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To answer the question about the way our visual system processes images it has to work with
every day, it is necessary to investigate the statistical structure of these pictures. For this purpose
we investigated several ensembles of artificial and real-world greyscale images to find different
invariance properties: translation invariance by determining an average pair-correlation function,
scale invariance by investigating the power spectrum and the coarse graining of the images, and a
new hierarchical invariance recently proposed [D. L. Ruderman, Network 5, 517 (1994)]. The results
of our work indicated that the assumption of translational invariance can be taken for granted. Our
results concerning the scale invariance are qualitatively the same as those found by Ruderman and
others. The deviations of the distributions of the logarithmically transformed images from a Gaussian
distribution cannot be seen as clearly as stated by Ruderman. This results from the fact that for a
correct determination of the deviations the non-linear transformation must be considered. Depending
on the preprocessing of the images the results concerning the hierarchical invariance differed widely.
It seems that this new invariance can be confirmed only for logarithmically transformed images.
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Preprocessing.

1. Introduction

The development of the mamalian visual system
is strongly dependent on early visual stimulation [1]
and thus is influenced by the statistics of its envi-
ronment. Hence the visual system is expected to be
optimally adapted to the statistics of natural images
it deals with. Natural images are far from random
and contain distinctive features and particular types
of structures. In order to understand the way visual
information is processed and the coding strategy em-
ployed within the primary visual cortex the statistical
properties of visual input patterns are of primary in-
terest. Early stages of information processing seem to
encode only simple features like oriented edges, lines
or bars and disparity. They thereby represent visual in-
formation in a less redundant and more efficient way.
Whether efficient coding means mere redundancy re-
duction [2, 3], mutual information maximization [4],
reconstruction fidelity [5] or sparseness of coding [6]
is still in dispute and is currently explored by many
groups. However, the proper coding strategy certainly
depends on the statistical properties of the stimulus
patterns occuring in a natural or urban environment.
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There have been several recent investigations of the
statistical properties of natural images [7, 8, 9, 10].
Since there is no way to collect enough data to fully
characterize an image environment, these studies seek
to identify a simple underlying structure or invariance
property in the image probability distribution. One
such symmetry frequently assumed is translational
invariance. Whether it will always hold with natural
images is not clear, however. Undoubtedly their most
robust statistical property is an invariance to scale [8].
Recently, evidence has been presented supporting the
notion of a hierarchical invariance in natural scenes.
It relates to the conversion of exponential histograms
to Gaussian distributions via local non-linear trans-
formations.

In this investigation we further explore these invari-
ance properties of images taken in natural and urban
environments and compare them to an artificial refer-
ence ensemble constructed to have strictly Gaussian
statistics.

2. Image Ensembles and Preprocessing

Image ensembles have been gathered from natu-
ral as well as urban environments. Photographs were
taken with a photo camera (Minolta Dynax 7000i,
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35-70 mm autofocus) with fixed aperture (f/5.6) and
variable exposure time.

Processed photographs then have been digitized
with a Dia-Scanner ScanMaker 35t at a resolution of
622 dpi or alternatively with the scanner HP ScanJet
Ilcx using 150 dpi resolution. Both scanners coded
the image brightness to eight bits (256 grey levels).

Most images, however, have been sampled (30 s for
each scene) with a CCD video camera (JVC Compact
VHS-Camcorder GR-AX48, 4-50 mm) with fixed fo-
cal length (natural scenes 50 mm, urban scenes 4 mm)
and variable aperture. Of each scene five images were
directly fed into a computer with a framegrabber (Cor-
tex CX100, Stemmer PC-Syteme GmbH, Kehlheim,
Germany). Image brightness again is encoded with
256 grey levels.

From these digitized images with variable sizes
smaller ones with a constant size of 256 x 256 pixels
were chosen and formed the various image ensem-
bles from which the image statistics were extracted.
Depending on the environment, three natural ensem-
bles (NAT1-3) and one urban ensemble (ZIV) have
been formed. In addition, an artificial ensemble (K2)
has been considered for comparative purposes. These
ensembles will be described in the following.

2.1. The Artificial Ensemble K2

Fourier images with 1/|k |-amplitude spectra and
random phases were generated on a computer and
inverse Fourier-transformed into the spatial domain
to generate an image which is perfectly scale in-
variant, hence is characterized by a power spectrum
S (|k|) o 1/|k [*. To this end a square grid in Fourier
space has been chosen with M grid points along any
of the two dimensions. Each pixel value represented
one Fourier coefficient according to

1
exp (i19) = ——=exp(i9)
F(k)= |k| VE+E

if kK #0 |
0 ifk=0 w
2MNe,y . M M
o= A Withney=—=-... >, ¢ €0,2n],

where A = 1°/pixel is the pixel distance in degrees.
The phase angles ¢ have been chosen at random from
the interval given. With F (— k) = F* (k) the Fourier
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transform into the spatial domain resulted in an image
with real valued pixel intensities

I(r)=l/ooicos(—kr+¢)dk )
T Jo k|

and a maximal and minimal intensity given by

Iax = Ig[g{) ,—kz 12

The distribution of these pixel intensities I (x) is
Gaussian [11] with mean O (given by F' (k =0) = 0)
and standard deviation o; given by Parceval’s theo-
rem [7, 12]

ZZIF beoky) [ ‘szz+kz

ke0 ky70 F

and Imax = —Imin - (3)

After determining for each Fourier-transformed im-
age the corresponding maximal and minimal pixel
intensities, the latter have been rescaled linearly to
span the intervall [0, . . . ,255] according to

127.5 (1+ ?”) (5

max

I(r)=25501(')—"““

Imax - Imin

This transformation results in positive pixel intensi-
ties only and provides the same range of pixel in-
tensity values for all digital images to be considered
later. Figure 1 presents an example of the images thus
obtained.

The actual spread of the rescaled pixel intensities
can be characterized by the relation (see Table 1 for
comparison)

2 2
o M o
=, (Imax> N = (6)
<Imax - Imin) \/i \/EM
Table 1. Calculated image size Mexp using (6). (Imax — Imin)

has been determined from 5000 (M = 512,256), 10000

(M = 128, 64) and 50000 (M = 32, 16, 8) artificial images.
Image size M {Imax — Imin) Mexp

512 27863.1072 507.1677

256 12242.5424 255.5978

128 5296.9640 128.6350

64 2235.6402 64.9087

32 913.3623 34.3713

16 356.2586 16.5934

8 128.6634 8.3948
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Fig. 1. Examples of the images used in this study. Figure (a) shows an example of the artificial image ensemble K2. It has

been obtained by inverse Fourier-transformation of images in frequency space with a 1/|k|*~power spectrum and random
phase. They resemble the images examined by Field, though they were obtained by multiplying the amplitude spectrum of
random images with 1/|k| and transforming the resulting images back to the spacial domain. In Fig. (b) an example of the
natural ensemble NAT3 representative for all examined natural images can be found. This image has been obtained with a
CCD camera within a forest and represents averages over five single frames (see text for details). Figure (c) is an example
for the images of the urban image ensemble ZIV. They have been obtained with a CCD camera at different places at the
campus of the University of Regensburg. Grabbing five pictures and averaging over these images results in the example

shown here.

The distribution of pixel intensities I (x) after
rescaling with .« as calculated using (5) is thus
given by

_ ar gr 2 I “
P= 255M\/Ee"p{_(m) (127.5 _l) }
(N

2.2. The Natural Ensemble NAT1

Photographs have been taken on a sunny winter
day around a little lake, with focal lengths 35 mm
(NAT135) and 70 mm (NAT170), respectively and
aperture f/5.6. The pictures have been digitized with
a Dia-Scanner (ScanMaker 35t) with 622 dpi resolu-
tion. Then 96 images with size 256 x 256 pixels each
were extracted randomly from these digitized images.
Itis to be noted that due to an internal transfer function
the scanner did not represent the whole range of grey
levels properly and produced pixel histograms with
frequent gaps. This led to artefacts in the statistical
evaluation and renders the results obtained of limited
value only.

2.3. The Natural Ensemble NAT2

Photographs have been taken on a sunny day in
April at the border and within a forest, with focal

lengths 35 mm (NAT235) and 70 mm (NAT270) and
aperture f/5.6. The pictures have been digitized with
a scanner (HP ScanJet IIxc) with 150 dpi resolution,
and a total of 102 images with size 256 x 256 pixels
each were extracted at random then.

2.4. The Natural Ensemble NAT3

Various scenes have been taken within a forest
on a windy day in June with a CCD video camera
with fixed focal length (50 mm) and variable aper-
ture. From every scene filmed for 30 s five single
images have been gathered and directly fed into the
computer with a framegrabber. From these individual
frames an average image has been constructed, and
then 100 smaller sized images (256 x 256 pixels each)
have been extracted at random. One example of these
images can be found in Figure 1.

2.5. The Urban Ensemble ZIV

Scenes have been filmed with a video camera dur-
ing August around the campus of the University of
Regensburg, with focal length 4 mm and variable
aperture. The small focal length has been chosen to
have enough structure in the images and to avoid large
unstructured surfaces. Also any curvilinear image dis-
tortions introduced by the optics of the camera could
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Table 2. Summary of the used focal lengths for certain
ensembles and the resulting pixel distances acccoring to (8).

Focal length [mm] Ensemble Pixel distance [degree]
4 ZIV 0.0877
50 NAT3 0.0083
35 NAT1/NAT2 0.065
70 NAT1/NAT2 0.034

be avoided thereby. Naturally occuring contours like
trees have been carefully avoided, too. The scenes
thus contain only man-made structures as may be seen
from Figure 1. Again 97 images of size 256 x 256 pix-
els have been extracted for later analysis.

2.6. Estimation of Pixel Distances

Pixel distances will be expressed in degrees of an-
gle a due to large variations in the size of the visual
field with changing focal length. A reference line of
known length b has been placed a known distance d
apart and has been photographed or filmed. With in-
creasing focal length the number of pixels p increases,
hence the angular range per pixel decreases. Table 2
summarizes the pixel distances estimated according to

b
=2p larctan [ — | .
a =2p~ " arctan 24 (8)

3. Ensemble Statistics

To evaluate the image statistics and to discover pos-
sible invariance properties, raw pixel intensities have
been transformed first either linearly or non-linearly
to difference or log-contrast intensities, respectively.
According to the Weber-Fechner-law [13] the sensa-
tional strength of any sensory input variable is gen-
erally proportional to the logarithm of the stimulus
intensity. Hence any pixel intensity has been trans-
formed to a logarithmic contrast intensity

&(x)=L(x)=In (“;”) )

0

with I chosen to result in an intensity distribution
with zero average, i. e. )_ L(x) = 0. This loga-
rithmic contrast function better mimics the behaviour
of the visual system, which also focuses on contrast
rather than intensity differences [6, 14]. Further any
inhomogenities concerning the light flux falling onto
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a surface are thereby equalized largely [15 - 17]. Be-
sides this non-linear transformation the pixel inten-
sities have been linearly transformed, too, to yield
difference intensities with zero average

S(x)=D(x)=I(x)—(I)

10
with <I)=NLZI(x), i

with Nx the number of pixels in the image. We will
refer to these linearly transformed pixel intensities as
difference intensities henceforth. All digitized images
have been treated in both ways, and some results will
depend on the data treatment as will be demonstrated
shortly.

3.1. Translational Invariance

Almost all investigations so far generally assumed
translational invariance of the images considered,
though this is by no means trivial as landscape im-
ages will always have sky in their upper part, for
example. If images are indeed translationally invari-
ant, then any two-point-correlation function A, (y ) =
(@ (x)® (x +y)) of pixel intensities at points x and
y will depend on their relative distance only and not
on x itself. The average has to be taken over all
images comprising the ensemble under investigation.
Besides calculating, for different starting points x,
the second order correlation function A, (y ) of pixel
intensities, whether expressed as logarithmic contrast
values or as difference intensities, an average correla-
tion function has been determined also according to
the relation

_ 1 1
Ay)= EgAx (y)= inxj@(x)@(x +)),
(11)

which gives the mean over the number of pixels con-
tained in any given image. Whereas any comparison
of correlation functions centered at individual origins
x is difficult because of the unavoidable noise and
because of an insufficient number of members of the
ensemble, the averaged correlation functions provide
a much smoother measure of translational invariance.
The results do not depend on whether difference in-
tensities or logarithmic contrast values are used to cal-
culate the intensity correlation function. Hence only
the results where the difference intensities have been
used are shown in this section.
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Fig. 2. Average correlation function A (y ) for the ensembles NAT1 (a), NAT2 (b), NAT3 (c) and ZIV (d) for the difference
intensities. Contours are shown at equal intervals of correlation. It can be seen that vertical correlations increase from
NAT1 to NAT3, which can be related to the increasing number of vertical structures contained within the images. In
contrast, maximal correlations can be found in the horizontal direction reflecting the large horizontal structures in the

pictures of the ensemble ZIV.

The average correlation functions of the various
image ensembles are compared in Fig. 2 for the nat-
ural images and for the images from an urban en-
vironment. Though seemingly translationally invari-
ant, rotational isotropy is increasingly lost as more
and more vertical structures (stemming from trees
largely) dominate the natural images, whereas the av-
erage correlation function from images of the urban
environments reflect the predominance of horizontal
contours.

3.2. Scale Invariance

Since Deriugin [18] investigated invariance proper-
ties of television images, several researchers demon-

strated the scale invariance of natural images [7 - 9,
19 - 21]. If scale invariance prevails, the power spec-
trum Sg (k) of the intensity distribution, given by

qu(k)=/dy exp(—ik y )(P(x)P(x +y))

(12)
= (|/dy exp(—iky)dﬁ(y)}z)

should, after averaging over all orientations, scale like
1

|k >=7

with | k| the modulus of the spatial frequency and

n # 0 an anomalous exponent. With a nonclassical

Se (|k|) o (13)
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exponent, pixel intensities need to be renormalized
upon changing the scale according to
P(x)— c"P(cx) (14)
with ¢ the scale factor and v a universal exponent
independent of the physical property studied. Image
statistics thus become independent of the lens’ focal
length used, i. e. they are independent of the distance
of observation.
After preprocessing, the images sampled via photo
camera or video camera are discretized versions of

the environment portrayed. To calculate the power
spectrum, the substitutions

X —  Zmn=(ma,na),

d(x) — Ppn=0¢(ma,na)

(15)
(16)

had to be made, resulting in a discretized version of
the power spectrum given by

a \?1
Sest (krs) = (W) N 17
N: M-1 _ 2
: Z ’ Z ¢1mnWmn CXP(—Z’/Ti’CrsImn) )
1=l m,n=0

with a the pixel distance measured in degrees, N; the
number of images in the ensemble, 0 < m,n < 255
the pixel index, k., = (%, %), M =256, -4 <
r,s < % the discretized spatial frequency and M
the number of pixels in each spatial direction. W,,,,
represents a window function, the detailed form of
which is not too important, to alleviate the artefacts, a
two-dimensional Fourier transform of a square image
will inevitably exhibit. A two-dimensional Bartlett
window is used for convenience [8, 22].

Scale invariance must show up in any arbitrarily
chosen physical property of the image ensemble, but
it does not tell the form of the stationary distribution
from which the & (x) are drawn. Both aspects may
be further investigated through the process of coarse
graining [23], which replaces an NV x N block of pixel
intensities by their average according to

1 N
O =15 D bmn. (18)
1

m,n=
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If the underlying probability distribution Py (&) of
the scaling fields with scaling variable N is indeed
scale invariant, it must not change upon changing N
except for some renormalization of the scaling fields
(14) in case of an anomalous exponent n # 0 [24].
In order to compare pixel histograms of different IV,
the scaling fields should be normalized with their rms
value. With ¢ (x) = D (x) representing difference
intensities and normally distributed pixel intensities,
one would have a Gaussian distribution according to

19)

In case of non-linearly transformed log-contrast in-
tensities ¢ (x) = L (x), the correspondingly trans-
formed and normalized distribution with zero average
becomes

gioLp

P(L)= mexp (crL+L) _
e {- () (SRl D 4y,

ol = / L*P(L)dL, (20)

255
L=In{) = / In(I)P(I)dI
0

In(255)
= / LP(L)dL.

— 00

Except for investigating the distribution of differ-
ence intensities or the logarithmic contrast values
it is advantageous also to consider the distribution
of local gradients G ~ |V@| in the images. If the
®(x) = D (x) are normally distributed and scale
invariant, a Rayleigh distribution of local gradients
would result [25, 26]:

P(G)=2Cexp[-1¢7| withG= - (1)

2 4 Gn

The corresponding distribution of local gradients
G = |/G%+G? in case of logarithmically trans-
formed pixel intensities ®(x) = L(x), as well
as the average local gradient G = [dG, [dG,G
-P (G,, Gy) must be obtained numerically assum-
ing factorization of the joint probability density
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Fig. 3. Comparison between the theoretically derived and the experimentally determined distribution of the non-linearly
transformed pixel intensities (a) and corresponding local gradients (b). A very good match between the distributions can
be seen. The distribution of gradients does not match exactly due to the numerical calculations. The parameters according
to (20) are: o1 = 1487.499, o = 0.268, L = 4.815.
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Fig. 4. Scaling of the distributions of difference intensities (a, b), and logarithmic contrast values (c, d) with the correspond-
ing distributions of gradients (b, d) over scales NV = 1,2, 4, 8, 16, and 32 for the artificial ensemble K2. The histogram for
the difference intensities resembles almost perfectly a Gaussian or Rayleigh distribution, respectively. The deviation of the
distributions of logarithmic contrast values from a Gaussian or Rayleigh—distribution must be attributed to the non—linear
preprocessing. Hence, to determine differences from Gaussian behaviour when examining natural and urban ensembles,
one must not use a Gaussian or Rayleigh—distribution for comparison.
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P (G.,Gy) = P(G,) P (G,) with P (G, ) chosen
according to (20). The resulting theoretical distribu-
tion functions are compared to the experimental re-
sults of the artificial image ensemble K2 in Figure 3.

3.2.1. Statistics of the artificial ensemble K2

As areference, the statistics of the artificial ensem-
ble K2 is presented in Fig. 4 for the linearly and the
non-linearly transformed pixel intensities. The related
power spectrum, calculated via the Fourier transform
of the correlation function according to

Se (k) = /dy exp(—ikr)(®(x)P(x +y)),
(22)

corroborates the scale invariance property of the im-
ages forming the ensemble K2. Hence, S (|k|)
|k |* yields with & = —1.951 % 0.052 the best esti-
mate in the least squares sense. The small deviation
of the exponent from the theoretical value a@ = 2
is due to the large scatter of the data at high wave
numbers. Also the pixel intensities, having been nor-
malized to 256 greylevels, exhibited some rounding
errors leading to small deviations from the exact scal-
ing behaviour, too. Because of the large scatter at high
wave numbers, the power spectra of natural and ur-
ban image ensembles are not to be obtained directly
via a Fourier transform of the related second order
correlation functions of pixel intensities. The result-
ing power spectra are averages over all orientations,
of course. A coarse graining of the pixel intensities
has been performed for the scales N = 1,2,4, 8,16,
and 32. Whereas the linearly transformed pixel in-
tensities show the expected Gaussian and Rayleigh
distributions, the non-linearly transformed pixel val-
ues show characteristic deviations due to the corre-
sponding non-linear transformation of the probability
density function, as can be seen from Fig. 4 for the
linearly and the non-linearly transformed intensities.
Hence all logarithmically transformed pixel contrast
values of the various image ensembles investigated
have to be compared to these transformed probabil-
ity distributions to judge any characteristic deviations
of natural image histograms from random image his-
tograms. The orientationally averaged power spectra,
however, seem to be robust against any of these trans-
formations.
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Table 3. Summary of the anomalous exponent 7 according
to (13).

Ensemble Transformation Slope =2 +1n n

K2 linear —1.969 + 0.002 0.031
K2 non-linear —1.933 £ 0.002 0.067
NAT235 linear —1.967 +£0.019 0.034
NAT235 non-linear —2.041 +£0.015 —0.041
NAT270 linear —2.215+0.016 —0.215
NAT270 non-linear —2.215+0.018 -0.215
NAT3 linear —2.319 £ 0.054 -0.319
NAT3 non-linear —2.369 £+ 0.062 —0.369
ZIv linear —2.634 +0.052 —0.634
ZIV non-linear —2.665 = 0.054 —0.665

3.2.2. Statistics of the natural ensembles NAT

Again the power spectra show an increasing asym-
metry in going from NAT1 to NAT3 due to the in-
creasing predominance of vertical contours in these
images, though the results are not shown here. The
spectra show an approximate scaling over more than
five orders of magnitude with small anomalous ex-
ponents collected in Table 3. Results are also fairly
robust against any transformation of the pixel inten-
sities. The pixel histograms show characteristic devi-
ations from the corresponding distributions of the K2
ensemble. Since we want to show that if pixel inten-
sities are logarithmically transformed the deviation
from Gaussian behaviour cannot be seen as clearly as
stated by Ruderman [8], we will show only the distri-
butions of non-linearly transformed pixel intensities.

Figure 5 shows the histograms for the non-linearly
transformed pixel intensities of the ensemble NAT3.
The averaging procedure used to obtain these images,
however, had no noticable effect on the histograms.
It is our finding that any kind of smoothing applied
by averaging over a certain number of images or by
convolving the images using a Gauss-kernel improves
the results of the coarse graining procedure since such
operations lead to smoother pixel histograms for the
linearly as well as for the non-linearly transformed
pixel intensities.

Most remarkable is the almost exponential distribu-
tion for high logarithmic contrast values and gradients
as can be seen clearly from Figure 5.

3.2.3. Statistics of the urban ensemble ZIV

The images of this ensemble contain man-made
structures only with prominent horizontal and verti-
cal contours. This is reflected in the power spectrum
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Fig. 5. Scaling of the distributions of logarithmic contrast values (a) and gradients (b) over scales N = 1,2, 4, 8, 16, and

32 for the natural ensemble NAT3.
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Fig. 6. Scaling of the distributions of logarithmic contrast values (a) and gradients (b) over scales N = 1,2,4, 8, 16, and

32 for the urban ensemble ZIV.

which is very asymmetric along the k, and k, di-
rection. It is also of interest that the anomalous scal-
ing exponent 7 of the orientationally averaged power
spectrum shows the largest anomalous exponent of
all image ensembles considered in this study (cf. Ta-
ble 3). Still scaling is confirmed over almost five or-
ders of magnitude.

The histogram of the linearly transformed pixel in-
tensities shows an almost perfect coincidence with a
Gaussian distribution with small deviations for very
low pixel intensities only. To the contrary the his-
togram of local gradients exhibits pronounced devia-
tions from a Rayleigh distribution at very small and
high gradients and also strong suppression for inter-
mediate values. Again an almost exponential prob-
ability distribution is obtained experimentally over
most of the range of local gradients encountered. The

decay of the exponential is much weaker than in case
of the natural ensemble NAT3, i. e. high local gradi-
ents are much more probable in urban than in natural
environments. The histograms for the logarithmically
transformed intensities and the corresponding gradi-
ents are shown in Figure 6.

3.2.4. Comparisonoflogarithmical contrast
distributions

Figure 7 shows the distributions of the logarith-
mically transformed pixel intensities for all ensem-
bles together with the theoretically derived distribu-
tion and the histograms of local gradients.

The distributions of the logarithmically trans-
formed pixel intensities show for all ensembles only
small differences at high log contrast values (I > I)
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Fig. 7. Scaling of the distributions of logarithmic contrast values (a) and gradients (b) for the real-world ensembles
NAT2/NAT3/ZIV and the theoretically derived histograms from Figure 3.

when compared to the theoretically distribution. For
low values (I < Ij) the ensemble NAT2 exhibits
the greatest deviations, whereas the other ensembles
again resemble the theoretical histogram rather well.
The images of the ensembles NAT3 and ZIV comprise
a greater range of grey values, since the photographs
underlying the ensemble NAT?2 have been quite dark.
Again this demonstrates the dependence of the results
concerning the coarse graining on the method used to
construct the image ensembles.

The comparison of the experimentally obtained
distributions of local gradients of the ensembles NAT3
and ZIV with the theoretical histogram shows an in-
creasing probability of very small and very large gra-
dients in going from the theoretical distribution to
NAT3 and ZIV. This is due to the increasingly pro-
nounced edges and large unstructured areas in the
latter images. Ensemble NAT?2 shows similar results
for small gradients, but results become unreliable for
large local gradients. Since the range of grey values
in these images is quite small, the occurence of large
gradients will be underestimated in the corresponding
probability distribution.

3.3. Hierarchical Invariance

Recently Ruderman [8] discussed the possibility
of a hierarchical invariance of natural images. It is
related to the observation that simple linear filter-
ing of logarithmic contrasts produces exponential his-
tograms much like those observed experimentally. If
these exponential tails are due to a superposition of
many distributions with widely differing variances,

one may try to find a local non-linear transformation
which can turn the distributions to Gaussians. The
transformation proposed by Ruderman [8] amounts
to calculating

_P(x) —&(x)
- o(x)

v(x) (23)

with & (x) the average pixel intensity (whether lin-
early or non-linearly transformed) within a block of
size N x N pixels and o (x) the standard deviation
of pixel intensity fluctuations within the block. This
process enlarges regions of low local contrast and
reduces regions of large local contrast. Besides these
variance modified images one may as well consider so
called variance images. These have been constructed
in the present investigation in two different ways. One
may either substitute any pixel intensity by the related
variance of pixel intensity fluctuations within block
N x N without thereby changing the image size or
one may substitute the whole block of pixel intensities
by the variance of their intensity fluctuations. We will
refer to both procedures as variance images without
and with block substitution, respectively. The pixel
intensities of these variance images may be trans-
formed in the same way as the original images. The
interesting observation is that these variance images
seem to exhibit similar histograms as do the origi-
nal images. This observation asks for the possibility
to iterate this procedure and to its possible outcome.
In doing so one may select the block size according
to the smallest possible kurtosis of the distribution of
pixel intensities, as Gaussian distributions are charac-
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Fig. 8. Distributions of the linearly (a, b) and non-linearly (c, d) transformed pixel intensities (a, ¢) and the corresponding
local gradients (b, d) for ensemble NAT3 and the iteration procedure without block substitution. For each transformation

ten steps with 100 images have been performed.

terized by vanishing kurtosis (fourth moment of the
distribution). Hence the resulting histograms would
resemble Gaussian distributions as closely as possi-
ble. Variance modified as well as variance images
have been constructed for both the artificial ensemble
K2 to provide a reference system and the ensemble
NAT3 of natural images. The results for the other nat-
ural ensembles NAT1/2 and the urban ensemble ZIV
are qualitatively the same as for ensemble NAT3 and
are not shown here.

3.3.1. The artificial ensemble K2

Ten iterations with 100 images of the ensemble
K2 have been performed to obtain variance modified
images of block sizes 3 x 3 to 19 x 19 pixels. For every
iteration the block size resulting in the lowest kurtosis
has been chosen. If a hierarchical invariance prevails,
all histograms should exhibit a similar shape, which

was clearly not observed with linearly transformed
pixel intensities but seems to hold in case of non-
linearly transformed pixel intensities (log contrasts).
The calculations for the artificial ensemble have been
performed for comparative purposes.

3.3.2. Thenatural ensemble NAT3

Again ten iterations with 100 images of the ensem-
ble NAT3 have been performed to obtain variance
modified images of block sizes 3 x 3 to 19 x 19 pix-
els and the block size resulting in the lowest kurtosis
has been chosen during every iteration. The resulting
histograms for linearly transformed pixel intensities
are shown in Fig. 8 without and in Fig. 9 with block
substitutions. Large deviations from Gaussian statis-
tics are found in case of linearly transformed pixel
intensities which do not support the hierarchical in-
variance hypothesis. As with the ensemble K2, the



1020

(a) ¢
01 | ;

2 0.01¢p
2
©
g
a  0.001

0.0001

1e-05 L .

-4 -2 0 2 4
difference intensity/standard deviation
© ' ' -
0.1t

2 0.1
£
[
2
o
S 0.001 |

0.0001

1e-05 N L " L 4

4 -2 0 2
logarithmic contrast/standard deviation

(b)

probability

(d)

probability

Ch. Ziegaus and E. W. Lang - Statistical Invariances in Images

1

0.1k
0.01

0.001

0.0001 |

1e-05 . -
0 3 4
gradient/mean

01t
0.01
0.001 |

0.0001

1e-05 . Lt
0 3 4
gradient/mean

Fig. 9. Distributions of the linearly (a, b) and non-linearly (c, d) transformed pixel intensities (a, ¢) and the corresponding
local gradients (b, d) for ensemble NAT3 and the iteration procedure with block substitution. As with ensemble K2 only a
few steps where possible before the images became too small for further calculations.

logarithmic contrast histograms do indeed approach
Gaussian statistics with increasing number of iter-
ations, hence supporting the notion of a hierarchical
invariance. Contrary to scale invariance the result does
depend strongly on the way the raw pixel intensities
are transformed.

4. Conclusions

Natural images are far from random and occupy an
infinitesimally small volume in the space of all pos-
sible images. The information contained in natural
images is thus highly redundant and asks for a more
convenient encoding scheme than simply expressing
them on a pixel-by-pixel basis. It is the statistical
structure of these images which determines the most
suitable encoding algorithm according to some well
defined optimality criterium. Since there is no way
to collect enough data to fully characterize an image

environment one seeks to identify possible symme-
tries and invariance properties of the underlying im-
age probability distribution.

Recent investigations of the statistical nature of
natural images having generally assumed a transla-
tional invariance of such images, have demonstrated
an invariance to scale and have proposed a new hier-
archical invariance in these images [7, 6, 8].

We have investigated all three invariance proper-
ties in ensembles of natural and urban images and,
further, constructed an artificial ensemble of random
images with purely Gaussian statistics. Although one
might not expect translational invariance to hold in
non-random images in general — sky will always
be in the upper part of any natural or urban image,
for example — we could provide strong evidence in
favour of translational invariance in the image ensem-
bles using a smoothing procedure to calculate second
order correlation functions of pixel intensities. This
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helped alleviate the unavoidable scatter in the correla-
tion functions due to insufficient ensemble averaging.
The calculated two point correlation functions were
mostly highly asymmetric, thus reflecting prominent
contours in the underlying images. This is most obvi-
ous in comparing the ensembles NAT3 and ZIV.

The artificial ensemble K2 proved useful to explore
the characteristics of any deviations of histograms of
pixel intensities and local gradients in non-random
images from Gaussian statistics. This is important, as
we have shown that any non-linear preprocessing of
raw pixel intensities renders Gaussian and Rayleigh
distributions inappropriate to compare with the corre-
sponding pixel and local gradient histograms of nat-
ural and urban images. After appropriate coordinate
transformations, the resulting distributions of loga-
rithmically transformed pixel intensities and related
distributions of local gradients exhibited less dramatic
deviations from Gaussian and Rayleigh distributions,
though the general conclusions of earlier investiga-
tions [8] remain still valid. Concerning the hierarchi-
cal invariance of natural images recently discussed
by Ruderman [8] we persued the proposed iterative
scheme of replacing pixel intensities by the variance
of the intensity distribution within a pixel block of
size N x N. This has been done in two different
ways whereby the size of the image has been reduced
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