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The glass transition caused by a finite cooling rate is a continuous non-linear dissipative process whose
description requires a clear distinction between equilibrium and non-equilibrium quantities. The so-
called Davies or Prigogine-Defay relations (in form of an equation as well as in form of an inequality)
are not relevant in such a process. The determining quantities of the glass transition are — from a
macroscopic phenomenological point of view — the fluidity of the melt and the partial free enthalpy of
the microscopic vacancies in the melt. All of the characteristics of the dynamics of the glass transition

are essentially due to these two quantities.

1. Introduction

Simon [1] concluded from the fact that a finite entrop-
ic difference is retained between the vitreous state and
the crystalline state of a pure substance in the limit
T — 0 (T: absolute temperature) that one is not dealing
with an internal equilibrium state in the case of a glass
but rather with a “frozen” non-equilibrium state. Within
the definitions of the thermodynamics of irreversible pro-
cesses, the vitreous state, therefore, has to be classified
as an arrested equilibrium state [2, 3].

In the following, we will explicitly assign a (macro-
scopic) internal variable { to the molecular internal de-
gree of freedom frozen (arrested) in the vitreous state.
When cooling a liquid at constant pressure p at a con-
stant and not too high rate T= B < 0, one schematically
obtains the following picture, for example, for the vol-
ume V (Figure 1): To begin with, one should take into ac-
count thatevery process which occurs atafiniterate T # 0
is an irreversible process connected with a finite entro-
py production. In this case, the volume follows a non-
equilibrium curve V(7 {) in which the temperature T and
the internal variable ¢ vary independently of each other.
However, if one cools, proceeding from a temperature T,
at a not too high rate 3= const., a volume is measured
at the beginning of the process which practically follows
the curve V(T, {.(T)) of the internal equilibrium of the
liquid. The development of this curve is uniquely deter-
mined by the temperature. Ata temperature T < Ty, how-
ever the volume curve starts to considerably deviate from
the equilibrium curve. Below T, the internal variable
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clearly deviates from its equilibrium value ¢ (T), and
the volume curve V(7; ¢{) is no longer uniquely deter-
mined by the temperature. At a temperature 7, the inter-
nal molecular degree of freedom then freezes with C =0.
Subsequently, the volume follows the volume curve V(T,
{'= const.) of the arrested equilibrium, whose develop-
ment depends solely on the temperature, but whose lev-
el, on the other hand, is determined by the non-equilib-
rium value {(7) of the internal variable frozen in at .
The glass transition region, i.e., the position of the tem-
perature interval (T, Tg), as well as the non-equilibrium
value ¢, which freezes in at T, depends on the cooling
rate T = B<0. According to the statements pointed out

s [— V=V(TZ.(T)

v=V(Tg)

V=V (T, &§=const)

" Iy
—_—— 7‘

Fig. 1. Volume V as a function of the temperature 7 when cool-
ing a non-crystallizing melt with a not too high constant cool-
ing rate Tunder constant pressure p. §: internal variable; &, (7):
its equilibrium value; T}y initial temperature; Tg: temperature
at which first deviations from the internal equilibrium become
noticeable; 7,: so-called glass temperature; 7,: freezing tem-
perature; T': Vogel temperature (see Sect. 5).
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in Sect. 5, however, the internal degree of freedom does
not freeze completely at 7;. Very small changes in { are
still found below 7. A complele arrest of the internal de-
gree of freedom w1th ¢ =0is only observed normally at
a considerably lower temperature T The position of T,
decreases with the cooling rate 3. In the limit B — 0, i.e.,
in the case of a fictitious, pure equilibrium process, T fi-
nally reaches the value 7.

If one proceeds from the linearized mechanical equa-
tions of state, one obtains at constant pressure p for the
internal equilibrium the straight line

V=V [l-a(T-Tp], T2T,
and for the arrested equilibrium the straight line
V=Vl -0 (T-Tpl, T<T,

[ and ay, are the coefficients of thermal expansion of
the internal and the arrested equilibria (see Sect. 2)]. The
two intersect at Ty, the so-called glass temperature. In
this approximation (the so-called “simple freezing-in
model”; Rehage [3]), the glass transition region is re-
duced to a single temperature T,,. The glass transition be-
comes a discontinuous process. The value ; of the inter-
nal variable, which freezes at T}, is necessarily the equi-
librium value §, = (. (Ty) in thls model. The coefficient
of thermal expansion suffers a discontinuous jump at T,:

Aa=a,— 0.

Physically, T, and (. (Ty) are, of course, purely fictitious
quantities. Nevertheless, T, is well-defined. The temper-
atures T and Ty, which are characteristic for the real
glass transition, on the other hand, can only be deter-
mined rather vaguely. This is due to the fact that, as al-
ready mentioned, the volume curve measured at a finite
cooling rate is a non-equilibrium curve which develops
continuously in the whole range (T, Tp).

2. The Fundamental Relations of the Thermo-
dynamics of Irreversible Processes*

In the following, we will consider a homogeneous,
fluid single-component system with constant mass. Ac-
cording to the assumptions of the thermodynamics of ir-
reversible processes, the Gibbs formalism of equilibri-
um thermodynamics also holds in non-equilibrium for
such systems. The Gibbs potentials, however, must be
complemented by the so-called internal variables, which

* For example, compare [4—6] or [26].

represent the additional degrees of freedom in non-equi-
librium. In the following, we will only consider a single
internal variable £. In the G-representation, Gibbs’ fun-
damental equation of the system is then

g=8¢(T p §)=h(T p, & -Ts(T p, {). (1)

It connects the specific free enthalpy g with the mutual-
ly independent variables T, p, { of the system.

%) (5)
=-| = d h=g-T
' (BT p§an e oT pg @

are the specific entropy and the specific enthalpy of the
system.

In non-equilibrium, the independent variables 7'(¢),
p (1), §(2) are explicit functions of time . If the tempera-
ture and the pressure of the system are also identical with
the temperature and the pressure of the surroundings of
the system in non-equilibrium, the changes with time
T = dT/dt and p = dp/dt are determined by the manner of
external perturbation of the system. One can assume a
simple dynamic law in the form

¢=La, L>20 3)

for the change of the internal variable with time. a(7, p,
{) is the so-called affinity, which can be thought of as a
driving force for the internal variable. The affinity is giv-
en by

a

og
_(iij =Tor, — N, 4

whereby

ds oh
one(3) wome(Z) o

denote the partial specific entropy and the partial specific
enthalpy relative to the relevant internal degree of freedom.

Thermodynamic quantities which refer to an internal
equilibrium state are indicated with “e”. In the internal
equilibrium, the affinity goes to zero. Thus, an internal
equilibrium state is characterized by

ae=0 or Tog, =ng,. (6a)

This equation fixes one of the variables T, p, { as a func-
tion of the other, for example

{=C(T, p).

Although the internal variable remains variable in inter-
nal equilibrium, it is no longer an independent variable.
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In addition to (6a),
(da). =0 (6b)

must be fulfilled in the internal equilibrium. For the change
in the affinity with the independent variables, one gets:

W)
da da da

d ( ) dT+( ) d+( ) d¢g.

Yo e o g T\ )y,

According to (2) and (4), one obtains in the internal equi-
librium:

(aa )e d’¢ [ d’¢ .
_— = —| — = - — =O'T 5
oT ), \dTa¢), \agaT ), "™

- 2
¢ ), o
Hence, according to (6b), the change of the internal var-

iable with the temperature at constant pressure in the
internal equilibrium is given by

_yTp B

(d_g)e =_c_;_;L. 8)
ar /, yip

In addition, we have in a stable or metastable internal
equilibrium

Y5, > 0. ©)

For the change in the entropy with respect to the inde-

pendent variables, one obtains
(10

os ds ds
ds _( ) T+ ( ) dp+[ ) dc.
oT »e op L e 14 Tp

For the specific heat capacity at constant pressure, this
leads to

(11)
c,,sT(ﬂs—) =T(ﬁ) +Tarp(£) :
ar), "\or),; a7 ),
Here,
ds
=T 12
ré (ar) (12)

is the specific heat capacity of the arrested equilibrium
(€= const.). This heat capacity is measured when the
change in temperature occurs so rapidly that the internal
degree of freedom is not capable of following this change

(C: < T), or if the internal degree of freedom is frozen
(£ = 0,because of L — 0; see below). In the internal equi-
librium, one measures, according to (8), the heat capac-

ity

cp=c ok, T 8%, (13a)
with
T(a" )2
A, =——21 >0, (13b)
Y1p

A°c, is the contribution of the internal degree of freedom
to the heat capacity in the internal equilibrium. Outside
the equilibrium, ie. in non-equilibrium, 7 and ¢ are
mutually independent but time-dependent variables.
With p = const., one must then set

() -0

(14)
ar ),

Under conditions of non-equilibrium, one measures, ac-
cording to (11), the heat capacity

¢p=cCpetAc, (15a)

with

Ac, =To, % (15b)
Ac,, is the contribution of the internal degree of freedom
to the heat capacity under conditions of non-equilibrium.

Corresponding expressions can be derived for the co-
efficient of thermal expansion « and for the isothermal
compressibility k. One obtains as the coefficient of ther-
mal expansion:

1(&)
v\dT /,

o

(F), (@) 0o
and as the compressibility:

(8],

A A, o

o1 E(g—z)” ()
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is the partial specific volume with respect to the internal
degree of freedom, v the specific volume of the system.
For the change of the internal variable as a function of
pressure at constant temperature and in the internal equi-
librium, one obtains, corresponding to (8),

)%

(19)

1l

1( dv 1 dv
1f ov d xp,=-1
% v(aT)p,g ane Frg v(apjn;

are the response functions which are measured in the ar-
rested equilibrium. According to (8) and (16), the contri-
bution of the internal degree of freedom to the coefficient
of thermal expansion ¢, under conditions of internal
equilibrium is

e o.e
Aeaz_l.(pr_”e_ri. (20)
vV YD

According to (17) and (19), the contribution of the inter-
nal degree of freedom to the compressibility k7 of the
internal equilibrium is

2
AeKT=l((pi)_20' (21)
v

e

Tp
As can easily be seen, the differences (13b), (20), and
(21) fulfil the Davies relation

A°c, Ak =Tv(A°0)? (22a)

[7, 8] (compare also [4]). It should be stressed that the
Davies relation holds for every arbitrary internal equi-
librium state Z[7, p, {.(T, p)]. Hence, it does not have
anything to do with the formally homologous Ehren-
fest relation, which is fulfilled on the line T,.(p.) of a
second-order transition. In (22), the differences A° re-
fer to the response functions, which are measured dur-
ing a quasi-static perturbation [{= { (T, p); internal
equilibrium] and during a sufficiently fast perturbation
(€, = const.; arrested equilibrium). If several internal
degrees of freedom are simultaneously macroscopical-
ly relevant, (22a) is replaced by the Davies inequality

[9]
A°c, Ak 2 Tv(A0)%. (22b)

The contributions of the internal degree of freedom to the
coefficient of thermal expansion or to the compressibil-

ity under conditions of non-equilibrium are given by

Aa=%(prp§;,,/'i'p or

Ay ==or, {r / pr. @3)
One must distinguish here if the process is run at con-
stant pressure or at constant temperature. The differenc-
es (15b) and (23) do not fulfil the Davies relation (22).
Since the coefficient of thermal expansion, defined by
(16), must be measured at constant pressure, it would be
more correct to write @, instead of o and in (23) Aq, in-
stead of Aa. According to the equations of equilibrium
thermodynamics, we can then also define an isothermal
coefficient of expansion

=_1(§z) M [8_6_]
viop)re v P\ dp T

In non-equilibrium, the contribution of the internal de-
gree of freedom to this coefficient is

Aot =—'LO'T,, —y
2 Pr

Obviously, we now have in place of (22a)
Ac, Akr=Tv Ay, Aoty

However, in non-equilibrium, in general, Aap #Aay.

It should be noted that the product Ly7,, has the dimen-
sion of reciprocal time if the internal variable is dimen-
sionless (e.g., a concentration).

%5,(T, p) = LY,

proves to be the so-called Debye relaxation time of the
system. Analogously, one can introduce the relaxation
time

24)

TTp(I p Q = 1/l"}/T'[)

)
"l rp'

In contrast to the Debye relaxation time, the relaxation
time (25) also depends on the internal variable. In order
to determine the internal variable as a function of time,
one obtains, if the pressure p and the coupling factor L

(25)
with

]

'}’ Tp (26)
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are constant, from (3) and (7) with (4) and (25) the non-
linear differential equation:

2
978 |4
aTa¢
If 117, and o7, are not dependent on the temperature [e.g.,

as in the case of the Eqgs. (38) and (39) in Sect. 3], we
have, as in the equilibrium,

_ 9% _
AT

Equation C = 0 holds for the frozen (arrested) states. Ac-
cording to (3), however, ¢ does not disappear because of
a=0 (internal equilibrium), but because of L — 0.
Hence, when describing a freezing process, e.g. the glass
transition, L must necessarily be regarded as a variable,
i.e., as a function L(T, p, {) of the mutually independent
variables of the system. In this case, the differential equa-
tion (27) is formally maintained if the relaxation time 77,
is replaced by the effective relaxation time

(28)
1 =_1__(81nL) T_[alnLJ ¢
T T1p oT J,¢ a¢ Tp
Thus, the effective relaxation time 7, of a freezing pro-

cess under constant pressure depends not only on the in-
dependent variables T, ¢, but also on their rates T, {.

§+—1—§'=-L[ (27a)

T Tp

o1y (27b)

3. A Gibbs Fundamental Equation for the
Description of the Glass Transition

A fundamental problem when describing the glass
transition within the framework of phenomenological
thermodynamics is the formulation of a suitable Gibbs
fundamental equation of the melt. Here, we proceed from
the simple model of the Eyring liquid [10—12]. Eyring
regards liquids as a mixture of molecules and vacancies.
What freezes during the glass transition of a melt, is with-
out doubt the diffusive translational motion of the mole-
cules. The concentration of the vacancies or the volume
fraction of the vacancies (the relative free volume) of the
Eyring liquid can serve as a measure of the intensity of
the diffusive translational motion. In this case, the diffu-
sion process should not be understood as a hopping of
the molecules into holes of the same size. In a relatively
compact melt, the diffusion process is mainly a cooper-
ative process, for which a considerably smaller vacancy
size is sufficient [13]. We thus proceed from a mixture
whose species differ widely in their volumes.

According to Flory [14, 15], one can write for the free
enthalpy G of a mixture of molecules with two different
volumes:

G=Gy+RT| Nyn—M1
Ny + pN,
+Nyin—PY2 i (29)
Nl +pN2
p=v/vi>1 (30)

is the ratio of the molar volumes of the two mixing part-
ners, N; and N, their mole numbers, and R the gas con-
stant. With respect to the Eyring liquid, N, designates the
mole number of the vacancies* and N, the mole number
of the material particles (molecules of a low-molecular-
weight substance or mobile units of a flexible polymer).
The standard term G, is solely determined by the mate-
rial particles, as the vacancies in the pure state do not

possess a chemical potential pu:
Go=HIN,; u?=0. (31

For the deduction of an expression for the excess free en-
thalpy Gg, we proceed from a simple mixture as defined
by Guggenheim [15]:

Ny N,
Ni+N; '

Here, however, we substitute with

GE =zAw

zZN; > o; N;

the coordination number z by the contact surfaces o; per
mole of the mixing partners [16]. It is obvious that the
interaction between partners of different sizes and shapes
can be described much better by the surfaces o; than by
the mere number z of the nearest neighbours. Hence, the
excess free enthalpy should amount to

01 Nyoy Ny

GE =Aw v
0] N] +02N2

In

Aw=wp —%(Wn +wy)

* The mole number and the number of vacancies are fic-
titious quantities, since the vacancies have no mass and, con-
tinuously smeared, do not have an individuality. According to
(34) and (37), on the other hand, a real physical significance is
attributed to the relative free volume ¢, introduced instead of
N, further down, and to the internal variable .
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wy, describes the binding energy between two adjacent
material particles and wy; = Othe binding energy between
two vacancies. wy, can be interpreted as the binding en-
ergy between two material particles separated by vacan-
cies.

We approximatively assume that the excess free en-
thalpy Gg neither depends on the temperature nor the
pressure. The temperature independence means that we
confine ourselves to a regular mixture with

GEzHE’ SE=0.

The pressure independence allows an equation of the mo-
lar volumes v; with the partial molar volumes v;. In place
of the mole numbers N;, we can then easily introduce the
volume fractions

o = ViV __ N
1_\71N]+\72N2 N1+pN2

; @2 =1-9

as variables of composition. In the following, we will use
the volume fraction ¢ = @, of the vacancies (the relative
free volume) as the independent variable of the compo-
sition. Furthermore, we will refer all the extensive quan-
tities to the mole number N, of the material particles and
once again denote these molar quantities with small let-
ters G/N,=g, VIN, =v, C,/N,=c, etc. (29-32) then
yield as the Gibbs fundamental equation of the melt inter-
spersed with vacancies:

g=g0+RT[1p(p ln(p+ln(1—(p)}+g5 (33a)
with

go=MU3(T, p) (33b)
and

po
) S .
8 =Ng =N, I—p+ A9 (33c)
h.=o0,Aw (33d)

is the energy required to generate one mole of vacancies
in the vacancy-free melt.

a=2p e, A0 (33¢)

03 02 Y2
is a geometric factor which not only considers the differ-
ent sizes but also the different shapes of the mixing part-
ners. As dimensionless internal variable, we will finally
introduce the ratio {= N,/N, of the mole number of the
vacancies to the mole number of the material particles.
The internal variable, which is often rather vaguely re-

ferred to as the “ordering parameter” in the literature
(e.g., compare [3], [8], [17]), thus acquires a concrete
physical meaning. With the relative free volume ¢, we
find the interrelation

P p
(=% a-—L
1-¢ (1-9)?
According to (2) and (33), the entropy and enthalpy of
the system are given by

__ aﬁ) _g| P2 _ 3
s= (ar i R[l_(plncp+ln(1 (p)}, 35)

de. (34)

h=hy+hg with h0=g0—T(aéiT°j . (36)

P
One obtains for the volume

v
v=v1§+v2=1 2

(37
The vacancies are not of importance in the response func-
tions ¢, ¢, 0, K¢ of the arrested equilibrium. According
to (12) and (35), one obtains, for example, for the heat
capacity of the arrested equilibrium

82go
CP-C =_T[ 8T2 )p'

Equations (33) and (34) yield for the quantities (5),
(18), and (26), which determine the dynamics of the
system

2
1-¢
s A 38
N7 ‘[1—(p+/1(p) .
o1 =—R{ln(p+(l—i)(1—‘l’)j|, (39)
1_
P =i = p(pv (40)
and
aﬂrpj [aGTPJ
- =( _7 (41a)
P\ ), i Jr,
with
(anTp] =_Eﬁci(”i]m (41b)
i )z, p \ h
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2
(aorp) z_gm[l_wz} (410)
T.p p 9 P

In consideration of the equilibrium condition (6a), one
can also write for the equilibrium value of ¥;;,:

1_(pe
ys =RT——=
Tp p

22 1
o 1-= (1=
{1—¢e+l¢ebn¢e+( pj( ¢eﬁ

1_¢(1¢¢_H
Pe P

As already mentioned, 77, = 1/Ly7, is the Debye relax-
ation time of the system.

In the internal equilibrium, the liquid interspersed with
vacancies (33) is stable up to 7 — 0. However, the lig-
uid is not capable of holding an arbitrary number of va-
cancies. With increasing temperature, a critical point
(Tmax; ©max) is reached, after which the system becomes
unstable with y7, <0.

42)

4. The Glass Transition
in the “Simple Freezing-in Model”

In the “simple freezing-in model” (Sect. 1), the glass
transition region is reduced to the so-called glass temper-
ature T,,. The glass transition appears as a discontinuous
process in which an equilibrium value . (7) of the inter-
nal variable of the liquid state is abruptly subjected to the
arrest {, =const. As a result, the response functions
undergo a precipitous change in the amounts given by
the equilibrium differences (13b), (20), and (21).

With (39), (40), and (42), (20) now leads to

@3)
Ao =— 1 Pe

(l_q’e )[l"q)e"'ﬂe‘)
P

1n<pe+[1—lj<1—¢e>
p

279,
1= Qe + }‘(Pe

According to (13b) and (20), we have further

e e G;P
A Cp =vIA*«x —
(pr

i.e., with (39), (40), and (43)

Atc, =2PPe (44)
l_q)e
ln«pe+(1—ij<1—<pe>
p
Qe
- )| 1—p. +—
220, +( q’)( P p)
1_(pe+A'(Pe

ln(pe +(1_l)(1_(pe)
pP

These equations hold for every arbitrary internal equilib-
rium state of the system (33), i.e., with the assumption
e = Ce(Ty) also at the glass temperature T,,. If A°a/(T),
Aecp(Tg), p, and T, are known, the relative free volume
@ (T,) and the interaction parameter A can be determined
from (43) and (44).

Using equivalent equations (under the precondition
¢@. < 1 and omission of 1/p as compared to 1 in Eq. (39)),
Kanig [16] determined the volume fraction (pg = @.(Ty)
and the interaction parameter A for eleven different or-
ganic polymers with experimental data for A, Ac,,, and
T,. For these polymers, he found on average

(%) = 0.0235 = 0.0050, 45)

(A)=3.15+0.35. (46)

The mean value (45) agrees very well with the value
@g = 0.025 determined by Williams, Landel, Ferry [18]
from viscosimetric data. Equation (45) seems to confirm
the thesis established by Fox and Flory [19], according
to which liquids are in a state of equal free volume at the
glass temperature. Equation (45) also seems to confirm
the rule of Simha and Boyer [20], according to which
T, Aa= const. should always hold at the glass tempera-
ture. However, Kanig [16] already noticed systematic de-
viations from the mean value (45). Polymers composed
of more flexible chain molecules, for example, lead to a
smaller @g-value than polymers composed of stiffer chain
molecules. Wrasidlo [21] finally showed on the basis of
the data for 63 polymers that an “iso-free volume state”
is out of the question at T,. From the viewpoint of the
thermodynamics of irreversible processes, one should
add that an equilibrium value @, can never freeze in at a
finite cooling rate. Moreover, the non-equilibrium value
@ > @., which practically freezes in at a temperature
Ty < T,, depends on the cooling rate 3 (Figure 2).
Together with an adequate expression for A®k, the dif-
ferences (43) and (44) fulfil the Davies relation (22a).
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Hence, in the “simple freezing-in model” the Davies re-
lation in the form (22a) or also in the form (22b) appears
as a characteristic of the glass transition and, as such, is
also designated as the Prigogine-Defay relation (e.g.,
compare [2], [22—-24]. One should notice here that the
Davies relation can, strictly speaking, never become val-
id at a finite cooling rate, since we are dealing with an ir-
reversible process subject to a non-vanishing entropy
production in the whole interval (T, T, (Figure 9). The
Davies relation approximately holds for the states Z
(T, p, §) in the interval (T, Ty), as in this region the re-
sponse functions still approximately follow the equilib-
rium curves with {= { (T, p). Below Tg, however, the
internal degree of freedom provides the “dynamic” con-
tributions (15b) and (23) to the response functions, which
do not comply with the Davies relation. These contribu-
tions continuously diminish from 7% until they approxi-
mately disappear at T'; and finally completely disappear
at T, (Figs. 7 and 8). With regard to the glass transition,
the Davies or Prigogine-Defay relation can only attain
significance upon quasi-static cooling with 7= — 0.
According to the statements in the next section, this is
the case at the temperature T = 7., which is usually
some ten degrees below the glass temperature.

5. The Glass Transition as an Irreversible Process

In the thermodynamics of irreversible processes, the
system temperature 7 is defined by

v.g

(u: specific internal energy of the system). It reflects all
the internal degrees of freedom of the system which are
in internal equilibrium. The macroscopically relevant
internal degree of freedom ¢, on the other hand, must be
regarded as being arrested with § = const. If {is assigned
to the diffusive translational motion of the molecules of
a liquid in non-equilibrium, one must, therefore, expect
a considerable difference between the system tempera-
ture and that temperature 7* at which the heat exchange
of the system with its surroundings takes place. Accord-
ing to Meixner [25], the differentiation between a ther-
mostatic temperature 7 and a thermodynamic tempera-
ture 7* is even generally imperative in the thermodyna-
mics of irreversible processes. This completely corre-
sponds to the differentiation between the hydrostatic and
the hydrodynamic pressures in hydromechanics. In the
following, the differentiation between 7 and T* finally

proves to be essential for a correct formulation of the
boundary conditions. T = T * naturally holds in the inter-
nal as well as in the arrested equilibrium.

In non-equilibrium, the change in entropy s with time
is separated into two additive parts:

. d,s d;s
§=——+ .

47
dr dt “7

d,s/dt describes the amount of entropy exchanged by the
system with its surroundings per time and mass unit.
d;s/dt 20 is the entropy produced in the interior of the
system per time and mass unit [26]. If one distinguishes
between the static temperature 7 and the dynamic tem-
perature 7T*, one obtains

des _ 1
at 17

(48a)

q is the heat exchanged by the system with its surround-
ings at the temperature 7* per time and mass unit. If we
neglect the possible difference between the hydrostatic
and the hydrodynamic pressures and assume p = const.,
we have

g=h, (48b)
whereby (36) with (5) and (12) leads to
h= ,,,§T+ Ny C (48c)

According to (10) with (5) and (12), the change in entro-
py with time is given by
. 1 . >
s=?CP'C T+O'TPC. (49)
Hence, according to (47), (48), and (49), the entropy pro-

duced in the interior of the system must be
(50)
L '

i = re (=75 )T+ —em )¢
In the thermodynamics of irreversible processes, the
product 7'(d;s/dt) now always appears in a bilinear form
of the effective “fluxes” and “forces” [26]. Therefore, we
can conclude from (50) that, in the case of a differentia-
tion between the static and the dynamic temperatures,
Eq. (3) will be replaced by the dynamic laws of the
form

s T*—
T:L”Cp‘é- —T*T

+L12T(6Tp_#r’Tp ) (51a)
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. T*-T
=Lycy, ETE

1
+Ly T(GTI’_FTITP ) (51b)
The matrix of the coefficients L is positive definite be-
cause of d;s/dt > 0. If we ignore with L, = L,; =0 the
possible interference effects, we obtain the simple dy-
namic laws

T*-T

T—_—L“CP,( T, (52)
F — L, L (T* . (53)
{=Lpn T*(T O1p —M1p )-

With a constant cooling or heating rate, we also have the

differential equation
T*= B = const. (54)

For the internal variable {, there is, as before, a sim-

ple dynamic law of the form (3):
{=Lya*. (55)

However, the affinity a must now be replaced by the “dy-
namic” affinity

T
a*E}-*‘(T*O'Tp _nTp ) (56)
Between a and a*, we find the interrelation
T*-T
a*=a+ng, T (&)

According to Tool [27] (see also [8]), one can further in-
troduce a fictive temperature
Tf = ni .
o Tp

(58

This is the temperature which the system in a non-equi-
librium state Z(7, {) would have if it were in internal
equilibrium [see Eq. (6)]. With the fictive temperature
(58), one can also write instead of (4) and (56)

a= O'TI,(T— Tf) (59)

and

a* =Top,(T* - Ty)/ T*. (60)

The functional dependence of the -coefficients
Ly = Ly (T, p, §) cannot be derived in the macroscopic-
phenomenological theory. In this respect, one rather de-
pends on ad-hoc formulations. L,, has the dimension

fluidity/volume. Withrespect to the description of the glass
transition, it is reasonable to assume a proportionality

Ly~1/n

(m: viscosity of the melt). In order to describe the tem-
perature dependence of the viscosity, we proceed from
the so-called Vogel-Fulcher-Tammann-Hesse equation
[28,29]

Inn=Inn"+

c
-1,
and correspondingly set

Ly (1)=

L22(0)exp[c[ TJ iTw - T*l—Tw H (61)

Here and in the following, the subscript “0” refers to the
initial state. T, is the Vogel temperature. At the same
time, 7., and c are the invariants of the so-called Wil-
liams-Landel-Ferry equation [18,28,29]. With (61), (53)
leads to § — 0 if 1 — . Hence, the internal degree of
freedom freezes completely at the Vogel temperature. 7.,
is identical with the temperature denoted with 7'y’ in Fig-
ure 1.

The boundary conditions should particularly be con-
sidered when determining the coefficient L;,. Proceed-
ing from an internal equilibrium state Z(Tg, £.(T3)), we
cool the melt under constant pressure at the constant rate
T* = B. In the initial state, we have To=T{ =T and
To=T2=0, T¥=B. Approaching the Vogel tempera-
ture, the internal degree of freedom is arrested with a non-
equilibrium value a* =a #0. Hence, T* = T# T; and
T*=T=p, T;=0 must hold in the limit T* — T_..
Moreover, according to (8) and (14),

' 0
lim £=(£)
1y T \dT )/,

must hold if the transition from the internal equilibrium
to the non-equilibrium is supposed to proceed continu-
ously in T'and { at the beginning of the process. With (8),
(52), (55), and (60), this leads to

Lo Tos (T2~ oO%
lim 2 7p ( f)= p

T*s1y Licp o (T*-T) 7%,

and because of

] T*-T¢
lim
o1y T*-T

=1,
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to
T T;
Ly (0) ==Ly 0)y3, = —
“pL pg T

(62)

The boundary conditions for 7* — T, are satisfied if one
first generalizes (62) as

T

and replaces the relaxation time 77, by the effective re-
laxation time (28). According to (28) and (61), one ob-
tains for < 0:

1 _ 1 __ B _
Ty Ty (T*-T.)?
1B

1, cIB

Tt (T*-T.)%.

In order to maintain the limiting value (62), we should
then set

Ly ZL[LZZYT[) +clpl
e

1 1
: " . (63)
[T*—Tm)2 (TO*—TN)ZN

Equation (63) can also be used for > 0, since L;; > 0 is
always valid regardless of the sign of f3.

The differential equations (52-54) with the pheno-
menological coefficients (61) and (63), and the thermo-
dynamic coefficients (38—41) are thus the determining
equations for the glass transition. Numerical solutions of
these equations are represented in the following figures.
For the constants of the equations, we will choose val-
ues which approximately apply for polystyrene:

h.=10kJ/mol, p=10, A =3, (64a)
according to [16],

T..=340K, c=400K, (64b)
according to [28], and with T = T = 400 K:

L,,(0) = 0.0001 mol/J sec. (64c)

The heat capacity c,, ¢ of the arrested equilibrium only
plays a role in Figs. 6 and 9. There, we assume
Cp,c=0.75(T-To) + cp,¢ (Tp) with

¢y ¢ (To) = 150 J/mol K. (64d)

Strictly speaking, the quantities (64a) are naturally not
constant. The values assumed with (64a) have the effect

H. Baur - The Glass Transition Within the Thermodynamics of Irreversible Processes

that the melt in internal equilibrium already loses its
stability towards higher temperatures at

TS =456 K, 5. =0.125.

However, this should at least not qualitatively influence
the glass transition to be described.

In Fig. 2, the relative free volume ¢ is represented as
a function of the temperature T* for different cooling
rates T* = f3 < 0. It becomes obvious that at normal cool-
ing rates the internal degree of freedom freezes practi-
cally at approximately 30 K above the Vogel temperature
T..=340 K. The frozen value of ¢ is higher the faster
the cooling. It is much higher than the value
¢.(T..) = 0.01679, which would be reached upon quasi-

0,038 1
0,036

] 0,032
0,030
0,028
0,026 - c

002 |
%0 360

390 400
— e T*[K]

37 380

Fig. 2. Relative free volume ¢ as a function of the dynamic
temperature 7* when cooling at different constant rates 7* =
according to (52-54) with (61), (63), (64) and (34), (38), (39).
a) f=-5 K/min; b) f=-1 K/min; ¢) =-0.2 K/min. Accord-
ing to (6), (38), (39), the equilibrium value of the relative free
volume is at the initial temperature 7 = 400 K: ¢, = 0.038017,
at T* =370 K: ¢, =0.025343, and at the Vogel temperature
Ty =T.=340K: ¢.=0.016791.

0,038+
P
00341
00301
00261
»0 360 370 380 390 400
T*[KJ

Fig. 3. Relative free volume ¢ as a function of the dynamic
temperature 7* when cooling at the rate = —1 K/min down to
T* =350 K and subsequently heating at the rate f =+1 K/min.
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static cooling (8 — 0) at the Vogel temperature. If the
melt is cooled down to the freezing range at the rate < 0
and then immediately heated up again at the same rate
| B1, the free volume goes through a hysteresis cycle (Fig-
ure 3). The cause for this can be found in the affinity a*,
which with { < 0 necessarily assumes negative values
when cooled. If one heats up again, a* at first stays neg-
ative. {and @ decrease further until a* becomes positive.
Upon heating, a* must necessarily approach the equilib-
rium value a* = 0 from the positive side. Therefore, a*
first intersects the equilibrium axis and passes through a
maximum within the positive range in order to finally
reach the equilibrium value a* = 0 “from above” (Fig-
ure 4).

According to (52), if T* and T have the same sign, the
static temperature 7 is always above the dynamic tem-
perature 7* when cooling and always below it when heat-
ing. The temperature of the system retards with respect
to the temperature of the surroundings. The maximum
distance |T* —T1 is smaller, the smaller the cooling
or heating rate. In the limit 8 — 0 we, of course, have
T*-T=0. Upon cooling, because of the proximity to
the internal equilibrium, 7 first follows the fictive tem-
perature T; [Eq. (59) with a = 0] and then turns towards
the dynamic temperature (arrested equilibrium with 7=
T* # T;) (Figure 5). The fictive temperature T} freezes in
with ¢ during the glass transition. Upon heating, T, like
¢, passes through a hysteresis cycle (Figure 5). The be-
haviour of the static temperature 7 is, of course, com-
pletely a result of our formulation (63). Except for “path-
ological” cases, however, a different behaviour does not
seem to be possible — at least qualitatively.

InFig. 6, the heat capacity c,, according to (15), is rep-
resented for different cooling rates. The faster the cool-
ing, the faster the curves separate from the equilibrium
curve, and the faster the melt freezes. The width of the
freezing range increases with the cooling rate. The bar
on the right of the figure indicates the jump A°,, which
the heat capacity would suffer upon quasi-static cooling
(B — 0) at the Vogel temperature 7., = 340 K. Only this
quantity satisfies the Davies relation (22). It is consider-
ably smaller than the step in the heat capacity which one
finds in the freezing range about 30 K above the Vogel
temperature in the case of normal cooling rates.

If the melt is cooled down to the freezing range at the
rate § < 0 and then heated up again at the same rate | 81,
the heat capacity Ac,, according to (15b), first passes
through a minimum and then through a maximum dur-
ing the heating process (Figure 7b). This effect is also
entirely due to the affinity. According to (15b), we have

501
0 1
a*

[J/mol]

1-250 1

-5001

‘0 B0 0 B0 M0 0
—T*[K]
Fig. 4. Affinity a*, according to (56), as a function of the dy-

namic temperature 7* when cooling and heating at the rate
IB1=1K/min.

400
I§T*
[k] 3901 ]

| 3801
3704

3601

35%

380 390 400
— T*[K]

350 360 370

Fig. 5. Dynamic temperature T*, static temperature 7 and fic-
tive temperature T as a function of the dynamic temperature
T* when cooling down to T* = 345 K and subsequently heat-
ing. | 81=5 K/min.

with (55)
Ac, =Ly, T o7, a*/T.

As long as a* < 0 holds with 7> 0, Ac,, decreases upon
heating. If the affinity passes through a maximum
(Fig. 4), Ac,, —if T increases monotonously — also pass-
es through a maximum. If one heats up at a lower rate
T* < B, the glass thaws in a lower, narrower tempera-
ture range. The minimum becomes more pronounced
while the maximum appears weakened (Figure 7a). If
one heats at a higher rate 7* > | B, the thawing process
takes place in a higher, broader temperature range. The
minimum of the heat capacity reduces while the maxi-
mum increases (Figure 7c¢).

If the melt is cooled down to the freezing range at the
rate <0, it reaches a relative free volume @(T*, ) at
the temperature T*, which is greater than the equilibri-
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200
Cp
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’w L r T 3 T T N
350 360 370 380 39 400
— = T*[K]

Fig. 6. Heat capacity per mole of the material particles c,, ac-
cording to (15), as a function of the dynamic temperature T*
when cooling at the rates a) §=-0.2 K/min; b) = -1 K/min;
¢) B=-5 K/min. A°c,(T...): jump in the heat capacity which, ac-
cording to (13), occurs upon quasi-static cooling at the Vogel
temperature 7., = 340 K.
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Fig. 7. Contribution Ac, of the vacancies to the heat capacity,
according to (15b), when cooling from 400 K down to 350 K
at the rate = -1 K/min and subsequently heating at the rates
a) f=0.2 K/min; b) =1 K/min; ¢) f=5 K/min.

um free volume ¢, (7*) of the melt. Above the Vogel tem-
perature, however, the melt is still not completely frozen.
There is a slight tendency that the volume ¢(T*, f) will
gradually relax towards its equilibrium value @, (T*).
During this process, the affinity increases from a* (T*,
B) <0 to a* =0. Thus, if one anneals the frozen melt
within the range 7., < T* < T}, the free volume reaches
avalue @,(T*) < @(f) < o(T*, P) after the annealing time
t. If one reheats the system at the same rate | 3|, the hys-
teresis of the volume and the connected minimum value
of the heat capacity become ever weaker with increasing
annealing time ¢, the maximum value of the heat capac-
ity, on the other hand, becomes ever larger (Figure 8).
When the relaxing glass has finally reached the equilib-
rium value @.(T*) (a* =0), the hysteresis disappears
completely upon heating. Since the undercooled melt is
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100
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0 a0
——— T*[K]

Fig. 8. Heat capacity Ac,, according to (15b), when cooling
down to T* =350 K at the rate 8=-1 K/min, “annealing” at
T* =350 K, and subsequently heating at the rate 8 = +1 K/min.
The initial values of the free volume ¢ upon heating were a)
¢ =10.0268907 (the value which was attained upon cooling at
350 K), b) ¢ =0.0240000, c) ¢ = ¢, = 0.0193056 (the equilib-
rium value of the melt at 350 K).

0,0000504
ds
dt

[J/Kmol -sec]

0,000025-

01! — v
350 360 370

390 400
— T*[K]
Fig. 9. Entropy production d;s/dt, according to (50), when
coolingdownto 350 K atthe rate f = —1 K/min and subsequent-
ly heating at the rate = +1 K/min. Although the free volume
seems to be fully frozen below 365 K (see Fig. 3), there is still
a considerable entropy production in this range. When cooling,
the entropy production only disappears after reaching the Vog-
el temperature (at 340 K). The position of the maxima of the
entropy production indicates rather precisely the temperature
at which the freezing of the free volume seems to be complete
or alternatively the thawing of the free volume starts (compare
Fig. 9 with Figure 3).

380

in a metastable state, it is possible that the free volume
decreases even beyond the equilibrium value ¢, (7%*)
upon annealing, and approaches the equilibrium value
@e(T*) < @.(T*) of the crystalline state. When judged
with respect to the potential g of the melt, the states
(1) < @.(T*) are non-equilibrium states with a positive
affinity. If one heats up from such a state, the maximum
of the heat capacity increases further. With () — 0, we
finally obtain a* — o and Ac,, — . The increase in the
maximum of the heat capacity with the annealing time,
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which is measured when heating a glassy frozen, an-
nealed melt, has repeatedly led to the conclusion in the
literature that the glass transition must be a masked phase
transition in the sense of equilibrium thermodynamics
[21]. But this is definitely not true. In these cases, the
maximum of the heat capacity is clearly connected with
the maximum of the affinity a* # 0, which is character-
istic for the non-equilibrium.

The entropy productiond; s/dt, according to (59), char-
acteristic for the irreversibility of the processes, is repre-
sented in Fig. 9 for the case of the process Fig. 3 and Fig-
ure 7b. The entropy production disappears only at the be-
ginning of the process at T* = T, (internal equilibrium)
and at the end of the process at T* = T, (arrested equi-
librium). In addition, it becomes very small if one switch-
es from T* =B to T* = +B in the range 7. <T*< Ty
(in Fig. 9 at T* = 350 K). T passes through zero when
switching (see further below), whereas ¢ is very small.
The entropy production reaches a maximum value when
cooling at the end of the freezing process and when heat-
ing at the beginning of the thawing process (compare
Fig. 9 with Figure 3). The level of the maxima increases
with | B1. Figure 9 shows that the glass transition gener-
ated at a finite rate 7* is an irreversible process in the
whole interval (T.., T,). However, the contribution of the
entropy production to the balance (47) of the entropy is
relatively small during normal perturbation of the system.
The maximum contribution of the entropy production to
the balance is 0.95% with f=-5K/min, 0.71% with
B=-1 K/min, and 0.55% with 8=-0.2 K/min.

According to (15), one can also write

Ac),
To Tp

¢=

g (65)

Insertion of this expression into (49) leads to the interre-
lation

._ 1

S= FCP
which completely corresponds to the equilibrium ther-
modynamics. However, the conclusion

Ty

g=e,T (66)

would be wrong, as s contains the entropy production
which, according to Clausius, corresponds to a non-com-
pensable heat. Instead of (66), (48) and (65) lead to the

correct relation
. nTp e
=|c,,+ Ac, |T.
q [ )4 & To-Tp P ]

(67)

(67) reduces to (66) only in the internal equilibrium
(with n7,/Tog, = 1) and the arrested equilibrium (with
Ac,, = 0) [30]. However, T'oy, first deviates more strong-
ly from 17, when Ac, approaches zero. Upon normal per-
turbation, therefore, the maximum deviation (66) from
(67) remains below 1%.

Finally, one should point out the following: Treac;s sponta-
neously to adiscontinuous change from 7* =—| B, |to T* = +1 3,1
only in the arrested equilibrium. Above T, T is subject to a
retardation with respect to 7* (Figure 5). T then reacts to a
discontinuous change of sign from T* < 0 to 7* > 0 with a rap-
id, but still continuous change from T< 0 to T> 0. Therefore,
T necessarily passes through zero during this transition. If £ # 0
is valid, Ac, accordmg to (15), passes through a singular in-
finity due to the sign reversal of 7*. { = 0 holds if the sign
reversal takes place at a temperature 7* within the range
T.. < T* < T,. The temperature interval AT*, in which the sin-
gularity of Ac,, becomes apparent, is then so small that the sin-
gularity can easily be overseen when solving the differential
equations (52-54) with finite time steps At (as in Figs. 7 and
8). In order to avoid the singularity, one must, in addition,
postulate that with the sign reversal of the “flux” T*, the sign
of the “force” T* — T also has to be changed. At the instant of
the sign reversal of 7*, T must then be replaced by 27* — T.
One should point out further that ¢ can also be introduced
as an internal variable in place of {=N,;/N,. With
L,,(0) = 0.000000925 mol/J sec instead of (64c), one obtains
practically the same results.

6. Conclusions

The thermodynamics of irreversible processes allows
an, at least qualitative, understanding of the dynamics of
the processes in the glass transition region on the basis
of simple dynamic laws and a simple, certainly only ap-
proximately valid Gibbs fundamental equation. The glass
transition generated with a finite cooling or heating rate
is a dissipative process. Such processes require a clear
differentiation between equilibrium and non-equilibrium
quantities. In the thermodynamics of irreversible pro-
cesses, this distinction is given a priori. The coupling co-
efficient L,, and the affinity a* appear as determining
quantities for the glass transition in the thermodynamics
of irreversible processes. We associated the coupling co-
efficient with the fluidity of the melt according to Vogel,
Fulcher, Tammann, and Hesse. Except for the sign,
the affinity a* is essentially given by the partial free en-
thalpy of the vacancies in the melt. However, it still con-
tains a certain correction which takes into account that
in non-equilibrium the system temperature retards with
respect to the temperature at which the heat exchange
with the surroundings takes place.
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It becomes clear that the glass transition is a typical
non-linear phenomenon. An explanation of the process-
es within the linear response theory, especially by the
superposition of a spectrum of linear relaxation mecha-
nisms, is, therefore, not very useful. Moreover, relaxa-
tion times prove to be auxiliary quantities, whose prac-
tical usefulness disappears when the differential equa-
tions describing the dynamics of the system are explicit-
ly known. The Davies of Prigogine-Defay relations,
which are often considered to be characteristic for the
glass transition, do not have any significance in an irre-
versible process. These relations only become relevant
with respect to the glass transition after a fictitious qua-
si-static cooling at the so-called Vogel temperature,
which, according to our results, lies considerably below
the temperature T, usually designated as the glass tem-
perature.

The fact that, according to our statements, the glass
transition occurs during quasi-static cooling only at the
Vogel temperature T.. some ten degrees below T, re-
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