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A chemical reaction network can admit multiple positive steady states if and only if there exists a pos-
itive steady state having a zero eigenvalue with its eigenvector in the stoichiometric subspace. A zero
eigenvalue analysis is proposed which provides a necessary and sufficient condition to determine the
possibility of the existence of such a steady state. The condition forms a system of inequalities and equa-
tions. If a set of solutions for the system is found, then the network under study is able to admit multi-
ple positive steady states for some positive rate constants. Otherwise, the network can exhibit at most
one steady state, no matter what positive rate constants the system might have. The construction of a
zero-eigenvalue positive steady state and a set of positive rate constants is also presented. The analysis

is demonstrated by two examples.
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1. Introduction

Itis well known that certain nonlinear models of chem-
ical systems can exhibit several positive steady states for
some particular system parameters. (A positive steady
state is one for which all species have positive concen-
trations.) On the other hand, there are many chemical
systems which can admit at most one positive steady
state, no matter what positive rate constants the systems
might have. The development of methods to distinguish
these two types of systems is the aim of this article. Such
identifications not only help engineers to design more ef-
ficient and safer reaction processes but also help chem-
ists to explain experimental results.

In this field, as in any other part of reaction kinetics,
there are two approaches [1]: investigation of simple but
possibly realistic models or a search for general criteria
that ensure or exclude multistationarity in large classes
of mechanisms. Some examples for this approach are
given by Othmer [2], Luss [3, 4], Gray and Scott [5, 6].
The second approach was initiated by Horn, Jackson and
Feinberg. Their results are based upon classification of
reaction networks by means of a non-negative integer in-
dex called the deficiency, which is determined by the re-
action network structure [7]. Work of Horn [8], Horn and
Jackson [9], and Feinberg [10, 11] led to the deficiency
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zero theorem. Feinberg developed the deficiency one
theorem [7] and the deficiency one algorithm [12]. The
stoichiometric network analysis by Clarke [13] deter-
mines the stability of chemical networks, which also pro-
vides some information about steady-state multiplicities.
Also Willamowski [14] contributed to the theory of mass
action kinetics.

In this work we show that a network has the capacity
to admit multiple positive steady states if and only if it
contains a positive steady state having a zero eigenvalue
with its corresponding eigenvector lying in its stoichio-
metric subspace. Then a zero eigenvalue analysis is pro-
posed to determine the possibility of the existence of such
asteady state in a reaction network. The assumptions are:
the systems are isothermal, the reactions are mass ac-
tions, and the steady states are positive. The construction
of a zero-eigenvalue positive steady state and a set of cor-
responding positive rate constants is also proposed. The
method is demonstrated by two examples.

2. Theoretical Background

2.1 Some Terminology

Our introduction of terminology will be casual, relying
more on examples than on formal definitions. (Formal
definitions can be found in [11].) Consider the Field-
Noyes [15] “Oregonator” model for the Belousov-Zha-
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botinskii system:
Ay > A > 2A+A;,
Al +A; 5024, 9]
A3 > fA,.

(The Field-Noyes “stoichiometric parameter” fis a pos-
itive real number.) The zero complex “0” comes from the
assumption that the concentrations of the products pro-
duced by the reactants A; and A, as well as by 24 re-
main constant during the reaction period.

We will use the symbol N to denote the number of spe-
cies in a network under consideration. Thus, for network
(1) N=3. By %" we shall mean the usual vector space
of N-tuples of real numbers. The standard basis for &~
will be denoted {A;, A, ..., An}.

The complexes of a network are the objects that ap-
pear before and after reaction arrows. Thus the set of com-
plexes for network (1) is {A,, A}, 2A|+A3, A;+A,, 0,
2A,,A3,fA,}. Given a network with N species, we shall
associated with each complex a vector in K" Consider
the network (1). With the complex A; we associate the
complex vector A; in %3, with the complex A;+A, we
associate the complex vector A;+A;; and so on.

We write y; — y; (or the abbreviation i — j) to indicate
the reaction whereby the complex y; reacts to complex
yj- The symbol R denotes the set of reactions in a
network. Thus the set of reactions in network (1) is,
R={A,>A,, A|>2A,+A;, A|+A,—0, 2A,-0,
A;—fA,}. The symbol r is reserved for the number of
distinct reactions in a network. For network (1), r=5. A
reaction y;— y; is said to be reversible if its reverse re-
action y; — y; is also in the network; otherwise, the reac-
tion y; —y; is irreversible. We shall call y; 2 y; a rever-
sible reaction pair. The symbol p denotes the number of
distinct reversible reaction pairs in a network. The num-
ber of irreversible reactions in a network is r—2p. For
network (1), there are five irreversible reactions without
(p=0) any reversible reaction pair.

We associate each reaction y;—y; a reaction vec-
tor, y;-y,€ K N obtained by subtracting the “reactant”
complex vector y; from the “product” complex vector
;- Consider network (1). For the reaction A;+A,—0,
the corresponding reaction vector in K 3 s
0-(A;+A,)=-A;-A,. The set of reaction vectors of
network (1) is

{A|—Ay, A +A3, —-A1-A,, -2A,, fA,-A3}. ()
A reaction network has rank s if there exists a linear-

ly independent set of s reaction vectors for the network
and there exists no linearly independent set of s+1 reac-

tion vectors. Consider network (1). The set of three
reaction vectors {A;—-A,, Aj+A3, —A-A,} is linearly
independent, but any set of four reaction vectors for net-
work (1) is linearly dependent. Thus, the rank of network
(1) is three, and for it we write s=3.

The stoichiometric subspace for a network is the span
of its reaction vectors. The symbol S, designates the
stoichiometric subspace for a network. It is clear that a
stoichiometric subspace is a linear subspace of %&". The
dimension of a stoichiometric subspace is equal to the
rank s of its network. The stoichiometric subspace for
network (1) is the span generated by the reaction vectors
given in (2). It is identical to %>

A vector ¢ RV is sign-compatible with S, if
there exists in S, a vector ce K" such that the sign
o, =sign¢,, L=1, 2, ..., N. This means that o; is posi-
tive if ¢, is positive, 0y is negative if ¢, is negative, and
o, is zero if ¢, is zero. This requirement comes from the
mass conservation condition of a system. Since the stoi-
chiometric subspace for network (1) is %>, any vector in
%3 is sign compatible with S, for network (1).

Consider a network with r distinct reactions, p rever-
sible reaction pairs, and r—2p irreversible reactions. A
spanning subnetwork of a network under consideration
consists of all the r—2p irreversible reactions and one
(and only one) reaction of each p reversible reaction pair.
There are r—p reactions in a spanning subnetwork. The
symbol F is used to denote the set of reactions in a span-
ning subnetwork. Since all the reactions in network (1)
are irreversible, the spanning subnetwork for network (1)
is exactly itself and the set F is identical to the reaction
set R.

There are more than one spanning subnetworks for a
network having one or more than one reversible reaction
pairs (p 21). In each case under study, we choose to work
with a fixed (but arbitrary) spanning subnetwork. For a
chosen spanning subnetwork, we shall construct a set of
corresponding spanning-subnetwork vectors {d‘", d®,

. d7P) in KR Let {w;_,;: i—>je R} be the stan-
dard basis for %%, These spanning-subnetwork vectors
are the r—p—s linearly independent (nonzero) solutions
of the vector equation

Y 45 (yi-y)=0, L=1,2,...,r-p-s (3a)
i»jeF
(A solution is a family of number {d,»(fzj i—>jeF}).
Thend'”,L=1,2, ..., r—p—s, are vectors defined in the
following way:
isjeF

(3b)
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Computing the spanning-subnetwork vectors for net-
work (1), by 32) dV, d@ (r-p—s=5-0-3) satisfy
d,gl;)_,,;l (A —Ay)
+ dftf‘LZA, +a, (2A1+A3-A)
+dyl) . 0 (0-A;-43)
+dyy) o (0-24))

+d§"), 4 (FA2-A3)=0, L=1,2.

(4a)

Two nonzero linearly independent solutions to the
above equation are

(1) - (1) -
dA2_>A1 F=ils dAl—>2Al+A3 =0,
s’ =1, df} ,o=-1 (4b)
A +A, >0 2A,-0 ]
(1) —
dAx—)/Az 0,
(2) - (2) =
dAz—-)Al =0, dA|—>2A1+A3 ==1,
(2) _ @ L J=l
dy+a,»0="T1> dy'a 0= 5 (40)
2
A3 o fA; T :

Consider a reaction network with N species A}, A,,
...,An. Let c=[cy, c,, ..., cy] be a composition vector
in PV (non-negative orthant of %V) for species A;.
L=1,2,...,N. In general, the set of isothermal mass
action differential equations describing the behavior of a

reaction network can be written
de

==fe)=(fi(e).... fn(e)
dr

N
= 2 kisj (H cr” J(y,-—yi),
L=1

i—>jeR

(5a)

y; and y; denoting respectively the reactant and product
complex vectors, y;; denoting the stoichiometric coeffi-
cient of species A in the reactant complex y;, and ; _, ; de-
noting the rate constant for the reaction i —j. By a positive
steady state of a reaction system we shall mean a compo-
sition ¢* € PV (positive orthant of %") such that f (c*)=0.
The mass action differential equations for network (1) are

dCl
?=k42—ml Crt+ka, 24, +4, €1
2
—ka +4,50€1€2—2kap 50¢1 s
dC2
—==—kg, 54 C2—ka +a,50C1C2
dt 214 1+A2 (5b)
+fka, 554, €35
dC‘;
ar =ka,—24,+4, C1 —ka, 54, C3-

The right hand side of (5a) is a linear combination of
all reaction vectors in its network for any composition
c € PV, This indicates that de/dt always lies in the stoi-
chiometric subspace S, of the network under considera-
tion. Moreover, a composition ¢, can evolve to a com-
position ¢, only if such a composition change ¢, —c lies
in §,. Motivated by these considerations, we say that two
compositions ¢, and ¢, are stoichiometrically compatible
if c;—c, € S,. Thus, as a network is said to have the ca-
pacity to admit multiple positive steady states, it really
means that there exists a set of positive rate constants
such that its corresponding isothermal mass action diffe-
rential equation (5a) admits at least two stoichiometri-
cally compatible positive steady states. Since the stoichi-
ometric subspace for network (1) is %>, any two posi-
tive steady states are stoichiometrically compatible.

3. Results and Discussion

3.1 A Necessary and Sufficient Condition

Based on an idea of Feinberg, Li [16] constructed a
necessary and sufficient condition to determine the pos-
sibility of multiple positive steady states in forest-like
networks, whose structures contain no loops. This con-
dition is then extended to cover general mass action net-
works which may or may not be forest-like [17]. It has
been shown [17] that if a network has the capacity to ad-
mit multiple positive steady states, then it admits two pos-
itive steady states for which the distance between them
tends to zero. It is obvious that, if a network admits two
positive steady states, whether the distance between them
approaches zero or not, it exhibits multiple steady states.
Let c* and c** be two steady states for (5a). We have

fle*)=0, (6a)
fe**=0. (6b)
Since c* —c** € S,, we can write c*=c** + 4 y, where

A is a real number and ¥ is a vector in S,. Equation (6)
indicates that

f(C**)l—f(C*) -0,

As ¢** approaches c¢*, A tends to zero. Equation (7 a)
becomes

(72)

lim f(e**) = f(c*)

A0 A

i LAY~ f ()
A-0 A

(7b)
=F(c*)y=0,
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where F (c*) v is the derivative of the rate function f(c)
in (5a), evaluated at steady state ¢* along the direction
v. The combination of (6a) and (7b) forms a necessary
and sufficient condition for multiple positive steady
states. It says that a network can exhibit steady state mul-
tiplicity if and only if there exists a positive steady state
c*, (6a), having a zero eigenvalue, (7b), with its corre-
sponding eigenvector y€ S,.

3.2 The Zero Eigenvalue Analysis

For a given reaction network, the zero eigenvalue anal-
ysis proposed below is used to determinate the possibil-
ity that there exists a positive steady state having a zero
eigenvalue with its corresponding eigenvector in the stoi-
chiometric subspace. It can be applied to both forest-like
and circular networks. For a given reaction network, we
choose an arbitrary spanning subnetwork and construct
the corresponding spanning-subnetwork vectors. Fol-
lowing the condition proposed below, a system of equa-
tions and inequalities is constructed. We then solve the
system. If a set of qualified solutions exists, there is a set
of positive rate constants such that the corresponding iso-
thermal mass action differential equations for the given
network admit a zero-eigenvalue positive steady state.
Hence, it has the capacity to admit several positive steady
states. Otherwise, no matter what positive rate constants
the system might have, the differential equations can ex-
hibit at most one positive steady state.

Zero eigenvalue analysis. Consider an N-species re-
action network with a reaction set R and a stoichiomet-
ric subspace S,. Suppose the network has rank s and r
reactions with p reversible reaction pairs. Let the reac-
tion set for an arbitrary spanning subnetwork be F and
let {dV,d®, ...,d""""} be a set of corresponding
spanning-subnetwork vectors. Then the corresponding
isothermal mass action differential equations for the giv-
en network have the capacity to admit a positive steady
state having a zero eigenvalue with its corresponding ei-
genvector in the stoichiometric subspace S,, if and only
ifthere exists anonzero vector pe R which s signcom-
patible with S, and also the numbers §,, &,, ..., &,_,_,,
Qy, Oy, ..., O_,_y, Satisfying the following two condi-
tions:

(i) For every reversible reaction y; @ y;€ R with
yi=y€eF

r-p—s
Y [ELOi-d)+aLld’l)

and
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r—p-s
Y &y d)+arldl)
L=1

are sign compatible with (y;—y;) - ¢.
(ii) For every irreversible reaction y; —y;€R,

r—p-8

Z EdE >0 and

—)

r-p-s
Y &L (id)+agldl) =0.
L=1

If the answer is yes, the set of solution {¢pe K™, &,
a;,L=1, ..., r—p-s} for the conditions (i) and (ii) can
be used to construct a set of positive rate constants k;_, ;
and a positive steady state ¢* having a zero eigenvalue
with its corresponding eigenvector ye S,. The steady
state ¢* can be calculated by (8a) for any (nonzero) ei-
genvector ye S, which is sign compatible with the vec-

tor ¢:

c*=[cff,c¥,....c% ]
=1=[ﬁ r V_N}. ®
& [0 0 oy

The rate constants {k;_,;: i—j€ R} can be computed
by (8b), where the variables {x;_,;: i—je R} are com-
puted by (8c)-(8g):

Kisi
kinj =y (8b)
H (CI))'.L
L=1
For every irreversible reaction i —j € R,
Kinsj = Z & dD. 80

For every reversible reaction i 2 je R with i—>je F
andy; - ¢y, b,

r=p=y
Y (i) +o1dE)

T L=1
(yj_yi)'d’

]

) (8d)

r—p-s
Y [EL(yj-d)+agldh)
L=1
(yj—yi) o

For every reversible reaction i 2 je R with i—>jeF
andy;- ¢=y; @,

Kisj= (8e)
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Ki5j>0, xj5;>0, (8f)
r—p-s (L

Kisj—Kjsi= 2 §Ldi->j- 8g)
L=1

3.3 Applications

Example 1. Consider the network (1). Substituting
the spanning-subnetwork vectors d”, d? in (4b) and
(4c¢) into condition (ii) of the zero eigenvalue analysis,
we have (9a)-(9)):

For an irreversible reaction A;— A,

&-1=0, %a)

[§1(¢2) + ] (-1)=0. (9b)
For an irreversible reaction A} —2A; +As;,

S2(-1>0, (1Y)

[£2(0) + ] (-1)=0. (9d)
For an irreversible reaction A;+A, —0,

S +82=/)>0, 9e)

[§1(91+02) + 0] (1)

+[£2(91+92) + 2] (-f)=0. 1)
For an irreversible reaction 24; — 0,

sen+&( Lo, ©g)

(520D + ] (1)

+[822¢1) + ay] (%}0- (Oh)
For an irreversible reaction A3 = fA,,

&(-1)>0, 1)

[§2(¢3) + 221 (-1)=0. (Ch))

Equations (9b) and (9d) lead to o;=-&;¢, and
o,=-E&, ¢, respectively. Inserting them into (9f) and
(9h), we have

S&i=fKé,
(K—2)§1+(f—2—1‘)52=0,

(10a)

(10b)

where K= ¢,/¢,. From (10), we obtain

2
k=1: 32 +2f (10¢)

2f

Equations (9¢), (9¢) and (10a) indicate K<1. Since f
is a positive real number, the plus term in (10c¢) is not
satisfied. Substituting (10a) and the minus term of (10¢)
into (9a) and (9g), we obtain that f>1 and f<1, respec-
tively. The contradiction says that for any real positive
number f, there do not exist solutions to the zero eigen-
value analysis. We come to the conclusion that, taken
with the mass action kinetics, network (1) cannot admit
either a zero-eigenvalue positive steady state or multiple
positive steady states, no matter what positive rate con-
stants the system might have.

Example 2. Consider an enzyme-catalyzed reaction
[18]:
S+E2ES—->P+E,

S+ES 2ES, > P+ES, ()

where S is a substrate, E is an enzyme, ES and ES, are
intermediates and P is a product. Let the above reactions
take place in a well-mixed continuous-flow stirred-tank
reactor (CSTR) operated in such a way that S is in the
feed stream, S and P are in the effluent flow, while E, ES
and ES, are retained in the reactor by using, for exam-
ple, porous membranes or screens to prevent escape of
immobilized enzyme pellets. In reaction network terms
[7], the reactions S« 0 are used to describe S in both in-
put and output flows, while the reaction P — 0 describes
P in the output flow. Thus, the CSTR system is modeled
by the network

A2 0 A,,

Al+A3 2 A, > A+ As,

Al +A4 2 As > Ay + Ay,
where A;=S, A,=P, A;=E, A4,=ES and As=ES,.
Suppose that the temperature, density and volume of
the solution do not change substantially with time
during operation. According to the law of mass action,

this system is describe by the nonlinear differential equa-
tions

(11b)

dC]

rry =kooa, —ka,50C1 —Kka, +4,54, C1C3
+Ra, 5405 €4 = kg s34, €14
+kas 54,44, C5»

dC2

—==—ky,50C2+ka, 54,44, C4

dt
+ka,a,+4, C5>

dC}

& kaj+a, 54, €163+ ka, 54,44, Ca

+tka, 54,44, C4s
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dC4

E_=kA1+A]—)A4 c163—kp, 54, +4, C4
—ka,54,+4; Ca—ka 14,54, C1C4
+ka,5a4,+4, €5t Kkag 54,44, €55

dC;

?=kA1+A4—>A5 Cicq=Kassa, +4, 5

—ka, 54,44, C5- (11¢)
(The rate constants k,, _,o and k4,_,¢ are both equal to
the reciprocal of the reactor residence time, 1/6, and the
rate constant k _, 4, equals c{/e with c{ denoting the con-
centration for species A, in the feed stream.)

A spanning-subnetwork of network (11b) is chosen
A0« A,
Al +A3; DAL > A+ Az,
Al+A; D As DA+ A,

(122)

By (3a), its two (r—p-s=9-3-4) spanning-subnet-
work vectors d‘1, d® consist of the elements

) _ )
dA,—)O__l’ dAz—)O_l’

(1) _ (1) _
dA1+Aq-)A4 _1’ (1144_),42.+.A3 "‘17 (12b)
(1 _ (1) _
dA|+A4—>A5 =0, dA5—>A2+A4 =0,
(2) _ (2)
dA,—)O__l’ dAz—)O_l’
(2) _ (2) _
dA|+A1—)A4 —0’ dA4—)A2+A] _0, (12C)

(2) _ (2) _
dA1+A4——>A5 e dA5—>A2+A4 =],

According to the conditions (i) and (ii) of analysis,
from (12) we have

[£1(@) + onl (=1) + [2(¢1) + 2] (=1)
and —oy—0, are s.c.w. —¢;,
[1(¢1+03) + oy (1)
and [§,(¢4) + 1] (1) are s.c.w. @4—¢1—@3,
[82(01+04) + 2] (1) (13)
and [&5(9s) + @] (1) are s.c.w. @s—@;—0q,
S +&1)>0,
[81(92) + ] (1) + [E2(9) + ] (1) =0,
&i(H)>0, [§(@)+0n](1)=0,
&E()>0, [E(¢s)+a] (1)=0.
The mass conservation condition for this example indi-
cates that d (c3+c4+c¢5)/dt=0. A vector y€ S, if and only

if Y3+ ¥4+ ¥s=0. Thus a vector ¢ =[¢,, @5, ..., ds] € K>
is sign compatible with the stoichiometric subspace for

45
Stable S.S. —
| Unstable S. S. ..
O 3t
Q
g
m *
5 Cil
<
815 F
»n \L :
0 1 1 i 1 N N 4 y

04 0.45 0.5 0.55 0.6
Flow Rate k 4, ¢

0.65

Fig. 1. The locus of steady state c; with the flow rate k4, _, for
network (15a).

network (11) if and only if the set [¢5, @4, ¢5] contains
both a positive and negative number, or else consists en-
tirely of zeros. A sign compatible (nonzero) vector ¢ and
unknowns &, &,, @, a, satisfying the inequality system
(13) are found:

& =145, £,=0.67, a;=2.175, o, =-0.335, (14)
¢ =9, ..., 0s] =[2, -0.8679, -3.5, -1.5, 0.5].

According to the zero eigenvalue analysis, there ex-
ists a set of positive rate constants {k;_,;: i—j€ R} such
thatits positive steady state ¢ * has a zero eigenvalue with
its eigenvector v in the stoichiometric subspace for net-
work (11). By achoice of y=[4, -4, -0.5, -3, 3.5], from
(8) they are

0.46
—T 0.46
A 5 0 Ay,
10.325 ; 0.725
A1+A3 (T A4—)A2+A3, (15a)
__ 06675 0.0957
A] +A4 (———02857 AS—)A2+A4,

c*=[cf, c}, ..., c¥] = [2,4.6087,0.1429,2,7] (15b)

Equation (15) is used to simulate local steady states
around c*. The result is displayed in Figure 1. The steady
state ¢* in Fig. 1 is a turning point with the values given
in (15b). Perturbing a little the flow rate k4 _,¢, there
exist two steady states near ¢ *. They become closer and
closer and finally meet at c¢*. There is a region having
three steady states, one (middle) unstable and two (upper
and lower) stable. The bistability occurring in the net-
work (15a) is illustrated as hysteresis with variation of
the flow rate.
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4. Concluding Remarks

Acreaction network can admit multiple positive steady
states if and only if there exists a positive steady state
having a zero eigenvalue with its eigenvector in the stoi-
chiometric subspace. The zero eigenvalue analysis pro-
vides a necessary and sufficient condition for the deter-
mination of such a steady state. Since both networks (1)
and (11) have deficiency two, neither the deficiency zero
theorem nor the deficiency one theorem (or algorithm)
can be applied. Clarke [13] has shown that network (1),
the Oregonator model, admits no multiple steady states
by stoichiometric network analysis. Network (1) exhib-
its an unstable steady state [15]. If a network has only
one steady state, an unstable steady state will probably
come from a Hopf bifurcation [14]. This is the case for
network (1). It is a wide spread belief [1] that any rea-
sonable model of an oscillatory chemical reaction is ex-
pected to show bistability for another region of the pa-
rameter values. Apparently the Oregonator model gives
an exceptional example. If stoichiometric network anal-
ysis is applied to study network (11), one should find an
unstable steady state. However, an unstable steady state
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which may be measured in experiments. However, the
vector ¢ defined in (8a) may not be measured directly.
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