x+j J'x +k J'z + i y e0 —f- + j y £q 
dt 

f dE' dE' ' 
— - + v — -
dt dx 

+ ky £Q 
f dE: dE:' 

+ V L 

dt dx (32) 

dH: dH'x Y —7 ~ Y —T 
dy' dz' + j 

/ dH'r dH7
 A which, by (A16) and (A21), is 

+ k 
dH x dH'x 

dx dy' 

dz dx j ^ J 

= i y J'x+j J'x +k J'z 

dE'x . dEx dE. 
dt dt dt 

i Y 

+ k 
(30) 

dH'z dH'x 

dy' dz' 

dx' av' 

+j 
/ dH'r dH:A 

dz' dx' 
\ / 

i y J'x + j J'x + k J'. 

a It should also be noted that Lorentz, Larmor, Poincare, and 
Einstein used Maxwell's equations in their scalar form. There-
fore they only showed the invariance of the Cartesian compo-
nents of Maxwell's equations but not the invariance of the vec-
tor form of Maxwell's equations. 

dE'x . dE'x dE', 
+1 Y £o TT + J £o ~TT + k £o TT dt dt dt 

(33) 

Comparing the .v, y, and z components of the left side 
of (33) with those of the right side, we find that the 
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components have the same form as the components of 
(28) (the factor y in the x components cancels if one 
equates only the individual components of the left and 
the right side of the equation). Thus the Cartesian com-
ponents of Maxwell 's equation (4) are invariant under 
relativistic transformations, but the vector equation it-
self is not invariant because y is only present in the x 
components of (33) (therefore y cannot be cancelled 
from (33), and (33) does not have the same form as (28) 
or (4)). 

Note that in deriving (33) we used (A 13) which only 
contains the electrostatic charge density. 

3. Noninvariance of the First and the 
Fourth Original Maxwell's Equations under 
Relativistic Transformations involving 
Lorentz-contracted Charges 

As was shown in the preceding section, the invari-
ance of Maxwell 's equations (2) and (3) does not 
depend on the transformation equations for charge or 
current densities. Therefore in the discussion that 
follows we shall only consider Maxwell 's equations (8) 
and (4). 

By examining (12)-(15) we see that if we transform 
(8) by using (A24) (written explicitly for the Lorentz-con-
tracted charge densities) instead of by using (A 12), the 
transformed equation will not be of the form V'-D'=g'0. 
Therefore the original Maxwell's equation (8) (where g0 

is the electrostatic charge density) is not invariant under 
relativistic transformations involving Lorentz-contract-
ed charges. 

By examining (28)-(33) we see that the transition 
from (29) to (30) depends on (16) and therefore depends 
on the invariance of (8). Hence, if (8) is not invariant 
under a particular set of transformations, then (4) is 
also not invariant under the corresponding transformati-
ons. Therefore (4), just like (8), is not invariant under rel-
ativistic transformations involving Lorentz-contracted 
charges. 

4. Invariance of the Relativistic Maxwell's 
Equations under Relativistic Transformations 
involving Lorentz-contracted Charges 

Starting with (9) and repeating the transformations 
used in (12)—(15), but employing now (A23) instead of 
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(A 12), we find by inspection of (12)—(16) that (9) trans-
forms into 

V'-D'=q'0(\-U/2/C2Tu2. (34) 

Thus (9), which is the relativistic form of the original 
Maxwell's equation (8) [or of (1)], is invariant under 
relativistic transformations involving Lorentz-con-
tracted charge densities. Consequently, as explained in 
Sect. 3, (4) (in its scalar form; see Sect. 2) is also invar-
iant under these transformations. And, of course, as ex-
plained in Sect. 2, (2) and (3) (in its scalar form; see 
Sect. 2) are also invariant. Hence the relativistic 
Maxwell's equations (9), (2), (3), and (4) (the last two 
in their scalar forms only) are all invariant under these 
transformations. 

5. Discussion 

As we have seen, contrary to the general perception, 
the invariance of Maxwell's equations under relativistic 
transformations is not clear-cut. First, which is a minor 
point, the equations Vx E = - dB/dt and VxH = J+ dD/dt 
are not invariant in their vector form. Second, which 
is very important, the original, prerelativistic, equation 
V • D = g (where Q-Qo is the electrostatic charge den-
sity) is only invariant if the charge density is transformed 
by means of (A 12) (or by means of an equivalent equa-
tion). Third, the relativistic form V • D = p 0 (1 - u2lc2)~U2 

of the equation V • D = g is invariant provided that the 
charge density is transformed by means of (23) (or by 
means of an equivalent equation), where Lorentz con-
traction of moving charges is explicitly taken into ac-
count. 

Therefore, if moving charges are Lorentz contracted, 
as is now generally believed, the prerelativistic 
Maxwell's equation V • D=g, where g is the electrostat-
ic charge density, is wrong because it does not satisfy the 
requirement that physical laws must have the same form 
in all inertial reference frames (Einstein's principle of rel-
ativity). The relativistically correct Maxwell's equations 
must then be 

V-D = g0(\-u2/c2ym, (35) 

V B = 0 , (36) 

V x E = - f > (37) 

and 

VxH = J + (38) 
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Clearly, if accepted1 ' , the relativistic modification of 
the equation V D=g into V • D = g0 (1 - u2/c2)~U2 will 
have profound effects on the theory of many electromag-
netic phenomena involving rapidly moving electric 
charges. What is especially important, this modification 
will affect not only the theory of charges moving at con-
stant velocities (the domain of the special theory of rel-
ativity), but also the theory of charges moving with ac-
celeration. 

We can obtain an insight into some of the consequenc-
es of replacing V D = g by V • D = g0 (1 - u2/c2)~m by 
examining the following equations representing the gen-
eral solution of Maxwell 's equations for a vacuum [3] 

4JTE0 
J 

4 JT £Q C' 

IJ] 
4 JT 

!£!+ 
r 

! !£!+ 
r r 2 c . dt _ 

' d j ' 
.dt . 

dV', 

• V 
~dj 

l x 
• V c .Bt. J 

rdV' 

(39) 

x r dV'. (40) 

These equations have been obtained by assuming that the 
charge density p in (1) is the electrostatic charge density 
(does not depend on the velocity of the charge) and by 
assuming that J= g uc. Therefore, in terms of the nota-
tions used in this paper, g and J in these equations are 
£) = £>0 and J =g()u, respectively, and the equations can 
be written as 

E = 
4 JT £0 r2 c 

4jT£qC r f 

dt 

d(Qo u)~ 
dt 

rdV' 

dV', (41) 

h I am not aware of any publications expressing Maxwell's equa-
tion V D = G (which represents Gauss's law in its differential 
form) as V D = g{) (1 -u2/c2)~U2. It is remarkable that although 
most authors of books on electromagnetic theory and relativity 
emphasize the idea of Lorentz contraction, they express Gauss's 
law as V• D = Q, with a clear implication that G is the electro-
static charge density, and do not even mention the possibility 
of expressing Gauss's law as V D = (l-tr /c2)"1 / 2 , where the 
Lorentz contraction of moving charges is taken into account. 
c Equations (39) and (40) are closely related to the retarded po-
tential equations 

, , = _ ! _ [ feldV 
4 jt e{)

 J r 
and 

a = f L ü d v . 
47T J r 

(*39) 

(*40) 

which were first obtained (in a different notation) by Ludwig 
Lorenz in 1867, and the meaning of g and J in (39) and (40) is 
the same as that in Lorenz's equations (*39) and (*40). 

and 

4JTJ ] R -2 

1 f I [£>o " ] , 1 
r~ c 

5 ( P o u) 
dt 

xrdV'. (42) 

However, if g in Maxwell 's equation V • D = p is the 
Lorentz-contracted charge density £> = p 0 ( 1 - " 2 /c 2 ) _ 1 / 2 , 
(39) and (40) become 

4 JT £Q [ R r~ c 

d{gQ(\-u2lc2Yxl2} 
dt 

rdV' 

4 JT £Q C R 

2/„2\-l/2i d{g0u {\-uz/cz) 
dt 

dV'. 

(43) 
and 

H l r ][g0u(l-u2/c2rU2] | 1 
4 JT } r r2 c 

2 / / 2 ' d{g0u(\-uz/cz) 
dt 

xrdV'. (44) 

The difference between (41), (42) and (43), (44) is pro-
found. The electric and magnetic fields given by (41) and 
(42) are quite distinct from the fields given by (43) and 
(44). In particular, the presence of additional us in (43) 
and (44) makes the time derivatives in (43) and (44) com-
pletely different from those in (41) and (42). This means, 
among other things, that the electric and magnetic fields 
for charges in accelerated motion (and therefore all radi-
ation fields and associated effects) computed f rom (43) 
and (44) are fundamentally different from the fields com-
puted from (41) and (42). 

It is important to emphasize that (39) and (40) are the 
general solutions of Maxwell 's equations. Therefore the 
differences manifested by comparing (41) and (42) with 
(43) and (44) will be inevitably replicated in all formu-
las and equations for rapidly moving charges (regardless 
of the actual method of derivation) depending on wheth-
er these formulas and equations are based on the prerel-
ativistic Maxwell 's equations or on Maxwell 's equations 
corrected for Lorentz contractions of moving charges. 

But can we be absolutely certain that the relativistic 
modification of the equation V D = g and the corre-
sponding modification of the various electrodynamic 
equations are necessary? It has been recently shown [4] 
that the main equations of the special theory of relativ-
ity can be obtained without invoking Lorentz contraction 
of moving bodies. Similarly, the relativistically correct 
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expressions for the electric and magnetic fields of mov-
ing point and line charges can be obtained without as-
suming that moving charges are Lorentz-contracted [5, 
6]. Furthermore, it is known that the relativistic transfor-
mation equations for all electromagnetic quantities can 
be derived from the prerelativistic Maxwell 's equations 
by assuming that these equations have the same form in 
all inertial frames [7], It is also well known that the phys-
ical significance of Lorentz contraction has been the sub-
ject of considerable controversy and re-interpretation [8]. 
However, the controversy and the re-interpretation have 
not at all affected the theory of relativity as such. There-
fore, although the idea of Lorentz contraction is impor-
tant in Einstein's approach to the formulation of the spe-
cial relativity theory, it does not appear to be an indis-
pensable element of the theory of relativity itself. 

There may be a simple explanation why the controver-
sy about Lorentz contraction and the different re-inter-
pretations of its physical significance have had no effect 
on the theory of relativity. If one accepts the theory of 
relativity as the body of equations, methods, and tech-
niques whereby physical quantities measured in one in-
ertial reference frame can be correlated with physical 
quantities measured in any other inertial reference frame, 
then the interpretation of this or that relativistic formula 
or equation does not affect the theory, since a mere inter-
pretation of a formula or equations does not change the 
formula or equations. Therefore the fact that the original 
Maxwell ' s equations are not invariant under relativistic 
transformations involving Lorentz-contracted charge 
densities may not necessarily mean that the original 
Maxwell 's equations are incorrect, especially in view of 
the fact that they are invariant under relativistic transfor-
mations not involving Lorentz-contracted charge den-
sities. This brings us to ( A l l ) and (A 12). If interpreted 
as relations between proper charge densities, these equa-
tions are wrong because proper charge densities are in-
variant by definition. However, if interpreted as charge 
density transformation equations disregarding Lorentz 
contraction (thereby eliminating the distinction between 
proper and nonproper charge densities), they cannot be 
objectively rejected unless the reality of Lorentz contrac-
tion is proved beyond any doubtd . 

Thus the above analysis of the relativistic invariance 
of Maxwell ' s equation presents us with a dilemma: ei-

ther we accept Maxwell 's equations in their original form 
and once again question the physical significance of Lo-
rentz contraction, or we modify Maxwell 's equations and 
question the validity of many formulas and equations de-
rived from the original Maxwell 's equations. At this time 
it is hardly possible to resolve the dilemma on the basis 
of theoretical considerations. In all probability the reso-
lution of the dilemma will come from new experiments 
with rapidly moving charges and f rom comparing the two 
alternative theoretical models with the experimental data. 
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Appendix [9] 

E -E' 

Ey=y(E'v+vB'z), 

Ey=Ey/y+V Bz, 

Ez=y(E'z-vB'y), 

Ez=E'z/y-vBx, 

BX=B'X, 

By= y (B'y- v E'z/c2), 

By=B'y/y-v Ez/c2, 

Bz = y (B'z+v E'y/c2), 

Bz= B'z/y+v Ey/c2, 

Qo=Y[Q'O + (V'C2)Jx], 

Qo=Qo/y+(v/c2)Jx, 

J x = Y ( J x + ve'0), 

jy=j;, 

J7 = J' 

dx 

d 

>=y{Tx 

1 Ö 
d It is important to emphasize that the modification of Maxwell's 
equation V- D = Q into V-D = Q() (\-U2/C2)'U2 does not depend 
on(Al 1) and (A 12) or on their interpretation. Therefore, the con-
siderations concerning (39)-(44) presented above remain valid 
regardless of the meaning or validity of (All) and (A 12). 

V d 
V dt 

V d 
c 2 dt' 

J _ = J L 
dy dy' ' 

( A l ) 

(A2) 

(A3) 

(A4) 

(A 5) 

(A 6) 

(A 7) 

(A 8) 

(A 9) 

(A 10) 

( A l l ) 

(A 12) 

(A 13) 

(A 14) 

(A 15) 

(A 16) 

(A 17) 

(A 18) 
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^ j The following equations are obtained from ( A l l ) -
— = — , (A 19) (A 13) by writing them explicitly for Lorentz-contracted 

charge densities 

l = y f _ L _ v J L \ (A 20) Qo(\-u2lc2ym= y [PO (1 -M / 2 /C2)_ 1 / 2+ (v/c2) J'x], (A22) 

Ör '' po(1 -u2/c2r 1/2= pö(1 -u,2/c2yU2/y+ (v/c2) (A23) 

= + (A21) Jx=y[Jx + vg'0(\-u/2/c2rU2]. (A24) 
v dr dx J 
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