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A chemical reaction network can admit multiple positive steady states if and only if there exists a pos-
itive steady state having a zero eigenvalue with its eigenvector in the stoichiometric subspace. A zero 
eigenvalue analysis is proposed which provides a necessary and sufficient condition to determine the 
possibility of the existence of such a steady state. The condition forms a system of inequalities and equa-
tions. If a set of solutions for the system is found, then the network under study is able to admit multi-
ple positive steady states for some positive rate constants. Otherwise, the network can exhibit at most 
one steady state, no matter what positive rate constants the system might have. The construction of a 
zero-eigenvalue positive steady state and a set of positive rate constants is also presented. The analysis 
is demonstrated by two examples. 
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1. Introduction 

It is well known that certain nonlinear models of chem-
ical systems can exhibit several positive steady states for 
some particular system parameters. (A positive steady 
state is one for which all species have positive concen-
trations.) On the other hand, there are many chemical 
systems which can admit at most one positive steady 
state, no matter what positive rate constants the systems 
might have. The development of methods to distinguish 
these two types of systems is the aim of this article. Such 
identifications not only help engineers to design more ef-
ficient and safer reaction processes but also help chem-
ists to explain experimental results. 

In this field, as in any other part of reaction kinetics, 
there are two approaches [1]: investigation of simple but 
possibly realistic models or a search for general criteria 
that ensure or exclude multistationarity in large classes 
of mechanisms. Some examples for this approach are 
given by Othmer [2], Luss [3, 4], Gray and Scott [5, 6]. 
The second approach was initiated by Horn, Jackson and 
Feinberg. Their results are based upon classification of 
reaction networks by means of a non-negative integer in-
dex called the deficiency, which is determined by the re-
action network structure [7]. Work of Horn [8], Horn and 
Jackson [9], and Feinberg [10, 11] led to the deficiency 

Reprint requests to Prof. H.-Y. Li; Fax: (37) 357301; 
E-mail: hyli@mail.lctc.edu.tw 

zero theorem. Feinberg developed the deficiency one 
theorem [7] and the deficiency one algorithm [12]. The 
stoichiometric network analysis by Clarke [13] deter-
mines the stability of chemical networks, which also pro-
vides some information about steady-state multiplicities. 
Also Willamowski [14] contributed to the theory of mass 
action kinetics. 

In this work we show that a network has the capacity 
to admit multiple positive steady states if and only if it 
contains a positive steady state having a zero eigenvalue 
with its corresponding eigenvector lying in its stoichio-
metric subspace. Then a zero eigenvalue analysis is pro-
posed to determine the possibility of the existence of such 
a steady state in a reaction network. The assumptions are: 
the systems are isothermal, the reactions are mass ac-
tions, and the steady states are positive. The construction 
of a zero-eigenvalue positive steady state and a set of cor-
responding positive rate constants is also proposed. The 
method is demonstrated by two examples. 

2. Theoretical Background 

2.1 Some Terminology 

Our introduction of terminology will be casual, relying 
more on examples than on formal definitions. (Formal 
definitions can be found in [11].) Consider the Field-
Noyes [15] "Oregonator" model for the Belousov-Zha-
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botinskii system: 

A2 —» Ax —» 2AX + A3 , 
Ax +A2h>0<-2A1 , (1) 
A3 —>/A2. 

(The Field-Noyes "stoichiometric parameter"/is a pos-
itive real number.) The zero complex "0" comes from the 
assumption that the concentrations of the products pro-
duced by the reactants Ax and A2 as well as by 2Ax re-
main constant during the reaction period. 

We will use the symbol N to denote the number of spe-
cies in a network under consideration. Thus, for network 
(1) N=3. By we shall mean the usual vector space 
of N-tuples of real numbers. The standard basis for SRN 

will be denoted {AX,A2, ..., A^}. 
The complexes of a network are the objects that ap-

pear before and after reaction arrows. Thus the set of com-
plexes for network (1) is {A2, Ax, 2AX+A3, Ax+A2, 0, 
2 A X , A 3 , f A 2 } . Given a network with Nspecies, we shall 
associated with each complex a vector in 9tN. Consider 
the network (1). With the complex Ax we associate the 
complex vector A] in 9T3; with the complex Ax +A2 we 
associate the complex vector Ax +A2, and so on. 

We write y,- —> yy- (or the abbreviation i —> j) to indicate 
the reaction whereby the complex y, reacts to complex 
yr The symbol R denotes the set of reactions in a 
network. Thus the set of reactions in network (1) is, 
R = {A2^>AX, A , ->2A,+A 3 , A!+A 2 -»0, 2Aj —»0, 
A3 —^ f A2}. The symbol r is reserved for the number of 
distinct reactions in a network. For network (1), r = 5. A 
reaction y,- —> y • is said to be reversible if its reverse re-
action y,—>y, is also in the network; otherwise, the reac-
tion y,—>_y/- is irreversible. We shall call y/^y,- a rever-
sible reaction pair. The symbol p denotes the number of 
distinct reversible reaction pairs in a network. The num-
ber of irreversible reactions in a network is r-2p. For 
network (1), there are five irreversible reactions without 
(p-0) any reversible reaction pair. 

We associate each reaction y, —>y;- a reaction vec-
tor, yj -y , g 9?^, obtained by subtracting the "reactant" 
complex vector y, from the "product" complex vector 
yr Consider network (1). For the reaction A!+A2—»0, 
the corresponding reaction vector in 9f3 is 
0 - ( A , +A2)=-AX -A2. T h e set of react ion vectors of 
network (1) is 

{Ax-A2,Ax+A3,-Ax-A2,-2Ax,fA2-A3}. (2) 

A reaction network has rank s if there exists a linear-
ly independent set of s reaction vectors for the network 
and there exists no linearly independent set of s +1 reac-

tion vectors. Consider network (1). The set of three 
reaction vectors {AX-A2, AX+A3, -AX-A2) is l inearly 
independent, but any set of four reaction vectors for net-
work (1) is linearly dependent. Thus, the rank of network 
(1) is three, and for it we write 5 = 3. 

The stoichiometric subspace for a network is the span 
of its reaction vectors. The symbol S, designates the 
stoichiometric subspace for a network. It is clear that a 
stoichiometric subspace is a linear subspace of 9iN . The 
dimension of a stoichiometric subspace is equal to the 
rank s of its network. The stoichiometric subspace for 
network (1) is the span generated by the reaction vectors 
given in (2). It is identical to 9f3. 

A vector 0 e 9fN is sign-compatible with St if 
there exists in S, a vector a e 9lN such that the sign 
<7L=sign0L, L = 1,2, ..., N. This means that < j l is posi-
tive if (/)L is positive, oL is negative if (f)L is negative, and 
oL is zero if (j)L is zero. This requirement comes from the 
mass conservation condition of a system. Since the stoi-
chiometric subspace for network (1) is 9?\ any vector in 
9f? is sign compatible with St for network (1). 

Consider a network with r distinct reactions, p rever-
sible reaction pairs, and r-2p irreversible reactions. A 
spanning subnetwork of a network under consideration 
consists of all the r-2p irreversible reactions and one 
(and only one) reaction of each p reversible reaction pair. 
There are r-p reactions in a spanning subnetwork. The 
symbol F is used to denote the set of reactions in a span-
ning subnetwork. Since all the reactions in network (1) 
are irreversible, the spanning subnetwork for network (1) 
is exactly itself and the set F is identical to the reaction 
set R. 

There are more than one spanning subnetworks for a 
network having one or more than one reversible reaction 
pairs (p > 1). In each case under study, we choose to work 
with a fixed (but arbitrary) spanning subnetwork. For a 
chosen spanning subnetwork, we shall construct a set of 
corresponding spanning-subnetwork vectors {</(1), da\ 
...,d(r-p~s)} in Let i->jeR) be the stan-
dard basis for 9f/?. These spanning-subnetwork vectors 
are the r-p-s linearly independent (nonzero) solutions 
of the vector equation 

I d £ ) ( y j - y i ) = 0 , L = \,2,...,r-p-s (3a) 
/'-»j&F 

(A solution is a family of number {dj^j : i e F}). 
Then d(L\L = 1,2, ..., r-p-s, are vectors defined in the 
following way: 

d(L)= I (3b) 
i^tjeF 
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Computing the spanning-subnetwork vectors for net-
work (1), by (3a) d(X\ d(2) (r-p-s= 5 - 0 - 3 ) satisfy 

( A , - A 2 ) 

+ d<L) 

+ < ^ 0 ( 0 - ^ - ^ 2 ) (4 a) 

+ ^ ! - o ( 0 - 2 A , ) 

( / A 2 - A 3 ) = 0 , L = 1 ,2 . + aA,->/A2 

Two nonzero linearly independent solutions to the 
above equation are 

r(>) 

d(X) aAl+A2 

= - 1 , 

,0 = 1 

rO) 

r(D 
• 2 A , + A , = 0 

2 A , - > 0 = - 1 , 

A 2) _ = 0, d (2) <4i - » 2 A , + A 3 
= - 1 , 

7 ( 2 ) 
A i + A , - > 0 

(2) _ / - l 
2 Ai ->0 

The right hand side of (5 a) is a linear combination of 
all reaction vectors in its network for any composition 
c g P^. This indicates that dc/dt always lies in the stoi-
chiometric subspace S, of the network under considera-
tion. Moreover, a composition cx can evolve to a com-
position c2 only if such a composition change c2-cx lies 
in St. Motivated by these considerations, we say that two 
compositions c x and c2 are stoichiometrically compatible 
if c2-ci g St. Thus, as a network is said to have the ca-
pacity to admit multiple positive steady states, it really 
means that there exists a set of positive rate constants 
such that its corresponding isothermal mass action diffe-
rential equation (5 a) admits at least two stoichiometri-
cally compatible positive steady states. Since the stoichi-
ometric subspace for network (1) is 9f3, any two posi-
tive steady states are stoichiometrically compatible. 

3. Results and Discussion 

(4c) 3.1 A Necessary and Sufficient Condition 

(4b) 

r < 2 ) = - 1 . uA>-*fAi 

Consider a reaction network with N species AX, A2, 
..., AN. Let c = [cj, c2, ..., c^] be a composition vector 
in P^ (non-negative orthant of 9IN) for species AL. 
L=L, 2, ..., N. In general, the set of isothermal mass 
action differential equations describing the behavior of a 
reaction network can be written 

dc 
dt 

= f ( c ) = ( f ( c ) , . . . , f N ( c ) ) 

= I 
i—» jeR 

^ 
L ( y j - y t ) , 

(5 a) ( N 

l\c> 
U=i 

_y, and y7 denoting respectively the reactant and product 
complex vectors, yiL denoting the stoichiometric coeffi-
cient of species AL in the reactant complex yh and de-
noting the rate constant for the reaction i —» j. By a positive 
steady state of a reaction system we shall mean a compo-
sition c* g P^ (positive orthant of such tha t f ( c*) = 0. 
The mass action differential equations for network (1) are 

dc-! 
dt 

dc2 

dt 

dc3 

~dT 

-£a2->A, c2 + £A,->2A,+A, C1 

~ ^ A i + A 2 - > 0
 cl c2 ~ 2 A , - > 0 c \ 

= - £ a 2 - > A , c 2 - ^ A , + A 2 - » 0 C 1 c 2 

+ f ^ A j — » / A 2 c 3 . 

(5 b) 

• 2 A. +A , c \ ~ £a-,->/A2
 c3 • 

Based on an idea of Feinberg, Li [16] constructed a 
necessary and sufficient condition to determine the pos-
sibility of multiple positive steady states in forest-like 
networks, whose structures contain no loops. This con-
dition is then extended to cover general mass action net-
works which may or may not be forest-like [17]. It has 
been shown [17] that if a network has the capacity to ad-
mit multiple positive steady states, then it admits two pos-
itive steady states for which the distance between them 
tends to zero. It is obvious that, if a network admits two 
positive steady states, whether the distance between them 
approaches zero or not, it exhibits multiple steady states. 
Let c* and c** be two steady states for (5a). We have 

f{c*) = 0 , 

f(c**) = 0. 

(6a) 

(6b) 

Since c * - c * * g St, we can write c * = c ** + A y, where 
A is a real number and y is a vector in St. Equation (6) 
indicates that 

f(c**)-f(c*) 
= 0. (7 a) 

As c** approaches c*, A tends to zero. Equation (7a) 
becomes 

H m / ( c * * ) ~ / ( c * ) 
A—>0 A 

f(c* + Xy)- f(c*) = lim — ————— = F ( c * ) y = 0 , 
A-*0 A 

(7b) 
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where F(c*) y is the derivative of the rate function/(c) 
in (5 a), evaluated at steady state c* along the direction 
y. The combination of (6 a) and (7 b) forms a necessary 
and sufficient condition for multiple positive steady 
states. It says that a network can exhibit steady state mul-
tiplicity if and only if there exists a positive steady state 
c*, (6a), having a zero eigenvalue, (7b), with its corre-
sponding eigenvector y 

3.2 The Zero Eigenvalue Analysis 

For a given reaction network, the zero eigenvalue anal-
ysis proposed below is used to determinate the possibil-
ity that there exists a positive steady state having a zero 
eigenvalue with its corresponding eigenvector in the stoi-
chiometric subspace. It can be applied to both forest-like 
and circular networks. For a given reaction network, we 
choose an arbitrary spanning subnetwork and construct 
the corresponding spanning-subnetwork vectors. Fol-
lowing the condition proposed below, a system of equa-
tions and inequalities is constructed. We then solve the 
system. If a set of qualified solutions exists, there is a set 
of positive rate constants such that the corresponding iso-
thermal mass action differential equations for the given 
network admit a zero-eigenvalue positive steady state. 
Hence, it has the capacity to admit several positive steady 
states. Otherwise, no matter what positive rate constants 
the system might have, the differential equations can ex-
hibit at most one positive steady state. 

Zero eigenvalue analysis. Consider an N-species re-
action network with a reaction set R and a stoichiomet-
ric subspace St. Suppose the network has rank s and r 
reactions with p reversible reaction pairs. Let the reac-
tion set for an arbitrary spanning subnetwork be F and 
let </(2), ..., d(r~p~s)} be a set of corresponding 
spanning-subnetwork vectors. Then the corresponding 
isothermal mass action differential equations for the giv-
en network have the capacity to admit a positive steady 
state having a zero eigenvalue with its corresponding ei-
genvector in the stoichiometric subspace St, if and only 
if there exists a nonzero vector <f) e 9iN which is sign com-
patible with St and also the numbers . ••, £r-p-s> 
0Cj, a2, ..., otr_p_s, satisfying the following two condi-
tions: 

(i) For every reversible reaction y, _y7 e R with 
y'i^yj e F 

r-p-s 
X 
L-\ 
X + and 

X [ZL(yj •<!>) +aL]d£) 
r-p-s 
I 
L=\ 

are sign compatible with (y7 -y,) • (f>. 

(ii) For every irreversible reaction y, —>y • e R, 

r-p-s 
X o and 

X [^(yr<f>) + cxL]d^)=0. 

L= 1 
r-p-s 

L= 1 

If the answer is yes, the set of solution {<fie SRN, 
aL,L=\, ..., r-p-s] for the conditions (i) and (ii) can 
be used to construct a set of positive rate constants k ^ j 
and a positive steady state c* having a zero eigenvalue 
with its corresponding eigenvector ye St. The steady 
state c* can be calculated by (8 a) for any (nonzero) ei-
genvector y eSt which is sign compatible with the vec-
tor <f>: 

c* = [c* ,c* ,...,C%] 

= H . YJL\ ( 8 a ) 

<t> L 01 ' 02 ' ' <t>N . 

The rate constants { k ^ j : i — E R} can be computed 
by (8 b), where the variables {/c,^,: i —>7 e R} are com-
puted by (8c)-(8g): 

n i c t v * 
L= 1 

(8b) 

For every irreversible reaction i ^ j e R , 

K i ^ j - ' l S L d g 
L= 1 

(8c) 

For every reversible reaction i*^ jeR with i-^jeF 
and j,- • <f> • <j>, 

r-p-s 
I 
L= 1 
x [SL{yi-4>) + aL]d&) 

j — 

(yj-yi)-4> 

X [^(yj-<f>) + ccL]dj 
L= 1 

( y j - y i ) < t > 

( L ) 

(8d) 

(8 c) 

For every reversible reaction i j & R with i->je F 
and yr (})=yj . <f,, 
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K ^ j > 0 , K j ^ > 0 , 

r-p-s 

I 
L=\ 

(8f) 

(8g) 

3.3 Applications 

Example 1. Consider the network (1). Substituting 
the spanning-subnetwork vectors d(l\ d{2) in (4b) and 
(4c) into condition (ii) of the zero eigenvalue analysis, 
we have (9a)- (9 j ) : 

For an irreversible reaction A2—»Ax, 

£ i ( - l ) > 0 , (9a) 

[£ , (0 2 )+ « , ] ( - 1 ) = 0 . (9 b) 

For an irreversible reaction Ax —>2A]+A3, 

£ 2 ( - l ) > 0 , (9 C) 

[£2W>i) + « 2 ] ( - l ) = 0 . (9d) 

For an irreversible reaction Ax +A2—»0, 

£ I ( D + £ 2 ( - / ) > 0 , (9e ) 

[S iWi + fc ) + « . ] ( D 
+ + ( - / ) = 0 . ( 9 f ) 

For an irreversible reaction 2A] —>0, 

+ [£2(2<t>x) + a2] f ^ V o 

(9g) 

(9h) 

For an irreversible reaction A3—»/A2, 

$ 2 ( - l ) > 0 , (9i) 

[ U h ) + cc 2 ] ( - l ) = 0 . (9j) 

Equations (9b) and (9d) lead to ax=-t;x <p2 and 
oc2=-^2<t>x, respectively. Inserting them into (9f) and 
(9h), we have 

(10a) 

(10b) 

where K=ty2l<px. From (10), we obtain 

K = 1 ± 
a / 2 / 2 + 2 / 

2 / 
(10c) 

Equations (9c), (9e) and (10a) indicate 1. S ince / 
is a positive real number, the plus term in (10c) is not 
satisfied. Substituting (10a) and the minus term of (10c) 
into (9 a) and (9g), we obtain tha t /> 1 a n d / < 1, respec-
tively. The contradiction says that for any real positive 
number/, there do not exist solutions to the zero eigen-
value analysis. We come to the conclusion that, taken 
with the mass action kinetics, network (1) cannot admit 
either a zero-eigenvalue positive steady state or multiple 
positive steady states, no matter what positive rate con-
stants the system might have. 

Example 2. Consider an enzyme-catalyzed reaction 
[18]: 

S + E ^ E S — » P + E , 
S + ES ES2 —» P + ES , ( H a ) 

where S is a substrate, E is an enzyme, ES and ES2 are 
intermediates and P is a product. Let the above reactions 
take place in a well-mixed continuous-flow stirred-tank 
reactor (CSTR) operated in such a way that S is in the 
feed stream, S and P are in the effluent flow, while E, ES 
and ES2 are retained in the reactor by using, for exam-
ple, porous membranes or screens to prevent escape of 
immobilized enzyme pellets. In reaction network terms 
[7], the reactions S ^ O are used to describe S in both in-
put and output flows, while the reaction P —»0 describes 
P in the output flow. Thus, the CSTR system is modeled 
by the network 

Ax ^ 0 <— A 2 , 

Ax + A 3 <=* A 4 —> A 2 + A 3 , 

A j + A 4 ^ A 5 —» A 2 + A 4 , 

( l i b ) 

where A ^ S , A2=P, A3 = E, A 4 =ES and A5 = ES2 . 
Suppose that the temperature, density and volume of 
the solution do not change substantially with time 
during operation. According to the law of mass action, 
this system is describe by the nonlinear differential equa-
tions 

d c j 

dt 

d c2 

dt 

dc 

~ £O->A, "" ^A, ->0 CL ~ ^A, +A3 —> A4
 c\ c3 

+ ^A4 —M] +A3 c4 ~ k-A\ +A4 —» A5 cl c4 
+ kAs ->A, +A4

 c5 > 

= ~ ^A2 ->0 c2 + *A4 ->a2 +a 3 c4 

+ k-A< ->A2 +A4 c5 ' 

dt 
— = _ +A3 —> A4

 C\ C3 + ^A4 —̂AJ +A3
 C4 

+ *A4 —>A2 + A3
 c4 
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dr 

dc 

- ^A, + A3 ->A4
 cl c3 ~ *A4 —»A, +A3

 c4 
~ kAi —>A2 +A3

 c4 - &A, +A4 ->AS
 c\ c4 

+ k A5 —»Ai+A4 c5 + k, >A,+A4
 c 5 

- ^A, +A4 ->A5
 C1 c4 ~ *A5 ->,4, +A* C5 

~ *a5 a l +aq c5 . (11c) 

(The rate constants kAi_+ 0 and &a,->o are both equal to 
the reciprocal of the reactor residence time, 1/0, and the 
rate constant^ equals c(/0 withe/ denoting the con-
centration for species A , in the feed stream.) 

A spanning-subnetwork of network (11 b) is chosen 

A] 0 <— A2 , 
A, + A3 —> A4 -> A2 + A 3 , 
A , + A4 —> A5 A2 + A4 . 

(12a) 

By (3a), its two (r-p-s=9-3-4) spanning-subnet-
work vectors */<2) consist of the elements 

r(D 
A, ->0 = - 1 , d{X) " I "A2 -»0 1 ' 
i d ) 
A, +A3 -*A4

 — 1 dil) 
1 ' "A4 ->A2 +A3 

= 1, (12b) 
-d) 
A, +A4 

0 d{l) = 0 , 

I(2) 
A, ->0 = - 1 , d{2) -1 
I(2) 
A, +A3 —> A 4 ~~ ^A4

}-^A2+A3 
= 0 , (12c) 

r(2) 
A, +A4 ->A5 = 1 d{2) 

1 ' "A5->A2+A4 
= 1. 

According to the conditions (i) and (ii) of analysis, 
from (12) we have 

[$l(0l) + « l ] ( - D + [ $ 2 ( 0 l ) + «2] ( - D 

and - a , - a 2 are s.c.w. -fa , 

[^1(fa+fa) + a1](l) 
and [£i(04) + a , ] (1) are s.c.w. fa-fa-fa, 

[&(0i + 04) + a 2 ] O ) (13) 
and [$2(05) + «2] (1) are s.c.w. fa-fa-fa, 
£ , ( 1 ) + £ 2 ( 1 ) > 0 , 

<3l(l) > 0 » [^lC04> + «l] CD = 0 , 
£ 2 ( 1 ) > 0 , [&(&) + a 2 ] ( l ) = 0 . 

The mass conservation condition for this example indi-
cates that d(c3+c4+c5) /df=0. A vector y e S, if and only 
if 73+74+75 = 0. Thus a vector (f> = [fa, fa, ..., (p5]e 9f5 

is sign compatible with the stoichiometric subspace for 

network (11) if and only if the set [fa, <p4, </>5] contains 
both a positive and negative number, or else consists en-
tirely of zeros. A sign compatible (nonzero) vector (f> and 
unknowns <fjj, £2, a , , a 2 satisfying the inequality system 
(13) are found: 

£, = 1.45, £2 = 0.67, a , =2.175, a 2 = -0.335, 
(14) 

(f> =[fa, ...,fa]»[2, -0.8679, -3.5, -1 .5, 0.5], 
According to the zero eigenvalue analysis, there ex-

ists a set of positive rate constants : i —e R} such 
that its positive steady state c * has a zero eigenvalue with 
its eigenvector y in the stoichiometric subspace for net-
work (11). By a choice of y= [4, - 4 , -0.5, - 3 , 3.5], from 
(8) they are 

0.46 K 
A, ( . . . ) 0<- 0.46 

3.04 a 2 , 

A 1 + A 3 ^ = i A 4 ^ ^ A 2 + A3, (15a) 

A, + A4 (
 0 6675 > A5

 0 0957 ) A2 + A 4 , 
0.2857 3 z 4 

c* = [cf, c2, ..., c5*] - [2, 4.6087, 0.1429, 2, 7] (15b) 

Equation (15) is used to simulate local steady states 
around c *. The result is displayed in Figure 1. The steady 
state c* in Fig. 1 is a turning point with the values given 
in (15b). Perturbing a little the flow rate kAl_+ 0 , there 
exist two steady states near c*. They become closer and 
closer and finally meet at c*. There is a region having 
three steady states, one (middle) unstable and two (upper 
and lower) stable. The bistability occurring in the net-
work (15 a) is illustrated as hysteresis with variation of 
the flow rate. 

4.5 

3 

1.5 

0.4 0.45 0.5 0.55 0.6 0.65 
Flow Rate k A ^ 0 

Fig. 1. The locus of steady state cx with the flow rate k A ^ 0 f ° r 

network (15 a). 

Stable S.S. -
Unstable S.S. 
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4. Concluding Remarks 

A reaction network can admit multiple positive steady 
states if and only if there exists a positive steady state 
having a zero eigenvalue with its eigenvector in the stoi-
chiometric subspace. The zero eigenvalue analysis pro-
vides a necessary and sufficient condition for the deter-
mination of such a steady state. Since both networks (1) 
and (11) have deficiency two, neither the deficiency zero 
theorem nor the deficiency one theorem (or algorithm) 
can be applied. Clarke [13] has shown that network (1), 
the Oregonator model, admits no multiple steady states 
by stoichiometric network analysis. Network (1) exhib-
its an unstable steady state [15]. If a network has only 
one steady state, an unstable steady state will probably 
come from a Hopf bifurcation [14]. This is the case for 
network (1). It is a wide spread belief [1] that any rea-
sonable model of an oscillatory chemical reaction is ex-
pected to show bistability for another region of the pa-
rameter values. Apparently the Oregonator model gives 
an exceptional example. If stoichiometric network anal-
ysis is applied to study network (11), one should find an 
unstable steady state. However, an unstable steady state 

may go to a boundary (one or more species have zero 
concentrations), explosion (one or more species have in-
finite concentrations), another stable steady state, stable 
limit cycle or other chaotic attractors. This needs further 
numerical analysis. However, the zero eigenvalue anal-
ysis proposed in this work can directly answer the ques-
tion of multiple steady states. 

The zero eigenvalue analysis in this work studies two 
nearby steady states, while the method proposed in [17] 
studies those which may or may not be nearby. The con-
ditions in zero eigenvalue analysis involve terms, y, • <f), 
and are easier to analyze. The terms exp (y, • fi), involved 
in the other method, are highly nonlinear and are more 
difficult to study. However, the vector //. is related to two 
positive steady states c* and c** by /x=\n(c*/c**), 
which may be measured in experiments. However, the 
vector <f> defined in (8 a) may not be measured directly. 
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