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The glass transition caused by a finite cooling rate is a continuous non-linear dissipative process whose 
description requires a clear distinction between equilibrium and non-equilibrium quantities. The so-
called Davies or Prigogine-Defay relations (in form of an equation as well as in form of an inequality) 
are not relevant in such a process. The determining quantities of the glass transition are - from a 
macroscopic phenomenological point of view - the fluidity of the melt and the partial free enthalpy of 
the microscopic vacancies in the melt. All of the characteristics of the dynamics of the glass transition 
are essentially due to these two quantities. 

1. Introduction 

Simon [ 1 ] concluded from the fact that a finite entrop-
ic difference is retained between the vitreous state and 
the crystalline state of a pure substance in the limit 
T->0(T: absolute temperature) that one is not dealing 
with an internal equilibrium state in the case of a glass 
but rather with a "frozen" non-equilibrium state. Within 
the definitions of the thermodynamics of irreversible pro-
cesses, the vitreous state, therefore, has to be classified 
as an arrested equilibrium state [2, 3], 

In the following, we will explicitly assign a (macro-
scopic) internal variable £ to the molecular internal de-
gree of freedom frozen (arrested) in the vitreous state. 
When cooling a liquid at constant pressure p at a con-
stant and not too high rate T = ß < 0, one schematically 
obtains the following picture, for example, for the vol-
ume V (Figure 1): To begin with, one should take into ac-
count that every process which occurs at a finite rate T * 0 
is an irreversible process connected with a finite entro-
py production. In this case, the volume follows a non-
equilibrium curve V(T, £) in which the temperature Tand 
the internal variable £ vary independently of each other. 
However, if one cools, proceeding from a temperature T0 

at a not too high rate ß = const., a volume is measured 
at the beginning of the process which practically follows 
the curve V(T, £e(T)) of the internal equilibrium of the 
liquid. The development of this curve is uniquely deter-
mined by the temperature. At a temperature TF < T0, how-
ever the volume curve starts to considerably deviate from 
the equilibrium curve. Below TF, the internal variable £ 
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clearly deviates from its equilibrium value £ e (T), and 
the volume curve V(T, £) is no longer uniquely deter-
mined by the temperature. At a temperature Tg, the inter-
nal molecular degree of freedom then freezes with £ = 0. 
Subsequently, the volume follows the volume curve V(T, 
£ = const.) of the arrested equilibrium, whose develop-
ment depends solely on the temperature, but whose lev-
el, on the other hand, is determined by the non-equilib-
rium value £(7p of the internal variable frozen in at T%. 
The glass transition region, i.e., the position of the tem-
perature interval {T'g, Tp), as well as the non-equilibrium 
value which freezes in at T'g, depends on the cooling 
rate T = ß < 0. According to the statements pointed out 

• 1 1 1 1 
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Fig. 1. Volume V as a function of the temperature T when cool-
ing a non-crystallizing melt with a not too high constant cool-
ing rate Tunder constant pressure p. internal variable; £e(7): 
its equilibrium value; T0: initial temperature; TF: temperature 
at which first deviations from the internal equilibrium become 
noticeable; T • so-called glass temperature; T'&: freezing tem-
perature; 7g: Vogel temperature (see Sect. 5). 
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in Sect. 5, however, the internal degree of freedom does 
not freeze completely at Tg. Very small changes in £are 
still found below T'G. A complete arrest of the internal de-
gree of freedom with £ = 0 is only observed normally at 
a considerably lower temperature TG. The position of TG 

decreases with the cooling rate ß. In the limit —> 0, i.e., 
in the case of a fictitious, pure equilibrium process, TG fi-
nally reaches the value TG. 

If one proceeds from the linearized mechanical equa-
tions of state, one obtains at constant pressure p for the 
internal equilibrium the straight line 

V=VG[L-AE(T-TG)], T>TG 

and for the arrested equilibrium the straight line 

V=VG[\ -ACE(R-7G)], T<TG 

[a e and a^ are the coefficients of thermal expansion of 
the internal and the arrested equilibria (see Sect. 2)]. The 
two intersect at TG, the so-called glass temperature. In 
this approximation (the so-called "simple freezing-in 
model"; Rehage [3]), the glass transition region is re-
duced to a single temperature TG. The glass transition be-
comes a discontinuous process. The value of the inter-
nal variable, which freezes at TG, is necessarily the equi-
librium value £g = £E(TG) in this model. The coefficient 
of thermal expansion suffers a discontinuous jump at TG: 

A e a = a e - a^. 

Physically, TG and £e(7g) are, of course, purely fictitious 
quantities. Nevertheless, TG is well-defined. The temper-
atures TF and TG, which are characteristic for the real 
glass transition, on the other hand, can only be deter-
mined rather vaguely. This is due to the fact that, as al-
ready mentioned, the volume curve measured at a finite 
cooling rate is a non-equilibrium curve which develops 
continuously in the whole range (T", T0>. 

2. The Fundamental Relations of the Thermo-
dynamics of Irreversible Processes* 

In the following, we will consider a homogeneous, 
fluid single-component system with constant mass. Ac-
cording to the assumptions of the thermodynamics of ir-
reversible processes, the Gibbs formalism of equilibri-
um thermodynamics also holds in non-equilibrium for 
such systems. The Gibbs potentials, however, must be 
complemented by the so-called internal variables, which 

* For example, compare [4 -6 ] or [26], 

represent the additional degrees of freedom in non-equi-
librium. In the following, we will only consider a single 
internal variable In the G-representation, Gibbs' fun-
damental equation of the system is then 

g = g(T,p,0 = H(T,p, Q-Ts(T.p, 0- (1) 
It connects the specific free enthalpy g with the mutual-
ly independent variables T,p, £of the system. 

—(II (2) 

are the specific entropy and the specific enthalpy of the 
system. 

In non-equilibrium, the independent variables Tit), 
p{t), £(r) are explicit functions of time t. If the tempera-
ture and the pressure of the system are also identical with 
the temperature and the pressure of the surroundings of 
the system in non-equilibrium, the changes with time 
T = dT/dt and p = dp/dt are determined by the manner of 
external perturbation of the system. One can assume a 
simple dynamic law in the form 

£=La, L> 0 (3) 

for the change of the internal variable with time, a (T, p, 
£) is the so-called affinity, which can be thought of as a 
driving force for the internal variable. The affinity is giv-
en by 

_ f j t e a = - = ToTp -r\Tp, 
T.P 

whereby 

and riTn = — dh 

(4) 

(5) 
T.P 

denote the partial specific entropy and the partial specific 
enthalpy relative to the relevant internal degree of freedom. 

Thermodynamic quantities which refer to an internal 
equilibrium state are indicated with "e". In the internal 
equilibrium, the affinity goes to zero. Thus, an internal 
equilibrium state is characterized by 

AE = 0 or TOE
TP = R\&

TP . (6a) 

This equation fixes one of the variables T, p, £as a func-

tion of the other, for example 

Although the internal variable remains variable in inter-
nal equilibrium, it is no longer an independent variable. 
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In addition to (6a), 

(da)e = 0 (6b) 

must be fulfilled in the internal equilibrium. For the change 
in the affinity with the independent variables, one gets: 

(7) 

DT PA DP 
dp + 

U 

'da? dC-
T.P 

According to (2) and (4), one obtains in the internal equi-
librium: 

= <r Tp 
/ e 

j i t . 
afar 

Hence, according to (6b), the change of the internal var-
iable with the temperature at constant pressure in the 
internal equilibrium is given by 

DA" 
e ( \ 

DT, 

DA) 
e 

F * 2 G ] 
e 

K ) TP Tp 

d O e
 =°rp_ 

dT )p YTp 

In addition, we have in a stable or metastable internal 
equilibrium 

YTP > 0. (9) 

For the change in the entropy with respect to the inde-
pendent variables, one obtains 

(10) 

d s J ^ 
DTJ 

d T + 

p,C 
'ds? 

DP 
DP + 

U 
'iL dC-

T.P 

For the specific heat capacity at constant pressure, this 
leads to 

\d TJp \oTJp^ Tp d T)T 

(11) 

Here, 

'P.C - ( f ) PX 

(12) 

is the specific heat capacity of the arrested equilibrium 
(£= const.). This heat capacity is measured when the 
change in temperature occurs so rapidly that the internal 
degree of freedom is not capable of following this change 

(C, < T ) , or if the internal degree of freedom is frozen 
(£ = 0, because of L —» 0; see below). In the internal equi-
librium, one measures, according to (8), the heat capac-
ity 

cp = cPXc + (13a) 

with 

A % = Z K T 
rb 

>o. (13b) 

Aecp is the contribution of the internal degree of freedom 
to the heat capacity in the internal equilibrium. Outside 
the equilibrium, I.e. in non-equilibrium, T and £ are 
mutually independent but time-dependent variables. 
With p = const., one must then set 

(14) 

Under conditions of non-equilibrium, one measures, ac-
cording to (11), the heat capacity 

(8) with 

CP = CP.C+ACP 

Acp = Tojp j . 

(15a) 

(15b) 

Acp is the contribution of the internal degree of freedom 
to the heat capacity under conditions of non-equilibrium. 

Corresponding expressions can be derived for the co-
efficient of thermal expansion a and for the isothermal 
compressibility Kt. One obtains as the coefficient of ther-
mal expansion: 

v\dTj„ 

-m^AS), 
and as the compressibility: 

(16) 

<PTp = 

r dv 
V I . dp 

I f dv 
v l > 

dv 
\ 

Jtp 

<PTP 

U 

d f 
dp 

(17) 

0 8 ) 
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is the partial specific volume with respect to the internal 
degree of freedom, v the specific volume of the system. 
For the change of the internal variable as a function of 
pressure at constant temperature and in the internal equi-
librium, one obtains, corresponding to (8), 

f Af \e 

I i 
dp 

<PTP 

y% 
(19) 

a r and 
dT) 

' a / 
u 

are the response functions which are measured in the ar-
rested equilibrium. According to (8) and (16), the contri-
bution of the internal degree of freedom to the coefficient 
of thermal expansion a e under conditions of internal 
equilibrium is 

AEA = 
1 <P Tp ° TP 

v YTP 

(20) 

According to (17) and (19), the contribution of the inter-
nal degree of freedom to the compressibility Kj of the 
internal equilibrium is 

V - I K T - ~ 
V 

K1 
YTP 

>0. (21) 

As can easily be seen, the differences (13b), (20), and 
(21) fulfil the Davies relation 

Aec„ Ae Kj = 7v(Aea) (22a) 

[7, 8] (compare also [4]). It should be stressed that the 
Davies relation holds for every arbitrary internal equi-
librium state Z[T, p, £e(T, p)]. Hence, it does not have 
anything to do with the formally homologous Ehren-
fest relation, which is fulfilled on the line Tc(pc) of a 
second-order transition. In (22), the differences Ae re-
fer to the response functions, which are measured dur-
ing a quasi-static perturbation [£= £e(T, p)\ internal 
equilibrium] and during a sufficiently fast perturbation 
(Ce = const.; arrested equilibrium). If several internal 
degrees of freedom are simultaneously macroscopical-
ly relevant, (22a) is replaced by the Davies inequality 
[9] 

Aec„ AeKT > Tv(Aea)2. (22b) 

The contributions of the internal degree of freedom to the 
coefficient of thermal expansion or to the compressibil-

ity under conditions of non-equilibrium are given by 

Aa = - ( p T p t p / t p or 
v 

A Kj =--(pTp t>T ! Pt • 
V 

(23) 

One must distinguish here if the process is run at con-
stant pressure or at constant temperature. The differenc-
es (15b) and (23) do not fulfil the Davies relation (22). 
Since the coefficient of thermal expansion, defined by 
(16), must be measured at constant pressure, it would be 
more correct to write a p instead of a and in (23) Aap in-
stead of Aa. According to the equations of equilibrium 
thermodynamics, we can then also define an isothermal 
coefficient of expansion 

l-a 
— t P V { dp JT 

In non-equilibrium, the contribution of the internal de-
gree of freedom to this coefficient is 

1 Cr 
A a T = — o T p — . 

v pT 

Obviously, we now have in place of (22a) 

A cp AKt=TV A AP AAT. 

However, in non-equilibrium, in general, Aap * AaT. 
It should be noted that the product Ly\p has the dimen-

sion of reciprocal time if the internal variable is dimen-
sionless (e.g., a concentration). 

1 

V v d p , T 

1 'DS} 

V K^P J U 

T*Tp(T,p) = \ILfTp (24) 

proves to be the so-called Debye relaxation time of the 
system. Analogously, one can introduce the relaxation 
time 

TTP(T,PQ=\/LYTP 

with 

YTP = 

(25) 

(26) 

T.P 

In contrast to the Debye relaxation time, the relaxation 
time (25) also depends on the internal variable. In order 
to determine the internal variable as a function of time, 
one obtains, if the pressure p and the coupling factor L 
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are constant, from (3) and (7) with (4) and (25) the non-
linear differential equation: 

rTp dTd£ 
T. (27a) 

If r\Tp and oTp are not dependent on the temperature [e.g., 
as in the case of the Eqs. (38) and (39) in Sect. 3], we 
have, as in the equilibrium, 

a 2 * 
* = ° T P . ( 2 7 b ) 

a r a c 

Equation £ = 0 holds for the frozen (arrested) states. Ac-
cording to (3), however, £ does not disappear because of 
a = 0 (internal equilibrium), but because of L —> 0. 
Hence, when describing a freezing process, e.g. the glass 
transition, L must necessarily be regarded as a variable, 
i.e., as a function L(T, p, £) of the mutually independent 
variables of the system. In this case, the differential equa-
tion (27) is formally maintained if the relaxation time rTp 

is replaced by the effective relaxation time 

• x (28) 
1 _ 1 f ainL ĵ ^ I ainL 

\ dT J, •eff •Tp 

T -
ac TP 

Thus, the effective relaxation time Teffof a freezing pro-
cess under constant pressure depends not only on the in-
dependent variables T, but also on their rates T, t,. 

3. A Gibbs Fundamental Equation for the 
Description of the Glass Transition 

A fundamental problem when describing the glass 
transition within the framework of phenomenological 
thermodynamics is the formulation of a suitable Gibbs 
fundamental equation of the melt. Here, we proceed from 
the simple model of the Eyring liquid [10-12]. Eyring 
regards liquids as a mixture of molecules and vacancies. 
What freezes during the glass transition of a melt, is with-
out doubt the diffusive translational motion of the mole-
cules. The concentration of the vacancies or the volume 
fraction of the vacancies (the relative free volume) of the 
Eyring liquid can serve as a measure of the intensity of 
the diffusive translational motion. In this case, the diffu-
sion process should not be understood as a hopping of 
the molecules into holes of the same size. In a relatively 
compact melt, the diffusion process is mainly a cooper-
ative process, for which a considerably smaller vacancy 
size is sufficient [13]. We thus proceed from a mixture 
whose species differ widely in their volumes. 

According to Flory [14, 15], one can write for the free 
enthalpy G of a mixture of molecules with two different 
volumes: 

G = GN+RT 

+ N2 In 

N, In yv, 

P " 2 
Ni + pNi 

Nx + pN2 

+ G P. 

p = v2/vl > 1 

(29) 

(30) 

is the ratio of the molar volumes of the two mixing part-
ners, NX and N2 their mole numbers, and R the gas con-
stant. With respect to the Eyring liquid, designates the 
mole number of the vacancies* and N2 the mole number 
of the material particles (molecules of a low-molecular-
weight substance or mobile units of a flexible polymer). 
The standard term G0 is solely determined by the mate-
rial particles, as the vacancies in the pure state do not 
possess a chemical potential p: 

G0 = p°2N2; p° = 0. (31) 

For the deduction of an expression for the excess free en-
thalpy GE, we proceed from a simple mixture as defined 
by Guggenheim [15]: 

GE =zAw-
/V, N-, 

n]+N2 

Here, however, we substitute with 

zNj —> OjNj 

the coordination number z by the contact surfaces o, per 
mole of the mixing partners [16]. It is obvious that the 
interaction between partners of different sizes and shapes 
can be described much better by the surfaces o, than by 
the mere number z of the nearest neighbours. Hence, the 
excess free enthalpy should amount to 

Ge = Aw 
oi Nx o2 N2 

oi Ni +O2N2 

In 

Aw = w12 - - ( w n + w22 ) 

* The mole number and the number of vacancies are fic-
titious quantities, since the vacancies have no mass and, con-
tinuously smeared, do not have an individuality. According to 
(34) and (37), on the other hand, a real physical significance is 
attributed to the relative free volume <p, introduced instead of 
N\ further down, and to the internal variable 
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w22 describes the binding energy between two adjacent 
material particles and W] ] = 0 the binding energy between 
two vacancies. w12 can be interpreted as the binding en-
ergy between two material particles separated by vacan-
cies. 

We approximatively assume that the excess free en-
thalpy GE neither depends on the temperature nor the 
pressure. The temperature independence means that we 
confine ourselves to a regular mixture with 

Ge = = 0. 

The pressure independence allows an equation of the mo-
lar volumes v, with the partial molar volumes v I n place 
of the mole numbers Nh we can then easily introduce the 
volume fractions 

v, /V, /Vi 
vi Ni + v2 N2 NI + pN2 

; (pi =i-(pi 

as variables of composition. In the following, we will use 
the volume fraction (p= (P\ of the vacancies (the relative 
free volume) as the independent variable of the compo-
sition. Furthermore, we will refer all the extensive quan-
tities to the mole number N2 of the material particles and 
once again denote these molar quantities with small let-
ters G/N2 = g, V/N2 = v, Cp/N2 = cp etc. (29-32) then 
yield as the Gibbs fundamental equation of the melt inter-
spersed with vacancies: 

with 

and 

8 = 8O+RT 

8o = V°2(T,p) 

8E =hE=hc 

hc = o i Aw 

PV 
1 -cp 

In cp + In (1 - cp) + 8E (33a) 

(33b) 

P<P 
\-cp+ Xcp 

(33c) 

(33d) 

is the energy required to generate one mole of vacancies 
in the vacancy-free melt. 

A = —- p, 
O 2 

i.e., = A 
o2 

ZL 
v2 

(33e) 

is a geometric factor which not only considers the differ-
ent sizes but also the different shapes of the mixing part-
ners. As dimensionless internal variable, we will finally 
introduce the ratio £= Nx/N2 of the mole number of the 
vacancies to the mole number of the material particles. 
The internal variable, which is often rather vaguely re-

ferred to as the "ordering parameter" in the literature 
(e.g., compare [3], [8], [17]), thus acquires a concrete 
physical meaning. With the relative free volume (p, we 
find the interrelation 

l-(f> (1 -cp)2 (34) 

According to (2) and (33), the entropy and enthalpy of 
the system are given by 

dT )l 
s = R P(P 

Li-cp 
ln<p + In (1 -cp) , (35) 

h = h0+hE with • (36> 

One obtains for the volume 
v2 

1 -cp' 
v = v l£ + v2 = (37) 

The vacancies are not of importance in the response func-
tions cp aK^of the arrested equilibrium. According 
to (12) and (35), one obtains, for example, for the heat 
capacity of the arrested equilibrium 

•PX 
= -T 

f 32 > d 8 o 
dT2 

Equations (33) and (34) yield for the quantities (5), 
(18), and (26), which determine the dynamics of the 
system 

VTP = K 

aTp =-R 

1 -cp 

1 -cp + kcp 

ln<p + (1 -cp) 

1 -cp 
(pTp = V i = V 

and 

with 

YTP = -T 
/ doTp ^ 

T.P 

r djlTp N 2HRXF RITP N 

T.P 

JTp 

3/2 

(38) 

(39) 

(40) 

(41a) 

(41b) 
V "c y 
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T,P <p p) 
(41c) 

In consideration of the equilibrium condition (6a), one 
can also write for the equilibrium value of yTp: 

r h = R T 1 -<Pe 

P 

2A 
1 -<pe +MPe 

In <pe 1 - (1 ~(Pe) 

1 ~<pe 

<Pe 
1 ~(pe +• 

P J 
(42) 

As already mentioned, r f p = l / L / ^ is the Debye relax-
ation time of the system. 

In the internal equilibrium, the liquid interspersed with 
vacancies (33) is stable up to T -> 0. However, the liq-
uid is not capable of holding an arbitrary number of va-
cancies. With increasing temperature, a critical point 
(Im a x ; (pmax) is reached, after which the system becomes 
unstable with YTP < 

4. The Glass Transition 
in the "Simple Freezing-in Model" 

In the "simple freezing-in model" (Sect. 1), the glass 
transition region is reduced to the so-called glass temper-
ature Tg. The glass transition appears as a discontinuous 
process in which an equilibrium value £e(T) of the inter-
nal variable of the liquid state is abruptly subjected to the 
arrest £e = const. As a result, the response functions 
undergo a precipitous change in the amounts given by 
the equilibrium differences (13b), (20), and (21). 

With (39), (40), and (42), (20) now leads to 
(43) 

1 <Pe A a = -

2 A (pe 
(1 ~(Pe) 1 ~(pe + 

(?t 

l-(jOe+Ä(pe In (pe+\ 1 - — 
PJ 

(1 ~(Pe) 

According to (13b) and (20), we have further 

A ecp =vTAea Tp 

<PTP 

i.e., with (39), (40), and (43) 

RpVe A = 
1 ~(Pe 

(44) 

ln<Pe + 
V PJ 

(1 -(Pe) 

2A<pe 
(1 ~(Pe) 1 -<p e + — 

l-<pe +X(pt In (pe + (1 ~(Pe) 

These equations hold for every arbitrary internal equilib-
rium state of the system (33), i.e., with the assumption 
Cg = Ce(^g) a l s o a t the glass temperature Tg. If A e a(T g ) , 
Aecp(Tg), p, and Tg are known, the relative free volume 
(pe(Tg) and the interaction parameter A can be determined 
from (43) and (44). 

Using equivalent equations (under the precondition 
<pe 1 and omission of 1/pas compared to 1 in Eq. (39)), 
Kanig [16] determined the volume fraction <p| = (pc(Tg) 
and the interaction parameter A for eleven different or-
ganic polymers with experimental data for Aa, Acp, and 
Tg. For these polymers, he found on average 

((pe
g) = 0.0235 ± 0.0050, 

(A) = 3.15 ±0.35. 

(45) 

(46) 

The mean value (45) agrees very well with the value 
<p| = 0.025 determined by Williams, Landel, Ferry [18] 
from viscosimetric data. Equation (45) seems to confirm 
the thesis established by Fox and Flory [19], according 
to which liquids are in a state of equal free volume at the 
glass temperature. Equation (45) also seems to confirm 
the rule of Simha and Boyer [20], according to which 
TgAa= const, should always hold at the glass tempera-
ture. However, Kanig [ 16] already noticed systematic de-
viations from the mean value (45). Polymers composed 
of more flexible chain molecules, for example, lead to a 
smaller (pg-value than polymers composed of stiffer chain 
molecules. Wrasidlo [21] finally showed on the basis of 
the data for 63 polymers that an "iso-free volume state" 
is out of the question at Tg. From the viewpoint of the 
thermodynamics of irreversible processes, one should 
add that an equilibrium value <pe can never freeze in at a 
finite cooling rate. Moreover, the non-equilibrium value 
(p > <pe, which practically freezes in at a temperature 
Tg < Tg, depends on the cooling rate ß (Figure 2). 

Together with an adequate expression for Ae Kt, the dif-
ferences (43) and (44) fulfil the Davies relation (22a). 
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Hence, in the "simple freezing-in model" the Davies re-
lation in the form (22a) or also in the form (22b) appears 
as a characteristic of the glass transition and, as such, is 
also designated as the Prigogine-Defay relation (e.g., 
compare [2], [22-24], One should notice here that the 
Davies relation can, strictly speaking, never become val-
id at a finite cooling rate, since we are dealing with an ir-
reversible process subject to a non-vanishing entropy 
production in the whole interval (T'g\ T0) (Figure 9). The 
Davies relation approximately holds for the states Z 
(T, p, £) in the interval (TF , T0), as in this region the re-
sponse functions still approximately follow the equilib-
rium curves with £e(T, p). Below TF, however, the 
internal degree of freedom provides the "dynamic" con-
tributions (15b) and (23) to the response functions, which 
do not comply with the Davies relation. These contribu-
tions continuously diminish from TF until they approxi-
mately disappear at Tg and finally completely disappear 
at T"g (Figs. 7 and 8). With regard to the glass transition, 
the Davies or Prigogine-Defay relation can only attain 
significance upon quasi-static cooling with T = ß -» 0. 
According to the statements in the next section, this is 
the case at the temperature Tg = T„, which is usually 
some ten degrees below the glass temperature. 

5. The Glass Transition as an Irreversible Process 

In the thermodynamics of irreversible processes, the 
system temperature T is defined by 

r ( s , v , 0 = 
v.C 

(u: specific internal energy of the system). It reflects all 
the internal degrees of freedom of the system which are 
in internal equilibrium. The macroscopically relevant 
internal degree of freedom on the other hand, must be 
regarded as being arrested with £ = const. If £is assigned 
to the diffusive translational motion of the molecules of 
a liquid in non-equilibrium, one must, therefore, expect 
a considerable difference between the system tempera-
ture and that temperature T* at which the heat exchange 
of the system with its surroundings takes place. Accord-
ing to Meixner [25], the differentiation between a ther-
mostatic temperature T and a thermodynamic tempera-
ture T* is even generally imperative in the thermodyna-
mics of irreversible processes. This completely corre-
sponds to the differentiation between the hydrostatic and 
the hydrodynamic pressures in hydromechanics. In the 
following, the differentiation between T and T* finally 

proves to be essential for a correct formulation of the 
boundary conditions. T = T * naturally holds in the inter-
nal as well as in the arrested equilibrium. 

In non-equilibrium, the change in entropy s with time 
is separated into two additive parts: 

. _ d a s d , s 
S ~ dt dt 

(47) 

das/dt describes the amount of entropy exchanged by the 
system with its surroundings per time and mass unit. 
d,5/dr > 0 is the entropy produced in the interior of the 
system per time and mass unit [26]. If one distinguishes 
between the static temperature T and the dynamic tem-
perature T*, one obtains 

dAS_ 

d t 
_1_ 
T * 

(48a) 

q is the heat exchanged by the system with its surround-
ings at the temperature T* per time and mass unit. If we 
neglect the possible difference between the hydrostatic 
and the hydrodynamic pressures and assume p = const., 
we have 

q = h, 

whereby (36) with (5) and (12) leads to 

h = Cp.j + riTp C-

(48b) 

(48c) 

According to (10) with (5) and (12), the change in entro-
py with time is given by 

(49) 

Hence, according to (47), (48), and (49), the entropy pro-
duced in the interior of the system must be 

(50) 

d t f * 

In the thermodynamics of irreversible processes, the 
product T(djs/dt) now always appears in a bilinear form 
of the effective "fluxes" and "forces" [26], Therefore, we 
can conclude from (50) that, in the case of a differentia-
tion between the static and the dynamic temperatures, 
Eq. (3) will be replaced by the dynamic laws of the 
form 

T = L u c p < 

+ ̂ 12^1 VTp -y^VTp (51a) 
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£ = L21 c p X 
T * — T 

+ L22T\ OTP - — RITP I- (51b) 

The matrix of the coefficients Lik is positive definite be-
cause of d,s7df > 0. If we ignore with Lx2 = L2X=Q \ht 
possible interference effects, we obtain the simple dy-
namic laws 

T=Luc
P,t: 

S = L22^T*(jTp-T)Tp). 

(52) 

(53) 

With a constant cooling or heating rate, we also have the 
differential equation 

T* = ß = const. (54) 

For the internal variable there is, as before, a sim-
ple dynamic law of the form (3): 

C = L22a* (55) 

However, the affinity a must now be replaced by the "dy-
namic" affinity 

A* = J-(T*GTP-RITP). 

Between a and a*, we find the interrelation 

Y * — T a* = a + rjTp . 

(56) 

(57) 

According to Tool [27] (see also [8]), one can further in-
troduce a fictive temperature 

7> = _ riTp 

OTp 
(58) 

This is the temperature which the system in a non-equi-
librium state Z(T, £) would have if it were in internal 
equilibrium [see Eq. (6)]. With the fictive temperature 
(58), one can also write instead of (4) and (56) 

and 

a = GTJT- 7 » 

a* = TGTp(T* - TF)/T*. 

(59) 

(60) 

The functional dependence of the coefficients 
Lik = Lik(T, p, £) cannot be derived in the macroscopic-
phenomenological theory. In this respect, one rather de-
pends on ad-hoc formulations. L22 has the dimension 

fluidity/volume. With respect to the description of the glass 
transition, it is reasonable to assume a proportionality 

(77: viscosity of the melt). In order to describe the tem-
perature dependence of the viscosity, we proceed from 
the so-called Vogel-Fulcher-Tammann-Hesse equation 
[28, 29] 

In 77 = In 77' + 
T - T x 

and correspondingly set 

L 2 2 ( 0 = 

L 2 2 (0)exp 1 
7n - 7 L T*-Tx V 'o 

(61) 

Here and in the following, the subscript "0" refers to the 
initial state. is the Vogel temperature. At the same 
time, and c are the invariants of the so-called Wil-
liams-Landel-Ferry equation [18,28,29], With (61), (53) 
leads to £ —> 0 if 77 —> Hence, the internal degree of 
freedom freezes completely at the Vogel temperature. T„ 
is identical with the temperature denoted with Tg in Fig-
ure 1. 

The boundary conditions should particularly be con-
sidered when determining the coefficient Lxx. Proceed-
ing from an internal equilibrium state Z(Tq, CE(7O))> WE 

cool the melt under constant pressure at the constant rate 
T* = ß. In the initial state, we have T0 = T{ = Tq and 
T0 = T® = 0, Tq= ß. Approaching the Vogel tempera-
ture, the internal degree of freedom is arrested with a non-
equilibrium value a* = a* 0. Hence, T* = T*T{ and 
T* = T = ß, T{ = 0 must hold in the limit T* -> 
Moreover, according to (8) and (14), 

lim 
T*-*To T KdT). 

must hold if the transition from the internal equilibrium 
to the non-equilibrium is supposed to proceed continu-
ously in Tand £at the beginning of the process. With (8), 
(52), (55), and (60), this leads to 

lim 
L22TGTp(T*-T{) G 

T*->T* Lxxcpt-(T*-T) 

and because of 

lim ^ = 1, 
T*->T* T * - T 

Tp 

A 
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to 

£ i i ( 0 ) = ^ 2 2 ( 0 ) 7 ^ = 7 0 
PX 

c~ r ° 
(62) 

The boundary conditions for T* —> T„ are satisfied if one 
first generalizes (62) as 

T Lu = 

J _ 
:eff 

and replaces the relaxation time xTp by the effective re-
laxation time (28). According to (28) and (61), one ob-
tains for ß < 0: 

1 cß 
rTp (T*-^)2 

1 , c\ß\ 
zTp (T*-T„)2. 

In order to maintain the limiting value (62), we should 
then set 

T Lu = 
c P £ 

/ 

[L22yTp+c\ß\ 

T*-T„)2 (T0*-T„y JA 
(63) 

Equation (63) can also be used for ß > 0, since Lu > 0 is 
always valid regardless of the sign of ß. 

The differential equations (52-54) with the pheno-
menological coefficients (61) and (63), and the thermo-
dynamic coefficients (38-41) are thus the determining 
equations for the glass transition. Numerical solutions of 
these equations are represented in the following figures. 
For the constants of the equations, we will choose val-
ues which approximately apply for polystyrene: 

h c = 10 kJ/mol, p = 10, A = 3, (64a) 

according to [161, 

= 340 K, c = 400 K, (64b) 

according to [28], and with T0 = T0*= 400 K: 

L22(0) = 0.0001 mol/J sec. (64c) 

The heat capacity cp ^ of the arrested equilibrium only 
plays a role in Figs. 6 and 9. There, we assume 

c p ^ = 0.75 (T-T0) + cp>? (T0) with 
cp C(T0) = 150 J/mol K. (64d) 

Strictly speaking, the quantities (64a) are naturally not 
constant. The values assumed with (64a) have the effect 

that the melt in internal equilibrium already loses its 
stability towards higher temperatures at 

7e
max = 456K, ^ a x = 0.125. 

However, this should at least not qualitatively influence 
the glass transition to be described. 

In Fig. 2, the relative free volume (p is represented as 
a function of the temperature T* for different cooling 
rates 7"* = ß < 0. It becomes obvious that at normal cool-
ing rates the internal degree of freedom freezes practi-
cally at approximately 30 K above the Vogel temperature 
T = 340 K. The frozen value of (p is higher the faster 
the cooling. It is much higher than the value 
(pt(T^) = 0.01679, which would be reached upon quasi-

0,038 i 

0,036 

ip 0,034 -

0,032 

0,030 

0,028 

0,026 

0,024 
350 360 370 380 390 400 

—- T'CK] 

Fig. 2. Relative free volume (p as a function of the dynamic 
temperature T* when cooling at different constant rates T* = ß 
according to (52-54) with (61), (63), (64) and (34), (38), (39). 
a) ß = - 5 Kymin; b) ß = - 1 K/min; c) ß = -0 .2 K/min. Accord-
ing to (6), (38), (39), the equilibrium value of the relative free 
volume is at the initial temperature T{* = 400 K: <pe = 0.038017, 
at T* = 370 K: <pe = 0.025343, and at the Vogel temperature 
Tg = T ^ = 340 K: (pc = 0.016791. 

0,038 

0,034-

0,030-

0,026-

350 360 370 380 390 400 
— T*CK] 

Fig. 3. Relative free volume (p as a function of the dynamic 
temperature T* when cooling at the rate ß = - 1 K/min down to 
T* = 350 K and subsequently heating at the rate ß = + 1 K/min. 
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static cooling ( ß —> 0) at the Vogel temperature. If the 
melt is cooled down to the freezing range at the rate ß < 0 
and then immediately heated up again at the same rate 
I ß I, the free volume goes through a hysteresis cycle (Fig-
ure 3). The cause for this can be found in the affinity a*, 
which with £ < 0 necessarily assumes negative values 
when cooled. If one heats up again, a* at first stays neg-
ative. £and <p decrease further until a* becomes positive. 
Upon heating, a* must necessarily approach the equilib-
rium value a* = 0 from the positive side. Therefore, a* 
first intersects the equilibrium axis and passes through a 
maximum within the positive range in order to finally 
reach the equilibrium value a* = 0 "from above" (Fig-
ure 4). 

According to (52), if T* and Thave the same sign, the 
static temperature T is always above the dynamic tem-
perature T* when cooling and always below it when heat-
ing. The temperature of the system retards with respect 
to the temperature of the surroundings. The maximum 
distance \ T*-T\ is smaller, the smaller the cooling 
or heating rate. In the limit ß —» 0 we, of course, have 
T* - T= 0. Upon cooling, because of the proximity to 
the internal equilibrium, T first follows the fictive tem-
perature T{ [Eq. (59) with a = 0] and then turns towards 
the dynamic temperature (arrested equilibrium with T = 
T* * 7» (Figure 5). The fictive temperature T{ freezes in 
with (p during the glass transition. Upon heating, T{, like 
<p, passes through a hysteresis cycle (Figure 5). The be-
haviour of the static temperature T is, of course, com-
pletely a result of our formulation (63). Except for "path-
ological" cases, however, a different behaviour does not 
seem to be possible - at least qualitatively. 

In Fig. 6, the heat capacity cp, according to (15), is rep-
resented for different cooling rates. The faster the cool-
ing, the faster the curves separate from the equilibrium 
curve, and the faster the melt freezes. The width of the 
freezing range increases with the cooling rate. The bar 
on the right of the figure indicates the jump Aecp, which 
the heat capacity would suffer upon quasi-static cooling 
( ß 0) at the Vogel temperature T„ = 340 K. Only this 
quantity satisfies the Davies relation (22). It is consider-
ably smaller than the step in the heat capacity which one 
finds in the freezing range about 30 K above the Vogel 
temperature in the case of normal cooling rates. 

If the melt is cooled down to the freezing range at the 
rate ß < 0 and then heated up again at the same rate \ß\, 
the heat capacity Acp, according to (15b), first passes 
through a minimum and then through a maximum dur-
ing the heating process (Figure 7 b). This effect is also 
entirely due to the affinity. According to (15b), we have 

Fig. 4. Affinity a*, according to (56), as a function of the dy-
namic temperature T* when cooling and heating at the rate 
I ß I = 1 K/min. 

T*CKJ 

Fig. 5. Dynamic temperature T*, static temperature T and fic-
tive temperature T{ as a function of the dynamic temperature 
T* when cooling down to T* = 345 K and subsequently heat-
ing. 101 = 5 K/min. 

with (55) 

Acp = L22 T <Jjp a* / T. 

As long as a* < 0 holds with T > 0, Acp decreases upon 
heating. If the affinity passes through a maximum 
(Fig. 4), Acp - if T increases monotonously - also pass-
es through a maximum. If one heats up at a lower rate 
T* <\ß\, the glass thaws in a lower, narrower tempera-
ture range. The minimum becomes more pronounced 
while the maximum appears weakened (Figure 7 a). If 
one heats at a higher rate T* > I ß I, the thawing process 
takes place in a higher, broader temperature range. The 
minimum of the heat capacity reduces while the maxi-
mum increases (Figure 7 c). 

If the melt is cooled down to the freezing range at the 
rate ß< 0, it reaches a relative free volume <p(T*, ß) at 
the temperature T*, which is greater than the equilibri-



168 H. Baur • The Glass Transition Within the Thermodynamics of Irreversible Processes 168 

T*[K] 

Fig. 6. Heat capacity per mole of the material particles cp, ac-
cording to (15), as a function of the dynamic temperature T* 
when cooling at the rates a) ß = -0 .2 K/min; b) ß = - 1 K/min; 
c) ß = - 5 K/min. Aec/)(7'«;): jump in the heat capacity which, ac-
cording to (13), occurs upon quasi-static cooling at the Vogel 
temperature T„ = 340 K. 

Fig. 7. Contribution Acp of the vacancies to the heat capacity, 
according to (15b), when cooling from 400 K down to 350 K 
at the rate ß = -\ K/min and subsequently heating at the rates 
a) ß = 0.2 K/min; b)ß=\ K/min; c) ß = 5 K/min. 

um free volume (pe(T*) of the melt. Above the Vogel tem-
perature, however, the melt is still not completely frozen. 
There is a slight tendency that the volume (p(T*, ß) will 
gradually relax towards its equilibrium value <pe(T*). 
During this process, the affinity increases from a* (T*, 
ß) < 0 to a* = 0. Thus, if one anneals the frozen melt 
within the range < T* < T'g, the free volume reaches 
a value (pe(T*) < (pit) < (p(T*, ß) after the annealing time 
t. If one reheats the system at the same rate I ß I, the hys-
teresis of the volume and the connected minimum value 
of the heat capacity become ever weaker with increasing 
annealing time t, the maximum value of the heat capac-
ity, on the other hand, becomes ever larger (Figure 8). 
When the relaxing glass has finally reached the equilib-
rium value <j£>e(T*) (a* = 0), the hysteresis disappears 
completely upon heating. Since the undercooled melt is 

Fig. 8. Heat capacity Ac„, according to (15b), when cooling 
down to T* = 350 K at the rate ß = - 1 K/min, "annealing" at 
T* = 350 K, and subsequently heating at the rate ß = +1 K/min. 
The initial values of the free volume (p upon heating were a) 
(p = 0.0268907 (the value which was attained upon cooling at 
350 K), b) (p = 0.0240000, c ) ( p = ( p e = 0.0193056 (the equilib-
rium value of the melt at 350 K). 

T*TK] 
Fig. 9. Entropy production djs/dt, according to (50), when 
cooling down to 350 K at the rate ß = - 1 K/min and subsequent-
ly heating at the rate ß = +1 K/min. Although the free volume 
seems to be fully frozen below 365 K (see Fig. 3), there is still 
a considerable entropy production in this range. When cooling, 
the entropy production only disappears after reaching the Vog-
el temperature (at 340 K). The position of the maxima of the 
entropy production indicates rather precisely the temperature 
at which the freezing of the free volume seems to be complete 
or alternatively the thawing of the free volume starts (compare 
Fig. 9 with Figure 3). 

in a metastable state, it is possible that the free volume 
decreases even beyond the equilibrium value (pe(T*) 
upon annealing, and approaches the equilibrium value 
(pl(T*) < <pe(T*) of the crystalline state. When judged 
with respect to the potential g of the melt, the states 
(p(t) < (ps(T*) are non-equilibrium states with a positive 
affinity. If one heats up from such a state, the maximum 
of the heat capacity increases further. With (pit) —» 0, we 
finally obtain a* —» °° and Acp —» <». The increase in the 
maximum of the heat capacity with the annealing time, 
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which is measured when heating a glassy frozen, an-
nealed melt, has repeatedly led to the conclusion in the 
literature that the glass transition must be a masked phase 
transition in the sense of equilibrium thermodynamics 
[21]. But this is definitely not true. In these cases, the 
maximum of the heat capacity is clearly connected with 
the maximum of the affinity a* * 0, which is character-
istic for the non-equilibrium. 

The entropy production d, s/dt, according to (59), char-
acteristic for the irreversibility of the processes, is repre-
sented in Fig. 9 for the case of the process Fig. 3 and Fig-
ure 7 b. The entropy production disappears only at the be-
ginning of the process at T* = T0 (internal equilibrium) 
and at the end of the process at 7* = 7U (arrested equi-
librium). In addition, it becomes very small if one switch-
es from T* = -ß to T* = +ß in the range T„ < T* < Tg' 
(in Fig. 9 at T* = 350 K). T passes through zero when 
switching (see further below), whereas £ is very small. 
The entropy production reaches a maximum value when 
cooling at the end of the freezing process and when heat-
ing at the beginning of the thawing process (compare 
Fig. 9 with Figure 3). The level of the maxima increases 
with 1/31. Figure 9 shows that the glass transition gener-
ated at a finite rate T* is an irreversible process in the 
whole interval {T„, T0). However, the contribution of the 
entropy production to the balance (47) of the entropy is 
relatively small during normal perturbation of the system. 
The maximum contribution of the entropy production to 
the balance is 0.95% with ß = -5 K/min, 0.71% with 
ß = -\ K/min, and 0.55% with ß = -0.2 K/min. 

According to (15), one can also write 

Ac, 

TG 
T. (65) 

Tp 

Insertion of this expression into (49) leads to the interre-
lation 

1 ~ s = -cpT, 

which completely corresponds to the equilibrium ther-
modynamics. However, the conclusion 

q = cpT (66) 

would be wrong, as s contains the entropy production 
which, according to Clausius, corresponds to a non-com-
pensable heat. Instead of (66), (48) and (65) lead to the 
correct relation 

<7 = 

/ „ \ VTP a 

TG Tp 
(67) 

(67) reduces to (66) only in the internal equilibrium 
(with R\TP!TGTP = 1) and the arrested equilibrium (with 
Acp = 0) [30]. However, TGTP first deviates more strong-
ly from T]Tp when Acp approaches zero. Upon normal per-
turbation, therefore, the maximum deviation (66) from 
(67) remains below 1%. 

Finally, one should point out the following: T reacts sponta-
neously to a discontinuous change from 7* = - I /?, I to 7* = +1 I 
only in the arrested equilibrium. Above T T is subject to a 
retardation with respect to T* (Figure 5). T then reacts to a 
discontinuous change of sign from 7* < 0 to T* > 0 with a rap-
id, but still continuous change from T< 0 to T> 0. Therefore, 
T necessarily passes through zero during this transition. If £ * 0 
is valid, Acp, according to (15), passes through a singular in-
finity due to the sign reversal of T*. 0 holds if the sign 
reversal takes place at a temperature T* within the range 
T„<T* < Tg. The temperature interval AT*, in which the sin-
gularity of Acp becomes apparent, is then so small that the sin-
gularity can easily be overseen when solving the differential 
equations (52-54) with finite time steps At (as in Figs. 7 and 
8). In order to avoid the singularity, one must, in addition, 
postulate that with the sign reversal of the "flux" 7*, the sign 
of the "force" T* -T also has to be changed. At the instant of 
the sign reversal of T*, T must then be replaced by 2 T* - T. 
One should point out further that (p can also be introduced 
as an internal variable in place of E, = NlIN2. With 
L22(0) = 0.000000925 mol/J sec instead of (64c), one obtains 
practically the same results. 

6. Conclusions 

The thermodynamics of irreversible processes allows 
an, at least qualitative, understanding of the dynamics of 
the processes in the glass transition region on the basis 
of simple dynamic laws and a simple, certainly only ap-
proximately valid Gibbs fundamental equation. The glass 
transition generated with a finite cooling or heating rate 
is a dissipative process. Such processes require a clear 
differentiation between equilibrium and non-equilibrium 
quantities. In the thermodynamics of irreversible pro-
cesses, this distinction is given a priori. The coupling co-
efficient L22 and the affinity a* appear as determining 
quantities for the glass transition in the thermodynamics 
of irreversible processes. We associated the coupling co-
efficient with the fluidity of the melt according to Vogel, 
Fulcher, Tammann, and Hesse. Except for the sign, 
the affinity a* is essentially given by the partial free en-
thalpy of the vacancies in the melt. However, it still con-
tains a certain correction which takes into account that 
in non-equilibrium the system temperature retards with 
respect to the temperature at which the heat exchange 
with the surroundings takes place. 
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It becomes clear that the glass transition is a typical 
non-linear phenomenon. An explanation of the process-
es within the linear response theory, especially by the 
superposition of a spectrum of linear relaxation mecha-
nisms, is, therefore, not very useful. Moreover, relaxa-
tion times prove to be auxiliary quantities, whose prac-
tical usefulness disappears when the differential equa-
tions describing the dynamics of the system are explicit-
ly known. The Davies of Prigogine-Defay relations, 
which are often considered to be characteristic for the 
glass transition, do not have any significance in an irre-
versible process. These relations only become relevant 
with respect to the glass transition after a fictitious qua-
si-static cooling at the so-called Vogel temperature, 
which, according to our results, lies considerably below 
the temperature Tg usually designated as the glass tem-
perature. 

The fact that, according to our statements, the glass 
transition occurs during quasi-static cooling only at the 
Vogel temperature some ten degrees below Tg, re-

minds us of the thesis of Gibbs et al. [31, 32], according 
to which the glass transition is supposed to occur as a 
second-order transition some ten degrees below Tg upon 
quasi-static cooling. As a matter of fact, the glass transi-
tion, which we find at Twith T* = ß —> 0, formally ex-
hibits some characteristics of an Ehrenfest second-order 
transition. However, this is only true as long as we only 
consider a variation of the temperature. In the case of a 
pressure variation, the equilibrium value £e(T~> 
which freezes at T^ip), becomes pressure-dependent. 
This fact alone proves that a freezing process can not be 
a second-order transition as defined by Ehrenfest [3]. 
Moreover, the quasi-static glass transition at the Vogel 
temperature T„ appears as a limiting case with the dy-
namic quantities /3 —» 0, —> 0, or 77 —» °o within the 
framework of the phenomenological thermodynamics of 
irreversible processes. In the pure equilibrium theory, dy-
namic quantities, such as ß, L22, t], or a* are completely 
irrelevant. 
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