^{121,123}Sb and ²⁰⁹Bi Nuclear Quadrupole Resonance Study of Complex Compounds of Antimony(III) and Bismuth(III) in the Temperature Range 77–400 K*

L. A. Zemnukhova and R. L. Davidovich

Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences 159, Prospect 100-letiva Vladivostoka, Vladivostok, 690022, Russia

Z. Naturforsch. 53a, 573 – 584 (1998); received May 4, 1998

A large number of solid fluoride and heteroligand acidocomplex compounds of antimony(III) and bismuth(III) with single and mixed cations has been prepared from aqueous solutions. Their crystal structures and 121,123 Sb and 209 Bi NQR spectra have been investigated in a wide temperature range.

Preface

The present paper complex compounds of Sb(III) and Bi(III) are studied by the ^{121,123}Sb and ²⁰⁹Bi NQR spectroscopy.

All the crystal line substances delt with in this work were prepared from aqueous solutions. Some complexes of Sb(III) and Bi(III) have analogs among complexes of trivalent aluminium, gallium, indium, and thallium, whose NQR spectra were reported and discussed by Deeg and Weiss [1, 2], Ramakrishnan and co-authors [3], Chihara and Nakamura [4], Guibé and Jugie [5], and Semin with co-authors [6].

The NQR spectra of ^{121,123}Sb and ²⁰⁹Bi were measured with an ISSh-1-13 pulse NQR spectrometer equipped with a temperature accessory. The first work on NQR study of antimony(III) complexes was carried out with the help of Dr. Kravchenko [7], some successive works on temperature dependences of NQR spectra were carried out jointly with Professor G. K. Semin's Laboratory at the Institute of Organoelement Compounds, Russian Academy of Sciences. The calculations of temperature parameters of some NQR spectra were performed by Professor R. Sh. Lotfullin. X-ray analysis and another physical methods were used to study the complexes obtained along with the NQR method.

Results and Discussion

Each antimony atom in the crystal structure of SbF₃ is bound to three fluorine atoms (Fig. 1), and the SbF₃ groups form a three-dimensional network through fluoride bonds [8]. The coordination polyhedron of antimony is a distorted SbEF₆ octahedron, where E indicates a lone electron-pair. The complete ^{121,123}Sb NQR spectrum at 77 K was reported in [7, 9]. The study of the temperature dependence of the NQR parameters for SbF₃ [10] showed the following:

- 1) both ¹²¹Sb and ¹²³Sb NQR spectra are singlet, the signals are observed in the range 77–350 K;
- 2) a phase transition resulting in the piezoelectric phase occurs in the range 190–215 K;
- 3) the temperature dependence of ¹²¹Sb NQR spectral parameters in SbF₃ is explained on the basis of Bayer's

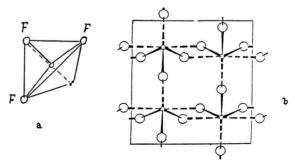


Fig. 1. The scheme of SbF₃ structure: a) antimony(III) polyhedron, b) the projection of the structure SbF₃.

Reprint requests to Dr. L. A. Zemnukhova; Fax: 7(4232) 311889; E-mail: chemi@online.ru.

I. Antimony Trifluoride, SbF3

^{*} Presented at the XIVth International Symposium on Nuclear Quadrupole Interactions, Pisa, Italy, July 20–25, 1997.

theory and described by the formula [11]:

$$v_{\text{exp}} = v_{\text{Bayer}} + \sum_{n=0}^{6} B_n T^n.$$
 (1)

- 4) unlike SbCl₃ [12], the asymmetry parameter varies in the range 4.3÷5.6% and increases nonlinearly as the temperature increases;
- 5) a zero-magnetic-field splitting of line corresponding to the (1/2 ↔ 3/2) transition in the range 92-275 K is observed.

II. Homoligand Fluoride Complexes of Antimony(III)

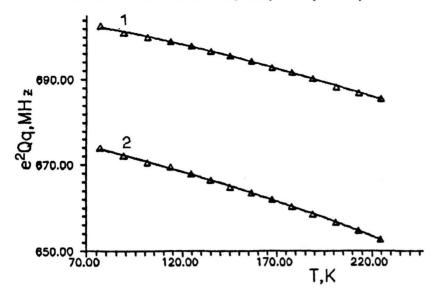
The NQR spectra of antimony(III) fluoride complexes with monovalent MSb_4F_{13} , MSb_3F_{10} , MSb_2F_7 , $M_3Sb_4F_{15}$, $MSbF_4$, and M_2SbF_5 cations are studied.

Complexes MSb₄F₁₃

The MSb_4F_{13} complexes (M = K, Rb, Cs, and NH_4) are isostructural at room temperature. The structure of the complex KSb_4F_{13} [13] contains $[Sb_4F_{13}]^-$ anions built of four SbF_3 molecules shifted to a thirteenth fluorine atom by weaker "secondary" bonds. The investigation of the $^{121,123}Sb$ NQR spectra of MSb_4F_{13} complexes has shown that

- NQR signals can be observed only at low temperatures;
- complexes with M=K and Rb [14] exhibit singlet, while those with M=Cs and NH₄ [7] exhibit doublet NOR spectra at 77 K;
- 3) the temperature coefficients of the NQR frequencies for RbSb₄F₁₃ are negative [14] like those for SbF₃, but their values differ from one another in the range 77–270 K (Fig. 2);
- 4) the complex RbSb₄F₁₃ exhibits piezoelectric properties

Complexes MSb₃F₁₀


Only complex NaSb₃F₁₀ was studied. Earlier, it was erroneously described as NaSb₂F₇. The structure of NaSb₃F₁₀ and its NQR spectrum at 77 K were investigated in [15] and [7], respectively.

Complexes MSb₂F₇

A group of heptafluoroantimonates MSb_2F_7 (M=K, Rb, Cs, Tl, NH_4 , Et_2NH_2 , CN_3H_6 , CN_4H_7 , $C_2N_3H_4$, Nic, and Gly) has been investigated. The crystal structures of KSb_2F_7 [16], $CsSb_2F_7$ [17], and $(C_2N_3H_4)Sb_2F_7$ [14] are known. All the antimonates(III), except $CsSb_2F_7$, have

Fig. 2. Temperature dependence of the ¹²³Sb NQR frequencies in RbSb₄F₁₃: $1 - v_1 = \pm (1/2 \leftrightarrow 3/2)$; $2 - v_2 = \pm (3/2 \leftrightarrow 5/2)$.

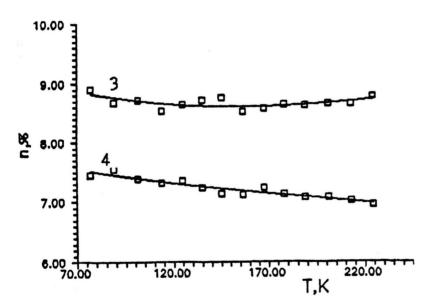


Fig. 3. Temperature dependence of the quadrupole coupling constants e^2Qq (1 and 2 for Sb₁ and Sb₂) and asymmetry parameters η (3 and 4 for Sb₁ and Sb₂) for the antimony atoms ¹²³Sb in KSb₂F₇.

multiplet ^{121,123}Sb NQR spectra at 77 K [7, 18–23], similarly to analogous gallium compounds [1]. TlSb₂F₇ [18] has the most complicated NQR spectrum corresponding to six nonequivalent sites of the antimony atoms in the crystal lattice. The temperature variations of the NQR parameters for MSb₂F₇ (M=K, Tl, and CN₃H₆) are studied [14]. Their NQR spectra are characterized by fading the signals in the range 220–290 K (Figs. 3–5). A superionic phase transition occurs in TlSb₂F₇ at 240 K [24].

Complexes M₃Sb₄F₁₅

The study of the crystal structure of $M_3Sb_4F_{15}$ complexes (M = K and Cs) is now in progress. $K_3Sb_4F_{15}$ exhibits piezoelectric properties. The complexes have multiplet spectra at 77 K [14].

Complexes MSbF₄

Tetrafluoroantimonates $MSbF_4$ (M = Na, K, Rb, Cs, Tl, NH_4 , Pr_2NH_2 , Et_2NH_2 , Et_4N , CN_3H_6 , CN_4H_7 , Nic,

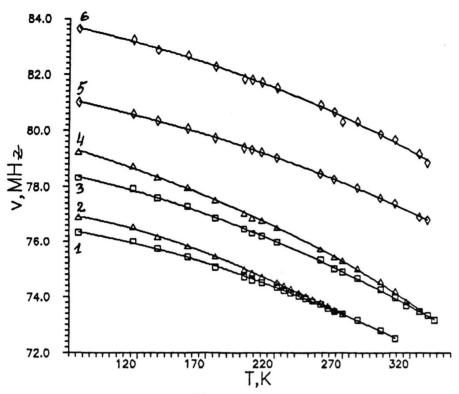


Fig. 4. Temperature dependence of the ¹²¹Sb NQR frequencies $v=\pm(1/2\leftrightarrow3/2)$ in TlSb₂F₇ (1-6 for Sb₁₋₆).

and Gly) are not isostructural. The crystal structures were determined for NaSbF₄ [25], KSbF₄ [26], TlSbF₄ [27], CN₃H₆SbF₄ [28], CsSbF₄ [27a], and NH₄SbF₄ [27]. The NQR spectra of MSbF₄ at 77 K have different multiplicity depending on the character of the cation [7, 18-23]. $KSbF_4$, containing the $[Sb_4F_{16}]^{4-}$ anion in its structure, has the most complicated quadruplet spectrum. The temperature dependence of the NQR spectra for MSbF₄ $(M = Na, K, Tl, NH_4, and CN_3H_6)$ was studied [29–31]. The temperature range in which the signals are observed depends on the cation. A phase transition in KSbF₄ at 190 K was found from its NQR spectrum. The asymmetry parameter η for MSbF₄ (M=NH₄ and CN₃H₆) increases with temperature; this may be due to the presence of hydrogen bonds in these complexes. Superionic phase transitions in complexes MSbF₄ (M=K and CN₃H₆) were also observed at 483 and 253 K [29, 32].

Complexes M2SbF5

Pentafluoroantimonates M₂SbF₅ (M = Na, K, Rb, Cs, Tl, NH₄, Et₂NH₂, Et₄N, Bu₄N, CN₃H₆, and CN₄H₇) are the most investigated group among fluoride complexes

of antimony(III). Some of them form the isostructural series. The structures of the following pentafluoroantimonates(III) are known: Na_2SbF_5 [33], K_2SbF_5 [34, 35] and $(NH_4)_2SbF_5$ [36, 37]. The $[SbF_5]^{2-}$ anion in M_2SbF_5 was shown to have a distorted octahedral SbF_5 configuration with the lone pair in one of its vertices.

All pentafluoroantimonates(III), except (CN₄H₇)₂SbF₅, have singlet ^{121,123}Sb NQR spectra at 77 K [7, 18–20]. Their NQR parameters depend on the cation. The temperature dependence of NQR parameters for all (even isostructural) complexes are different, and their specific features depend on the character on the cation [31, 38–41]. A change in the multiplicity of the NQR spectrum was found in K₂SbF₅, and the transition from the paraelectric phase to the commensurate one was shown to pass via incommensurate and then commensurate-modulated phases. The NQR frequencies in (NH₄)₂SbF₅ increase anomalously with temperature. This complex was also studied by Nakamura [38].

A nonlinear change of the asymmetry parameter η is observed for the remaining M_2SbF_5 (M = Na, Rb, Cs, Tl, and CN_3H_6) complexes. The complexes M_2SbF_5

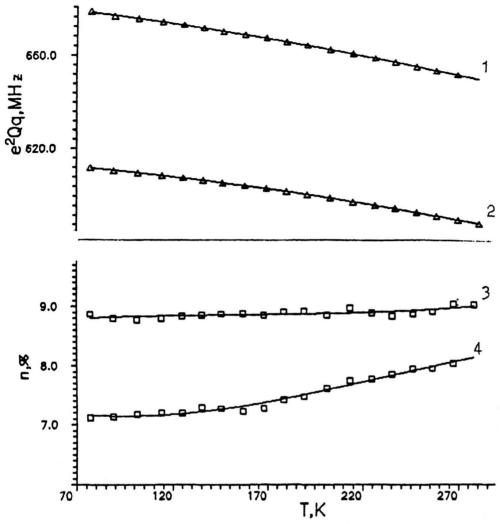


Fig. 5. Temperature dependence of the quadrupole coupling constants e^2Qq (1 and 2 for Sb₂ and Sb₁) and asymmetry parameters η (3 and 4 for Sb₁ and Sb₂) for the antimony atoms ¹²³Sb in CN₃H₆Sb₂F₇.

 $(M=Na, K, Rb, Cs, and NH_4)$ were also shown to be ionic conductors, while $(NH_4)_2SbF_5$ is a superionic conductor [42]. Moreover, Na_2SbF_5 exhibits piezoelectric properties.

III. Fluorocomplexes of Antimony(III) with Mixed Cations

Two types of antimony(III) fluorocomplexes with mixed cations, $M_{2-x}M'_xSbF_5$ and $M_{1-x}M'_xSbF_4$ (M, M'=Na, K, Rb, Cs, and NH_4), were prepared.

Pentafluoride Complexes $M_{2-x}M'_xSbF_5$.

The individual complexes NaM'SbF₅·1.5 H₂O (M'= K and Rb) are isostructural only at room temperature, and the solid solutions of composition $M_{2-x}M'_xSbF_5$ (M=K, Rb, and Cs; M'=Rb and NH₄), isostructural to M_2SbF_5 , contain a complex $[SbF_5]^{2-}$ anion [43]. The ^{121,123}Sb NQR spectra of these substances have the following peculiarities:

 unlike M₂SbF₅, the singlet spectra of all pentafluoroantimonates with mixed cations are observed only at low temperatures;

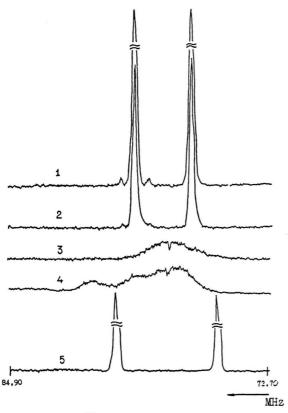


Fig. 6. The NQR 123 Sb spectrum of the system CsF: NH₄F: SbF₃ in the region 72.70–84.90 MHz at 77 K for the molar ratios: 1:0:1 (1); 0.75:0.25:1 (2); 0.5:0.5:1 (3); 0.25:0.75:1 (4); 0:1:1 (5).

- 2) a second-order phase transition occurs for the complexes NaM'SbF₅·1.5 H₂O in the range 160–180 K;
- 3) the complete NQR spectrum for the solid solutions of composition $M_{2-x}M'_xSbF_5$ is observed in a narrow temperature range (77–120 K);
- 4) a sharp decrease in the integrated intensities of the signals and the line broadening from 180 to 1400 kHz are observed at x>0.25; no NQR signals for the substances with M'=NH₄ are observed even at 77 K;
- 5) the [SbF₅]²⁻ polyhedra show an increase in the symmetry of the electric field gradient on the antimony atom.

Tetrafluoride Complexes M_{1-x}M'_xSbF₄

The solid solutions of composition MM'SbF₄ (M = K and Cs; M' = Cs and NH_4) and a new complex $NaCs_3Sb_4F_{16} \cdot H_2O$ were prepared by the reaction of tetrafluoroantimonates MSbF₄ and M'SbF₄ [14]. A prelim-

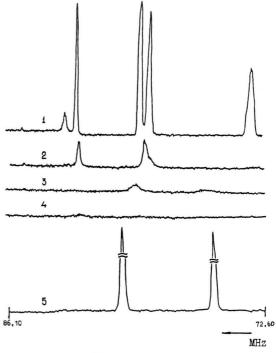


Fig. 7. The NQR 123 Sb spectrum of the system KF: NH₄F: SbF₃ in the region 72.60–86.10 MHz at 77 K for the molar ratios: 1:0:1(1); 0.75:0.25:1(2); 0.5:0.5:1(3); 0.25:0.75:1(4); 0:1:1(5).

inary investigation shows that $NaCs_3Sb_4F_{16} \cdot H_2O$ probably has the $[Sb_4F_{16}]^{4-}$ anion, as $KSbF_4$. This new complex has a multiplet NQR spectrum corresponding to four nonequivalent positions of the antimony atoms in the unit cell, and the complex $[Sb_4F_{16}]^{4-}$ anion exists in the temperature range 77–295 K. The NQR spectra of the solid solutions of composition $M_{1-x}M_x'SbF_4$ either have very broad lines at 77 K (Fig. 6) or are not detected at all (Figure 7).

IV. Fluorocomplexes of Antimony with Mixed Ligands

A large number of heteroligand complexes of antimony(III) was synthesized. Their compositions belong to six types: $M_4Sb_3F_{13-x}Y_x$, $M_3Sb_2F_{9-x}Y_x$, $MSb_2F_{7-x}Y_x$, $MSbF_{4-x}Y_x$, $M_2SbF_{5-x}Y_x$, and $M_3SbF_{6-x}Y_x$.

Complexes M₄Sb₃F_{13-x}Y_x

Our attempts to obtain fluoride analogs of such composition from aqueous solutions failed. Only the complex $M_4Sb_3F_{13-x}Y_x$ (M=K; Y=Cl, x=6), erroneously

described as $K_3Sb_2Cl_4F_5$, was studied [44]. The study of the structure of $K_4Sb_3F_7Cl_6$ is now in progress. This compound exhibits piezoelectric properties. Its NQR spectrum, measured at 77 K, has a multiplet pattern that shows that the antimony atoms occupy three nonequivalent sites [14].

Nonaligand Complexes M₃Sb₂F_{9-x}Y_x

Five complexes of this composition, belonging to the groups nitrate-fluorides and sulphate-fluorides, were studied. Among complexes $M_3Sb_2F_9$, the crystal structure of $[Co(NH_3)_6]Sb_2F_9$ has been determined. It contains $[Sb_2F_9]^{3-}$ anions which consist of distorted octahedral $SbEF_5$ polyhedra [45]. The structure of $K_3Sb_2F_7(NO_3)_2$ was found to contain the dimeric $[Sb_2F_7]^-$ anions consisting of distorted trigonal $SbEF_4$ bipyramids [46]. The structure of $Cs_3Sb_2F_6(NO_3)_3$ is built of zigzag-like $[Sb_2F_6(NO_3)_3]_n^{3n-}$ ribbons consisting of SbF_2O_3 octahedra [47]. The NQR spectra of these complexes are singlet [48] and have lower frequencies in the octahedral polyhedra.

Complexes $M_6Sb_4F_{12}(SO_4)_3$ (M=Rb, Cs, and NH₄) are isostructural [49]. Compounds with Rb and NH₄ cations are piezoelectric, while the ammonium compound has anomalous dielectric properties in the temperature range from 240 to 260 K. The structure of (NH₄)₆Sb₄F₁₂(SO₄)₃ has six nonequivalent sites of the antimony atoms that belong to the octahedra of two different types: SbEF₄O₂ and SbEF₃O₃ [50]. The NQR spectra studied by us [51] and Chihara [52] at 77 K have a complicated multiplet structure corresponding to four nonequivalent sites of the antimony atoms and weak broad lines.

Heptaligand Complexes $MSb_2F_{7-x}Y_x$

The NQR spectra of two complexes with mixed ligands, NaSb $_2F_6(OH) \cdot H_2O[53]$ and RbSb $_2F_5C_2O_4[54]$, were investigated. The structure of NaSb $_2F_6(OH) \cdot H_2O$ contains dimeric [Sb $_2F_6(OH)$]⁻ anions consisting of two SbF $_3$ groups linked via a bridge hydroxyl group. The structure of [Sb $_2F_6OH$]⁻ anions is similar to that of CsSb $_2F_7$. However, unlike the singlet spectrum of CsSb $_2F_7$, the heptaligand complex has a doublet NQR spectrum.

The anionic $[Sb_2F_5C_2O_4]_n^{n-}$, layers consisting of two different antimony polyhedra, the pentagonal $Sb(1)EF_5O_2$ bipyramids and the trigonal $Sb(2)EF_2O_2$ bipyramids, form the basis for the structure of complex $RbSb_2F_5C_2O_4$, which has doublet NQR spectra at 77 K

and 298 K. The asymmetry parameters differ considerably from one another.

Tetraligand Complexes MSbF_{4-x}Y_x

Tetrafluoroantimonates(III) with mixed ligands are the largest group of complexes studied by the NQR method. They can be divided into the following series:

- 1) complexes $MSbF_3Y$ (Y = Cl [7, 55], Br [56, 57], NO_3 [31, 48], H_2PO_4 [58], and NCS [19]);
- 2) complexes $MSbF_2Y_2$ (Y = SO_4 [19], SeO_4 [59], C_2O_4 [14], and $C_6H_6O_7$ [19]);
- 3) complexes $MSbFY_3$ (Y = PO_4 [58]).

As a rule, these complexes have singlet NQR spectra. Their parameters, as well as their temperature dependence, depend on the type of the complex and the nature of the cation. The asymmetry parameters η of the antimony atoms in complexes MSbF_{4-x}Y_x have higher values than those in SbF₃. The NQR spectrum of CsSbF₃Cl has been analysed in more detail in at 77–330 K [60]. The layers of isolated [Sb₄F₁₂Cl₄]⁴⁻ anions form the basis for the structure of the complex [61]. The coordination polyhedron of antimony is a distorted SbEF₃Cl₂ octahedron. The temperature dependence of the experimental values of QCC is described by the formula:

$$(e^2 Qq_{zz})_{\text{exp}} = (e^2 Qq_{zz})_{Bayer} + \sum_{n=0}^{3} B_n T^n,$$
 (2)

where $B_0 = 27.913 \cdot 10^{-2}$; $B_1 = 43.413 \cdot 10^{-4}$; $B_2 = -13.349 \cdot 10^{-5}$; and $B_3 = -23.253 \cdot 10^{-9}$.

The temperature dependence of the asymmetry parameter η is not described by the Bayer's theory. We assume that the redistribution of the electron density between the electric field gradient (EFG) components e^2Qq_{xx} and e^2Qq_{yy} at the ¹²³Sb nucleus, resulting in a change in the asymmetry parameter, is due to the volume effect in CsSbF₃Cl crystal.

Pentaligand Complexes $M_2SbF_{5-x}Y_x$

The ^{121,123}Sb NQR spectra of the following compounds were studied:

- 1) complex $K_4Sb_2F_7(NO_3)_3$ [48];
- 2) complexes $Rb_2SbF_3(NO_3)_2$ [48] and $M_2SbF_3Y_2$ (Y = SO_4 [9, 41, 51], SeO_4 [59] and C_2O_4 [9]);
- 3) complexes M₂SbF₂Cl₃ [62].

They have different multiplicities depending on the type of the complex and the cation nature.

Hexaligand Complexes M₃SbF_{6-x}Y_x

The NQR spectra of hexafluoride complexes of such composition are unknown. Among mixed hexafluoroligand complexes, the compounds $M_3SbF_3(NO_3)_3$ (M = Rb and NH_4) with singlet spectra at 77 K [48] and $Cs_3SbF_2(C_2O_4)_2 \cdot 3 H_2O$ were studied. No NQR signals were detected in the last complex [14].

V. Adducts SbF_3L_n

The acceptor properties of the SbX₃ halides (X = CI, Br, and I), which are typical Lewis acids, are well known [1–3]. The Lewis acid properties of Sb(III) halides increase in the sequence SbCl₃>SbBr₃>SbI₃, but the available data are too scarce to place SbF₃ in this series [63].

We have synthesized and investigated by the NQR ^{121,123}Sb method three groups of new adducts of SbF₃ with the oxygen-containing donor ligands (dimethylsulphoxide (DMSO) [64], dimethylformamide (DMF) [19], and glycine (Gly) [22]) and with the nitrogen-containing donor ligands (nicotinic amide (Nic) [21]). Specific features of their spectra follow:

The 2:1 Adducts, $2SbF_3L$ (L = DMSO and Gly)

Such type of complexes of SbF_3 with an organic ligand were prepared for the first time. They have doublet NQR spectra. The transition frequencies and asymmetry parameters for the Sb(1) and Sb(2) atoms are higher than those in SbF_3 . The adduct with DMSO exhibits piezoelectric properties.

The 1:1 Adducts, SbF_3L (L = DMSO, DMF, and Gly).

The structure of SbF₃ · Gly consists of molecular complexes [SbF₃([†]NH₃CH₂COO⁻)] linked via hydrogen bonds in a three-dimensional framework. The ^{121,123}Sb NQR spectra of the SbF₃L adducts are singlet. The frequencies in the adducts with DMSO and DMF are close to those for SbF₃, but the asymmetry parameters are higher.

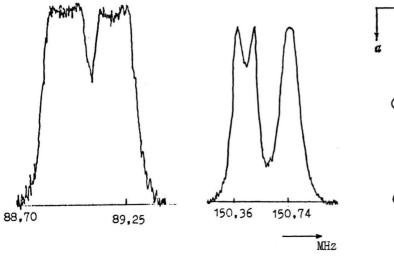
The 1:2 Adducts, SbF_3L_2 (L=DMSO and Nic)

The NQR spectrum of SbF₃ \cdot 2 DMSO has not been detected. The complex SbF₃ \cdot 2 Nic has a singlet NQR spectrum with lower transition frequencies and smaller asymmetry parameter than those in SbF₃.

VI. Oxofluoride Compounds of Sb(III)

Previously, two modifications of antimony oxofluoride SbOF were obtained by hydrolysis of SbF₃ [65]. Their NQR spectra are unknown up to date. We have also synthesized the SbOF \cdot Gly adduct but failed to detect the NQR signals in this compound even at 77 K [22]. We have prepared another oxofluoride, Sb₃O₂F₅ [66], and some complexes of the Sb₂OF₄ \cdot 2 Urea [67] and Sb₂OF₄ \cdot MX types (M=K, Rb, and Cs; X=Cl, Br, and I [68]).

Oxofluoride Sb₃O₂F₅


The structure of $\mathrm{Sb_3O_2F_5}$ crystals consists of the polymeric layers $(\mathrm{Sb_3O_2F_5})_n$ of four different polyhedra with mixed ligands $\mathrm{SbEX_4}$. The NQR spectrum of this antimony(III) oxofluoride at 77 K has a complicated multiplet structure of 20 lines (Table 1). Moreover, a zero-magnetic-field splitting of line corresponding to the $(1/2 \leftrightarrow 3/2)$ transition similar to that for $\mathrm{SbF_3}$ [14] is observed (Figure 8).

Adduct $Sb_2OF_4 \cdot 2(NH_2)_2CO$

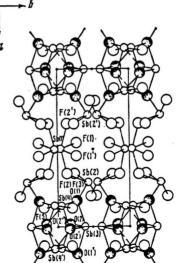

We investigated the structure of $Sb_2OF_4 \cdot 2$ Urea [67] simultaneously and independently of Bourgault and coworkers [69] and showed that it consists of the dimeric molecular complexes [$\{SbF_2CO(NH_2)_2\}_2O$] with two nonequivalent antimony atoms. This compound has a doublet NQR spectrum in the range 77–365 K. The temperature coefficients of the asymmetry parameters are positive [31].

Table 1. The NQR ¹²¹Sb parameters in some compounds of antimony(III).

Compound	<i>T</i> , K	η , %	e^2Qq MHz	Reference
SbF ₃	77 298	4.3 5.2	536.7 527.1	[7, 9] [10]
$Sb_3O_2F_5$	77	7.7 23.8 36.0 36.7	499.5 499.6 659.2 754.2	[14]
$SbF(SeO_4) \cdot H_2O$	77 298	2.8 7.6	485.4 433.6 were not ob	[70]
SbF(OH)(HSO ₄)	77	11.8	482.7	[70]
$RbSbF_2SO_4$	77 298	19.3 20.3	542.2 524.5	[59]
CsSbF ₂ SO ₄	77	1.6	419.2	[59]
K_2SbF_5	77	8.8	462.8	[7, 40]
SbHedta	77	12.7	384.7	[76]

The projection of the structure of $Sb_2O_3F_5$ along the axis c.

Complexes Sb₂OF₄ · MX

Oxofluoride complexes $Sb_2OF_4 \cdot MX$ (M = K, Rb, Cs, and NH_4 ; X = Cl, Br, and I) have not been adequately studied. No NQR signals were observed in these compounds. Since they are often formed as mixtures with heptafluoroantimonates MSb_2F_7 whose signals are well detected, the MSb_2F_6Cl composition was erroneously ascribed to these complexes [7].

VII. The Products of Fluorine Substitution in SbF₃

Two compounds were synthesized: SbF(SeO₄) · H₂O and SbF(OH)(HSO₄) [70]. A distorted SbEF₅ octahedron is the coordination polyhedron of antimony in the structure of antimony(III) selenate-fluoride. The 121,123 Sb NQR spectrum of SbF(SeO₄) · H₂O is a multiplet at 77 K but it has not been observed at room temperature, which likely indicates a phase transition in this compound (Table 1). According to the NQR spectrum of SbF(OH)(HSO₄) measured at 77 K, the antimony atoms in this compound are equivalent, and their asymmetry parameter η is larger than that in selenatofluoroantimonate(III).

VIII. Halogen-Containing Complexes of Bismuth(III)

The NQR ²⁰⁹Bi spectra of complex halogen-containing compounds of bismuth(III) are less investigated than the antimony(III) complexes. This is likely due to the fact

Table 2. The NQR 209 Bi parameters in some compounds of bismuth (III).

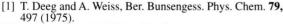
Compound	<i>T</i> , K	η, %	e ² Qq MHz	Refer- ence
$\overline{\text{Bi}_2(\text{SO}_4)_3 \cdot 3\text{H}_2\text{O}}$	77 298	28.0 25.0	446.8 437.5	[71]
MBi(SO ₄) ₂ (M-K, Rb, NH ₄)	77 298	signals	were not o	[14] observed
$Rb_3Bi_2Cl_5(SO_4)_2 \cdot 3 H_2O$	77	62.3 69.8	377.7 405.2	[71]
KBiCl ₂ SO ₄	77 298	77.1 81.0	464.8 438.1	[71]
NH ₄ BiCl ₂ SO ₄	77 298	84.0 84.5	469.9 442.6	[71]
MBiCl ₂ SO ₄ (M-Rb, CN ₃ H ₆)	77 298	signals	were not o	[14] observed
K ₂ BiF ₅	77	40.7	144.9	[14]
BiHedta	77	39.0	261.1	[76]

that many halogen-containing bismuth(III) complexes have a regular octahedral surrounding in their structures. We have studied the ²⁰⁹Bi NQR spectra of the following compounds: nonaligand dibismuthate, tetraligand and pentaligand bismuthates.

Nonaligand Complexes $M_3Bi_2Cl_{9-x}Y_x$

Several chloronitrate and chlorosulphate nonaligand bismuth(III) complexes were studied. Some of them are

piezoelectrics. NQR spectra for most compounds are not detected. A doublet NQR spectrum [71] was observed for $Rb_3Bi_2Cl_5(SO_4)_2 \cdot 3 H_2O$, whose structure contains two nonequivalent sites of bismuth atoms [72] with high asymmetry parameters (Table 2).


Tetraligand Complexes MBiCl_{4-x}Y_x

We synthesized chloronitrate and chlorosulphate bismuth(III) complexes of composition $MBiCl_3NO_3$ (M = K and CN_3H_6) and $MBiCl_2SO_4$ (M = K, Rb, NH₄, and CN_3H_6), respectively [14, 71, 73]. The latter form an isostructural series. Some of these complexes are piezoelectric.

The bismuth polyhedron in $MBiCl_2SO_4$ [74] can be described as a distorted $[BiECl_2O_3]^-$ octahedron similar to the $[SbEF_2O_3]^-$ anions in $MSbF_2SO_4$ compounds [75]. No NQR signals were detected in the compounds (CN_3H_6) BiCl $_3NO_3$ and $MBiCl_2SO_4$ (M=Rb) and CN_3H_6 ; the remaining complexes have singlet spectra observed only at low temperatures and high values of the asymmetry parameters compared to complex tetrafluoroantimonates(III) (Table 2).

Pentafluorobismuthate K_2BiF_5

This complex was prepared from a solution in our laboratory [14]. The ²⁰⁹Bi NQR spectrum of potassium pentafluorobismuthate(III) is a singlet at 77 K and near room temperature, as for K₂SbF₅ (Figure 9). Unlike the antimony complex K₂SbF₅, it has no phase transitions with change of multiplicity in the range 77–270 K. The asymmetry parameter of bismuth atoms in K₂BiF₅ is larger by almost an order of magnitude than that for the antimony atoms in K₂SbF₅ [40]. It should be noted that the asymmetry parameters of bismuth atoms are, as a rule, much larger than those in similar antimony(III) compounds, which was also confirmed in our studies of the ^{121,123}Sb and ²⁰⁹Bi NQR spectra of ethylenediaminete-traacetates [76].

^[2] K. Yamada and A. Weiss, Ber. Bunsengess. Phys. Chem. 87, 932 (1983).

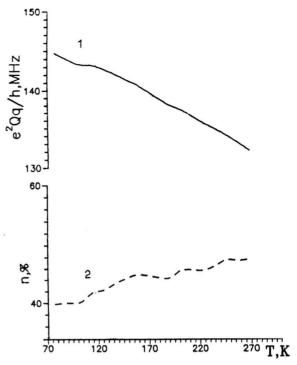


Fig. 9. Temperature dependence of the ²⁰⁹Bi quadrupole coupling constant (1) and asymmetry parameter (2) of K₂BiF₅.

Conclusions

The investigation of complex compounds of antimony(III) and bismuth(III) by NQR spectroscopy on the ^{121,123}Sb and ²⁰⁹Bi nuclei allowed us to obtain information on the structure and properties of these compounds in the temperature range from 77 to about 400 K and to show that many compounds, first of all complex fluorides of antimony(III), have special physical properties related to phase transitions.

- [6] G. K. Semin, T. A. Babushkina, and G. G. Yakobson, Primenenie yadernogo kvadrupol'nogo rezonansa v khimii [Application of Nuclear Quadrupole Resonance in Chemistry], Khimiya, Leningrad, 1972 (in Russian).
- [7] E. A. Kravchenko, R. L. Davidovich, L. A. Zemnukhova, and Yu. A. Buslaev, Dokl. Akad. Nauk SSSR. 214, 611 (1974) [Dokl. Chem. 214, (1974). (Engl. Transl.)].
 - 3] A. J. Edwards, J. Chem. Soc., A. 17, 2751 (1970).
- [9] E. V. Bryukhova, V. A. Egorov, I. M. Alymov, and G. K. Semin, Izv. Akad. Nauk SSSR. Ser. Khim. 1919 (1974)

^[3] L. Ramakrishnan, S. Soundararajan, V. S. S. Sastry, and J. Ramakrishna, Coord. Chem. Rev. **22**, 123 (1977).

^[4] H. Chihara and N. Nakamura, Landolf-Bornstein. New Series. III. B.20. Kernquadrupolresonanz-Daten. 1988.

^[5] L. Guibé and G. Jugie, in: Molecular Interactions. Edited by H. Ratajczak and W. J. Orville-Thomas, Moscow 1984, p. 344.

- [Bull. Acad. Sci. USSR., Div. Chem. Sci. 23 (1974). (Engl. Transl.)].
- [10] L. A. Zemnukhova, R. L. Davidovich, S. I Kuznezov, and V. N. Rykovanov, Izy Akad, Nauk, SSSR, Ser, Khim, 1956 (1987) [Bull. Acad. Sci. USSR., Div. Chem. Sci. 1987. (Engl. Transl.)].
- [11] V. N. Rykovanov, R. Sh. Lotfullin, L. A. Zemnukhova, A. A. Boguslavskii, and R. L. Davidovich, Phys. stat. sol. (b). 167, K51, (1991).
- [12] H. Chihara, N. Nakamura, and H. Okuda, J. Phys. Soc. Japan. 24, 306 (1968).
- [13] B. Ducourant, R. Fourcade, E. Philippot, and G. Mascherpa. Rev. Chim. Miner. 12, 553 (1975).
- [14] L. A. Zemnukhova and R. L. Davidovich, unpublished results.
- [15] R. Fourcade, G. Mascherpa, and E. Philippot, Acta Crystallogr. **B31**, 2322 (1975)
- [16] S. H. Mastin and R. R. Rvan, Inorg. Chem. 10, 1757
- [17] R. R. Ryan, S. H. Mastin, and A. C. Larson, Inorg. Chem. 10, 2793 (1971).
- [18] L. A. Zemnukhova and R. L. Davidovich, Izv. Akad. Nauk SSSR. Ser. Fiz. 45, 1764 (1984) (in Russian).
- [19] L. A. Zemnukhova, R. L. Davidovich, and G. A. Fedorishcheva, Koord. Khim. 14, 1641 (1988). [Sov. J. Coord. Chem. 14 (1988) (Engl. Transl.)].
- [20] L. A. Zemnukhova, G. A. Fedorishcheva, L. V. Teplukhina, and R. L. Davidovich, Depon. v VININI. N 4818-B89 (1989) (in Russian).
- [21] R. L. Davidovich, V. B. Logvinova, L. A. Zemnukhova, and L. V. Teplukhina, Koord. Khim. 17, 29 (1991). [Sov. J. Coord. Chem. 17 (1991) (Engl. Transl.)].
- [22] R. L. Davidovich, V. B. Logvinova, L. A. Zemnukhova, A. A. Udovenko, and I. P. Kondratyuk, Koord. Khim. 17, 1342 (1991). [Sov. J. Coord. Chem. 17 (1991) (Engl.
- [23] R. L. Davidovich, L. A. Zemnukhova, G. A. Fedorishcheva, T. G. Ermakova, and V. A. Lopyrev, Koord. Khim. 16, 1319 (1990). [Sov. J. Coord. Chem. 16 (1990) (Engl. Transl.)].
- [24] V. V. Urbonavicius, Ph. D. Thesis. Vil'nyus. 1985. 18 pp. (in Russian).
- [25] N. Habibi, B. Bonnet, and B. Ducourant, J. Fluor, Chem. **12,** 237 (1978)
- [26] N. Habibi, B. Ducourant, B. Bonnet, and R. Fourcade, J. Fluor. Chem. 12, 63 (1978).
- [27] V. E. Ovchinnikov, A. A. Udovenko, L. P. Solov'eva, L. M. Volkova, and R. L. Davidovich, Koord. Khim. 8, 697 (1982). [Sov. J. Coord. Chem. 8 (1982) (Engl. Transl.)].
- [27a] V. E. Ovchinnikov, A. A. Udovenko, L. P. Solov'eva, L. M. Volkova, and R. L. Davidovich, Koord. Khim. 8, 1539 (1982). [Sov. J. Coord. Chem. 8 (1982) (Engl. Transl.)].
- [28] A. A. Udovenko, R. L. Davidovich, S. B. Ivanov, M. Yu. Antipin, and Yu. T. Struchkov, Koord. Khim. 16, 448 (1990). [Sov. J. Coord. Chem. 16 (1990) (Engl. Transl.)].
- [29] R. L. Davidovich, P. S. Gordienko, J. Grigas, T. A. Kaidalova, V. Urbonavicius, and L. A. Zemnukhova, Phys. stat. sol. (a). 84, 387 (1984).
- [30] L. A. Zemnukhova, R. L. Davidovich, V. I. Sergienko, V. I. Kostin, and S. I. Kuznezov, Koord. Khim. 11, 1216 (1985). [Sov. J. Coord. Chem. 11 (1985) (Engl. Transl.)].
- [31] L. A. Zemnukhova, R. L. Davidovich, V. N. Rykovanov, and S. I. Kuznezov, Izv. Akad. Nauk. SSSR, Ser. Khim. 544 (1988). [Bull. Acad. Sci. USSR., Div. Chem. Sci. 1988. (Engl. Transl.)].
- [32] V. V. Urbonavicius, A. I. Brilingas, R. L. Davidovich, and L. A. Zemnukhova, Thes. dokl. II Vsesoyuznoii

- konferenzii po fiziko-khimicheskim osnovam teknologii segneto'lektriceskih i rodstvennyh materialov. Zvenigorod. 1983. P. 40 (in Russian).
- [33] R. Fourcade, G. Mascherpa, E. Philippot, and M. Maurin. Rev. Chim. Miner. 11, 481 (1974).
- [34] A. Bystrom and K.-A. Wilhelmi, Arkiv Kemi 3, 461 (1951).
- [35] A. A. Udovenko, M. F. Eiberman, S. B. Ivanov, A. N. Levin, and S. S. Sergienko, Kristallografiya. 37, 729 (1992) [Sov. Phys. Crystallogr. 37 (1992) (Engl. Transl.)].
- [36] I. P. Makarova, L. A. Muradyan, V. E. Zavodnik, A. V. Tovbas, and I. V. Oberladze, Kristallografiya. 29, 445 (1984) [Sov. Phys.-Crystallogr. 29 (1984) (Engl. Transl.)].
- [37] A. A. Udovenko, L. M. Volkova, P. S. Gordienko, R. L. Davidovich, M. Yu. Antipin, and Yu. T. Struchkov, Koord. Khim. 13, 558 (1987) [Sov. J. Coord. Chem. 13 (1987) (Engl. Transl.)]
- [38] N. Nakamura, Z. Naturforsch, 41a, 243 (1986).
- [39] L. M. Avkhutskii, R. L. Davidovich, L. A. Zemnukhova, P. S. Gordienko, V. Urbonavicius, and J. Grigas, Phys. stat. sol. (b) 116, 483 (1983).
- [40] L. A. Zemnukhova, R. L. Davidovich, P. S. Gordienko, J. Grigas, A. N. Kovrianov. S. I. Kuznetsov, T. A. Kaidalova, and V. Urbonavicius, Phys. stat. sol. (a). 80, 553 (1983)
- [41] L. A. Zemnukhova, R. L. Davidovich, and S. I. Kuznetsov, Izv. Akad. Nauk. SSSR, Ser. Khim. 561 (1985) [Bull. Acad. Sci. USSR., Div. Chem. Sci. (1985) (Engl. Transl.)].
- [42] Yu. N. Moskvich, B. I. Cherkasov, A. M. Polyakov, A. A. Sukhovskii, and R. L. Davidovich. Phys. stat. solidi, (b) 156, 615 (1989).
- [43] L. A. Zemnukhova, R. L. Davidovich, and G. A. Fedorishcheva, Russian J. Inorg. Chem. 40, 1608 (1995) (Engl.
- [44] R. L. Davidovich, L. A. Zemnukhova, and N. I. Sigula, Russian J. Inorg. Chem. 19, 2529 (1974) (Engl. Transl.).
- [45] D. R. Schroeder and R. A. Jacobson, Inorg. Chem. 12, 515 (1973).
- [46] A. A. Udovenko, L. M. Volkova, R. L. Davidovich, and M. A. Simonov, Koord. Khim. 5, 133 (1979) [Sov. J. Coord. Chem. 5 (1979) (Engl. Transl.)].
- [47] A. A. Udovenko, L. M. Volkova, R. L. Davidovich, and L. A. Zemnukhova, Koord. Khim. 5, 595 (1979) [Sov. J. Coord. Chem. **5** (1979) (Engl. Transl.)]
- [48] L. A. Zemnukhova and R. L. Davidovich, Izv. Akad. Nauk. SSSR, Ser. Khim. 2545 (1975) [Bull. Acad. Sci. USSR., Div. Chem. Sci. 1975 (Engl. Transl.)].
- [49] R. L. Davidovich, L. A. Zemnukhova, and N. I. Sigula, Russian J. Inorg. Chem. 18, 144 (1973) (Engl. Transl.).
- [50] A. A. Udovenko, V. N. Butenko, R. L. Davidovich, V. G. Andrianov, M. Yu. Antipin, and A. I. Yanovskii, Kristallografiya. 26, 488 (1981) [Sov. Phys. Crystallogr. 26 (1981) (Engl. Transl.)].
- [51] R. L. Davidovich, L. A. Zemnukhova, and E. A. Kravchenko, Russian J. Inorg. Chem. **18**, 144 (1973) (Engl. Transl.). [52] H. Cihihara and N. Nakamura, Z. Naturforsch **45a**, 541
- (1990).
- [53] V. V. Tkachev, I. O. Atovmyan, L. A. Zemnukhova, A. A. Udovenko, and R. L. Davidovich, Koord. Khim. 19, 25 (1993) [Sov. J. Coord. Chem. 19 (1993) (Engl. Transl.)].
- [54] R. L. Davidovich, L. A. Zemnukhova, A. A. Udovenko, and N. I. Sigula, Koord. Khim. 9, 787 (1983) [Sov. J. Coord. Chem. 9 (1983) (Engl. Transl.)].
- [55] L. A. Zemnukhova, R. L. Davidovich, V. N. Rykovanov, and S. I. Kuznetsov, Izv. Akad. Nauk. SSSR, Ser. Khim. 1136 (1987) [Bull. Acad. Sci. USSR., Div. Chem. Sci. (1987) (Engl. Transl.)].

- [56] L. A. Zemnukhova, R. L. Davidovich, and T. A. Semenova, Russian J. Phys. Chem. 53, 48 (1979) (in Russian).
- [57] L. A. Zemnukhova, R. L. Davidovich, V. N. Rykovanov, S. I. Kuznetsov, S. K. Shcherbakova, and G. K. Semin, Izv. Akad. Nauk. SSSR, Ser. Khim. 1501 (1987) [Bull. Acad. Sci. USSR., Div. Chem. Sci. (1987) (Engl. Transl.)].
- [58] R. L. Davidovich, L. A. Zemnukhova, G. A. Fedorishcheva, T. A. Kaidalova, and S. B. Ivanov, Koord. Khim. 16, 177 (1990) [Sov. J. Coord. Chem. 17 (1990) (Engl. Transl.)].
- [59] R. L. Davidovich, L. A. Zemnukhova, and T. L. Semenova, Koord. Khim. 3, 1373 (1977) [Sov. J. Coord. Chem. 3 (1977) (Engl. Transl.)].
- [60] V. N. Rykovanov, R. Sh. Lotfullin, L. A. Zemnukhova, A. A. Boguslavskii, and R. L. Davidovich, Phys. stat. sol. (b). 165, K13 (1991).
- [61] A. A. Udovenko, L. M. Volkova, R. L. Davidovich, and L. A. Zemnukhova, Koord. Khim. 3, 259 (1977) [Sov. J. Coord. Chem. 3 (1977) (Engl. Transl.)].
- [62] L. A. Zemnukhova, G. A. Fedorishcheva, S. I. Kuznetsov, and R. L. Davidovich, Izv. Akad. Nauk. SSSR, Ser. Khim. 382 (1996) [Bull. Acad. Sci. USSR., Div. Chem. Sci. (1996) (Engl. Transl.)].
- [63] Yu. A. Buslaev and R. L. Davidovich, Koord. Khim. 15, 1444 (1989) [Sov. J. Coord. Chem. 15 (1989) (Engl. Transl.)].
- [64] L. A. Zemnukhova, R. L. Davidovich, and T. L. Semenova, Koord. Khim. 9, 1369 (1983) [Sov. J. Coord. Chem. 9 (1983) (Engl. Transl.)].
- [65] A. Astrom and S. Andersson, J. Solid. State Chem 6, 191 (1973).
- [66] A. A. Udovenko, L. M. Volkova, R. L. Davidovich, L. A. Zemnukhova, and E. S. Panin, Koord. Khim. 11, 1132 (1985) [Sov. J. Coord. Chem. 11 (1985) (Engl. Transl.)].

- [67] R. L. Davidovich, L. A. Zemnukhova, A. A. Udovenko and L. V. Samarets, Koord. Khim. 8, 374 (1982) [Sov. J. Coord. Chem. 8 (1982) (Engl. Transl.)].
- [68] R. L. Davidovich and L. A. Zemnukhova, Koord. Khim. 8, 1572 (1982) [Sov. J. Coord. Chem. 8 (1982) (Engl. Transl.)].
- [69] M. Bourgault, R. Fourcade, and G. Mascherpa, J. Solid State Chem. 36, 214 (1981).
- [70] R. L. Davidovich, L. A. Zemnukhova, G. A. Fedorishcheva, A. A. Udovenko, and M. F. Eibermann, Koord. Khim. 16, 926 (1990) [Sov. J. Coord. Chem. 16 (1990) (Engl. Transl.)].
- [71] R. L. Davidovich, M. A. Medkov, E. B. Bogomolova, and L. A. Zemnukhova, Izv. Akad. Nauk. SSSR, Ser. Khim. 973 (1984) [Bull. Acad. Sci. USSR., Div. Chem. Sci. (1984) (Engl. Transl.)].
- [72] A. A. Udovenko, L. M. Volkova, R. L. Davidovich, and S. S. Sergienko, Koord. Khim. 14, 834 (1988) [Sov. J. Coord. Chem. 14 (1988) (Engl. Transl.)].
- [73] A. A. Udovenko and R. L. Davidovich, Koord. Khim. 17, 1354 (1991) [Sov. J. Coord. Chem. 17 (1991) (Engl. Transl.)].
- [74] L. M. Volkova, A. A. Udovenko, A. N. Levin, R. L. Davidovich, and M. A. Medkov, Koord. Khim. 11, 689 (1985) [Sov. J. Coord. Chem. 11 (1985) (Engl. Transl.)].
- [75] R. Fourcade, M. Bourgault, B. Bonnet, and B. Ducourant, J. Solid State Chem. 43, 81 (1982).
- [76] R. L. Davidovich, L. A. Zemnukhova, V. N. Rykovanov, and N. M. Dyatlova, Izv. Akad. Nauk. SSSR, Ser. Khim. 1915 (1989) [Bull. Acad. Sci. USSR., Div. Chem. Sci. (1989) (Engl. Transl.)].