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The control method of Ott, Grebogi, and Yorke (OGY) is used to stabilize the unstable periodic
orbits of a chaotic relay system. Small variations in the height of the relay output are used as control
input. The influence of the control activation bound is studied in detail via the one-dimensional
Poincaré map of the controlled system. The reduced sensitivity of the multi-step OGY method for

higher period orbits can thus directly be verified.
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1. Introduction

Control of chaotic systems does in principle not
differ from the control of general nonlinear systems.
The system dynamics is changed by feedback control
in order to make the system stable in the neighborhood
of a desired operating point, or in order to improve the
speed of the reaction. If the system has an unstable
limit cycle which is suitable as an operating condition,
stabilization of this orbit may be an attractive option,
because in principle this can be done using arbitrar-
ily small control action. A chaotic system contains
an infinite number of unstable limit cycles. Thus the
approach is particularly well suited for such systems.
In addition, due to the mixing property, a change of
the operating condition can be accomplished simply
by waiting until the uncontrolled system comes suffi-
ciently close to the desired orbit, and then capture it by
switching on (linear) control. The described idea goes
back to Ott, Grebogi, and Yorke [1] and has attracted
considerable interest in the last years, now often cited
as the OGY control method. A compilation of recent
research concerning control of chaos, including other
approaches, can be found in [2].

The central parameter in OGY control is the size
of the orbit neighborhood in which the control is acti-
vated. We will call this parameter the control activa-
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tion bound. It is obvious that there must be a trade-off
between this bound and the time to capture the trajec-
tory. Asymptotic results for this dependence are given
in [1] for small control action. However, the case of
large control action in general is very difficult to treat.
Due to the nonlinearity of the system, the linear con-
trol law may fail to capture the trajectory. If the trajec-
tory escapes but stays inside the chaotic attractor or
its basin of attraction, then it eventually comes close
enough later and may be captured then. But because
of the change of dynamics due to feedback control, it
is also possible that the trajectory leaves the attractor
basin, so that the OGY control fails.

In this paper we investigate this problem for the
case of a very simple chaotic system. It consists of an
unstable harmonic oscillator in feedback with a relay
with hysteresis. Some results on this system are pre-
sented in Section 2. The application of the OGY con-
trol method to this system is presented in Section 3.
The Poincaré map of the system is only one-dimen-
sional. Therefore the consequences of a variation of
the control activation bound can be made transparent
by investigating the Poincaré map of the controlled
system. In this analysis, the notion of a basin of im-
mediate attraction arises as a useful concept. This will
be presented in Section 4.

For orbits of period n > 1 the OGY standard
method of stabilization is known to be very sensitive.
A modification using also the (n — 1) intermediate
points on the Poincaré section for control was already
suggested in [3]. For our relay system the superiority
of this multi-step control method can be nicely illumi-
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Fig. 1. The relay system.

nated by comparing the basins of immediate attrac-
tion of the controlled systems. This will be presented
in Section 5.

2. The Relay System

The system under consideration consists of a relay
and a linear subsystem, as illustrated in Figure 1. The
relay toggles between the two states +b and has a
symmetrical input-output characteristic with hystere-
sis, as shown in Figure 2. For the switching threshold
a and the switching height b we assume a = 1 and
b = 1 without loss of generality. The linear subsystem
with the transfer function

G = - 1
(¢) = s2—2(s+1 M
is a harmonic oscillator with damping —(. The relay
system described above was first proposed by Cook
[4] as an example of chaotic behavior. Although the
state space of the continuous system part (1) is only
two-dimensional, chaos may occur due to the non-
unique input-output relationship introduced by the
hysteresis. It should be noted that, as a consequence,
the system equations are not time-invertible. .

Introducing the state variables z; =y and z; = ¥,
the state space equations of the relay system can be
written as

3}1 = T, (2)
T, = 2¢xy — ) +u, 3)
u
b P -
A
—ay a y
S -b

Fig. 2. The input-output characteristic of the relay.
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Fig. 3. Poincaré map of the relay system for ¢ = 0.05.

where u denotes the output signal of the relay. The
input-output characteristic of the relay given in Fig. 2
can be represented by

y +l1 <y or
# ‘f{ ~1<y<+l and u_ =+l
u= 4)
. —1<y<+l and wu_=-1
-1 if
or y<-—l1,

where u~ denotes the last switching state. We note
that the phase space is a subspace of IR? x { —1,1},
namely it consists of two halfplanes, overlapping in
the hysteresis zone. The relay output v = z3 is a third
(discrete) state variable which only takes on the values
T3 = =y

Obviously the system has the two equilibrium
points (z,z;) = (1,0) and (z;,x;) = (—1,0). Both
are stable for ( < 0 and unstable for ¢ > 0. The dy-
namics of this relay system is studied in detail in
[5]. For ¢ < 0O the system is stable, i. e. all trajectories
asymptotically approach one of the stable equilibrium
points after having crossed the switching lines for a fi-
nite number of times. For ( > ¢, with {, = 0.06735,
the system is completely unstable. For 0 < ¢ < (p
however, trajectories starting sufficiently close to one
of the unstable equilibrium points evolve away from
the equilibrium points but cannot leave a bounded re-
gion in state space. For this range of the parameter ¢
the relay system exhibits chaotic behavior. Figure 3
shows the Poincaré map for such a case. It is ob-
tained in the following way. For each starting point
(z1,22) =(1,p), p > 0, on the right switching line
the next switching point (z,z;) = (—1,—¢q), ¢ > 0,
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Fig. 4. Attractor parameters x and v as a function of system
parameter (.

on the left switching line is calculated. For a sample
trajectory we refer to Figure 5a. The solution of the
system equations (2) and (3) is

21 1+ g €St sin(7t), 5)

22(7) ge“ [C sin(yt) +7 cos(yt)], (6)

where v = /1 — (2. Setting z1(7) = —1 and z,(7) =
—gq, where 7 is the switching time, and eliminating 7
from these equations, we get the desired Poincaré map
q = ¢(p). Due to the symmetry of the system, all sub-
sequent switching points are generated by repeated
application of ¢(p). From Fig. 3 it can be derived that
the chaotic attractor is the interval A, = [0, v]. Its
basin of attraction is given by A, = [0, u), which is
limited to the right by an unstable fixed point, see [5]
for details. The dependence of v and u on ¢, which
can be expressed analytically [5], is shown in Fig-
ure 4. We note that for ¢ = (o we have 4, = A,.
The chaotic attractor has embedded densely within it
an infinite number of unstable periodic orbits. Those
of period 1 are the fixed points ¢(p) = p in Figure 3.
The orbits of higher period are the fixed points of the
iterated map ¢*(p).

3. Application of OGY Control Method

We now describe the application of the OGY con-
trol method to the relay system discussed in the pre-
vious section. The method is based on the control of
the discrete time system associated with the induced
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dynamic on a Poincaré section. In the case of our
relay system, natural Poincaré sections are the two
switching lines. Due to symmetry, the value of |z;| at
the switching point can be chosen as the discrete state
variable p;.

For smooth continuous time dynamical systems,
the induced Poincaré map is smooth and time invert-
ible. To this sort of chaotic systems the OGY method
usually has been applied. For our relay system, the
Poincaré map is only one-dimensional and thus not
invertible, and in addition it is discontinuous. How-
ever, for OGY’s control method to be successful, the
map only needs to be smooth in a neighbourhood of
the fixed point, and this indeed is the case for our re-
lay system. Thus the OGY method also works in this
application.

For the stabilization of an unstable periodic orbit,
every parameter of the system can be used as long
as the discrete linearized system is controllable by
this parameter. We use the height of the relay output
b = b+ 8b, where 8b is a small correction to the stan-
dard value b = 1. We note that this is equivalent to a
variation in the system gain, which was chosen unity
in (1).

The control parameter 8b is adjusted at each switch-
ing point. Thus the Poincaré map now also depends
on the variable height b of the relay output, that is

Pis1 = &(pi, b;). @)

Let p* be an unstable fixed point of the Poincaré map
(7) for the nominal value b =1 of the relay output,
that is

p* =9, b).
This fixed point corresponds to one of the unstable
periodic orbits of the system. For values of p; close

to p* and values of b; close to b the map (7) can be
approximated by the linear map

Opir1 = Adp; + B db;, (8)

where ép; =p; —p* and 6b; =b; — b are the de-
viations from the nominal values, and the (one-
dimensional) system matrices are given by

0
4=  p.%| ©)
op (p*,b) db (p*,b)
Now a linear state feedback
Sbi = —-K Spi (10)
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is applied to the discrete time system (8). Substituting
the control law (10) into (8) yields
(A - BK)dp. (11)

From (11) it can be seen that the closed loop system
is stable as long as

8I’i+1

|eig(A—BK)| < 1. (12)
In [3] the pole placement technique is proposed for
determining K . The unstable system poles are shifted
to the origin, while the stable ones are left unchanged.
For our case the discrete system has only one unstable
pole. It is shifted to the origin if eig(A — BK) =0 or,

because A and B are scalars,

13)

In this case (known to control engineers as deadbeat
control) we have dp;,; = 0, thus the error vanishes in
the next step.

The calculation of the system matrices A and B
can be done by numerical differentiation using the
solution of (2) and (3) with the relay output set to
u = b and initial conditions x;(0) = 1 and z,(0) = p.
The solution is given by

z; = b+eSt [ccos(yt) +casin(vt)],  (14)
z; = (et [ercos(t) + ¢y sin(yt)]
— et [ey sin(yt) — cpcos(yt)],  (15)

where ¢ =1—b, c; =(p—((1 —b))/y and ~
\/1 — (2. Then A is obtained from (14) and (15) by
taking two solutions with fixed b = b = 1 and two val-
ues of p close to p*, e.g. p=p; =p* — Ap/2 and
p=py =p* +Ap/2, with Ap sufficiently small. The
switching time 7 can be obtained from (14) via in-
terpolation. By inserting 7 into (15) one obtains the
corresponding next switching point g = |z,(7)|. If we
denote these next switching points for both trajec-
tories by ¢, and ¢, and set Aqg =g, — q), then A is
obtained by

A -
Az M _2—q
Ap p—p
Similarly B can be obtained. The central idea of

OGY'’s method is to activate the control in (10) only
if the trajectory is sufficiently close to the fixed point.
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Fig. 5. The unstable period 1 orbit corresponding to the fixed
point p* = 1.4226. (b) Stabilization of this orbit via OGY
control. Control is turned on at z = 200 and turned off at
1 = 400. The control activation bound is set to dpmax = 0.05.

Because in the original paper [1] the emphasis was
on small control action, the control activation bound
was expressed in terms of the control action itself,
i.e. |0b;| < Obmax. An alternative, which we will
prefer here, is to base it on the distance to the fixed
point, thus expressing the control activation bound
in terms of the discrete state, i.e. |0p; | < Opmax-
Note that for the relay system discussed in this pa-
per the discrete time system is one-dimensional and
thus 8bmax = | K | Opmax- Thus in this case the two
approaches differ only by scaling.

As an example, we now stabilize the (symmetric)
period 1 orbit of our relay system, which corresponds
to the fixed point p* = 1.4226 of the Poincaré map
in Figure 3. The trajectory of the orbit is shown in
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Fig. 6. (a) Poincaré map of the controlled relay system
with 3pmax = co. The shading indicates points that escape
to infinity. (b) Magnification close to the fixed point. The
basin of immediate attraction A* is shaded.

Figure 5a. Here and in all further figures we have
chosen ¢ = 0.05.

Figure 5b shows the application of OGY control
to the relay system for stabilizing this orbit. After
switching on OGY control at 7 = 200, the trajectory
continues executing a chaotic orbit for some time, un-
changed from the uncontrolled case, because it does
not come close enough to the fixed point. Eventu-
ally p; falls into the range |8p;| < 8pmax = 0.05. Then
it quickly is brought to the fixed point. After deac-
tivating the control at i = 400, the trajectory evolves
exponentially off the fixed point and exhibits a chaotic
behavior again.
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4. Poincaré Maps of Controlled System

Because the Poincaré map of our relay system is
one-dimensional, the consequences of the choice of
the control activation bound can be easily understood
by looking at the Poincaré map with activated OGY
control. The Poincaré map of the uncontrolled system
for ¢ = 0.05 was given in Figure 3. This corresponds
to the case Opmax = 0. We recall that the chaotic at-
tractor is the set 4, = [0,v], v = 1.8213, while its
basin of attraction is A, = [0, u), p = 2.7352. The
other extreme case is dpmax = 00, Which means that
the control is always activated, see Figure 6.

When using OGY control one has to be a bit careful
about the terming of attracting sets. The aim of OGY
control is to turn the whole basin of attraction of the
(uncontrolled) chaotic attractor into a basin of attrac-
tion for the stabilized orbit. When control is always
activated, a certain neighborhood of the stabilized or-
bit can be identified where all trajectories remain in
this neighborhood, and thus are directly attracted to
p*. We will call this set A* the basin of immediate
attraction of p*. In Fig. 6b this set is shown shaded.
However, closely outside this basin there are regions
where the trajectories escape to infinity. One such
family of regions is marked in Figure 6a. It has to
be emphasized, however, that these trajectories only
escape to infinity if control is not deactivated for large
distances from the desired orbit. Only with this deacti-
vation, which is in fact the key idea in OGY ’s method,
the whole chaotic attractor in A,, or more precisely,
its whole basin of attraction A,,, can become the basin
of attraction of the stabilized orbit. We thus have to
consider the following sets:

A, Basin of the chaotic attractor,
A, The chaotic attractor,
As  Largest allowed control activation
neighborhood,
As  Control activation neighborhood,
i.e. As = (p* — OPmax, P* + OPmax);
A*  Basin of immediate attraction of p*.
If A; C A*, the situation is simple and save. Control
is only activated if the trajectory is inside the basin
of immediate attraction and thus cannot escape again.
For the case shown in Fig. 6b it is obvious that the
basin of immediate attraction is limited to the right
by the unstable fixed point located at p; = 1.5752, and
to the left by the discontinuity located at p; = 1.3013.
The argument above implies that control should only
be activated if p € A* = (1.3013,1.5752). Since
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Fig. 7. Poincaré map of the OGY controlled system with
Opmax = 0.1, thus As C A*. Shading marks As.
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Fig. 8. Poincaré map of the OGY controlled system with
Opmax = 0.5, thus A™ C As C As. Shading marks As.

pr — p* > p* — p; the value of dppax should be at
most Opmax = p* — pi = 0.1213. Figure 7 shows the
Poincaré map for such a case with dppa = 0.1. All
trajectories starting in the range |p — p*| < Opmax
are inside the basin of immediate attraction A* and
are therefore attracted to the fixed point directly. All
trajectories starting outside (but within the basin of
attraction A, of the chaotic attractor) will execute a
chaotic orbit, unchanged from the uncontrolled case,
until they eventually meet the region 4; = (p* —
0.1, p* +0.1), whereupon they are captured forever.

If dpmax is increased, such that A; O A*, the sit-
uation becomes more complicated. The trajectories
starting in A5 \ A* typically will not be captured di-
rectly, but escape. Now there are two cases. In the
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Fig. 9. Poincaré map of the OGY controlled system with
Opmax = 0.65, thus A™ C As C As. Light shading marks
Ags, dark shading marks escaping trajectories.

first one, shown in Fig. 8, OGY control may still be
successful. Some trajectories escape into the attrac-
tor basin A,. Due to the mixing property of the un-
controlled system they will eventually reenter As. If
they even enter A*, they are captured. Otherwise they
may escape into the attractor basin A, again and the
argument can be repeated. Whether they are finally
captured to the fixed point p* must be left to a more
detailed investigation.

The critical case is shown in Figure 9. Now some
trajectories starting from As \ A* even escape from
the attractor basin A, and thus escape to infinity, see
the dark-shaded areas in Figure 9. Then OGY control
failed. This motivates the introduction of the set As
as the largest As where escaping from A, does not
oCcur.

As aconsequence of the discussion above it follows
that for successful OGY control it is recommended to
choose dpmax such that A; is contained in the basin
of immediate attraction A*. If dpp,y is chosen larger,
stability of the control becomes very difficult to es-
tablish.

In principle the control gain K may be arbi-
trarily varied within the stabilizing range K €
((A-1)/B),(A+1)/B), which can be derived
from (12). Figure 10 shows the Poincaré map close
to the fixed point for K = Ky = A/B and the edges
of the stabilizing range K = K, = (A £+ 1)/B. No
restriction of control activation is assumed. It is inter-
esting to note that the size of the basin of immediate
attraction is nearly independent of the choice of K.
The basin, however, becomes rather unsymmetrical
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Fig. 10. Poincaré map of the controlled system using a
control gain K, varying over the stabilizing range. Ko =
A/B,K,=(A+1)/B,K,=(A-1)/B.

if the stability boundaries are approached. If the con-
trol activation is based on the symmetric condition
| — p*| < OPmax, the deadbeat value K obtains a
certain justification by the fact that it approximately
maximizes Opmax Subject to As C A*.

5. One-step Versus Multi-step Control for Higher
Period Orbits

The straight forward control method for a period T’
orbit is to do just the same as for an orbit of period 1,
but using the T'th iterate of the Poincaré map instead.
However, the eigenvalues of the iterated Poincaré map
are much larger, rendering the control problem much
more sensitive. In [3] a straight forward modification
to circumvent this problem is proposed. We consider
a given orbit of period T',

Pie1y = 607, b) with DiiaT) = D; -

Linearization of (7) along the orbit yields

Opiv1 = A;Op; + B;0b; (i=1,2,...,T), (16)
where 8p; = p; — p! and 8b; = b; — b and
. . a7
9 | (2 ) b | (pr 5)

We now apply the OGY control method in the same
way as for a period 1 orbit. Thus we introduce a state
feedback

ob; =—K;0p; (1=1,2,...,7) (18)
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Fig. 11. Period 4 orbit of relay system.

to the discrete time systems (16), which is only acti-
vated if |8p;| < épmax- For the gains K; one can again
choose

Ki =A,'/B.,; (Z = 1,2,...,T).

We will now illustrate the superiority of the multi-
step OGY control as described above, compared to the
one-step method. We will stabilize a period 4 orbit of
our relay system using the standard and the multi-step
method. The sample orbit is shown in Figure 11.

First we look at the one-step method. The eigen-
value of A is much larger for a period 4 orbit than
for the period 1 orbit in Section 3. The 4. iterate of
the Poincaré map at p} = 1.6311 leads to the discrete
linearized system

6pis1 = 852.4 8p; — 588.7 8b;. (19)

Then the range of stabilizing gains is

A+1 A-1
, ———) =(1.4448,1.4482) .
B B )=( )

K e(

Note that the relative variation of the stabilizing gains
is only 2/A = 2.3 - 1073, leading to an extreme sen-
sitivity with respect to the choice of the correct gain.
The basin of immediate attraction for the deadbeat
control is shown shaded in Figure 12. The width of
the basin is only 0.0022, which is two orders of mag-
nitude less than the basin for the orbit of period 1
discussed in Section 4. The multistep-method addi-
tionally uses the three intermediate points visible in
Fig. 11, namely p; = 0.52994, p; = 1.2412, and
p; =0.79944. The central part of the Poincaré map
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Fig. 12. Poincaré map for the controlled system close to the
fixed point, using one-step control (§pmax = 00).
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Fig. 13. Poincaré map for the controlled system close to the
fixed point, using the multistep method. Note that the scale
differs from Figure 12.
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