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T o a n s w e r the ques t ion abou t the w a y our visual s y s t e m p roces se s i m a g e s it has to w o r k wi th 
e v e r y day, it is necessa ry to invest igate the stat is t ical s t ruc ture of these p ic tures . F o r this p u r p o s e 
w e inves t iga ted several e n s e m b l e s of art if icial a n d r ea l -wor ld g reysca l e i m a g e s to find d i f f e r en t 
i nva r i ance proper t ies : t ransla t ion invar iance by d e t e r m i n i n g an ave rage pa i r -cor re la t ion f u n c t i o n , 
s ca l e invar iance by invest igat ing the p o w e r s p e c t r u m a n d the coa r se g ra in ing of the i m a g e s , a n d a 
n e w h ie ra rch ica l invar iance recen t ly p roposed [D. L. R u d e r m a n , N e t w o r k 5 , 5 1 7 (1994) ] . T h e resul ts 
o f o u r w o r k indica ted that the a s s u m p t i o n of t rans la t iona l invar iance can be taken f o r g ran ted . O u r 
r e su l t s c o n c e r n i n g the scale invar iance are qual i ta t ively the s a m e as those f o u n d by R u d e r m a n and 
o the r s . T h e devia t ions of the d is t r ibut ions of the logar i thmica l ly t r a n s f o r m e d i m a g e s f r o m a G a u s s i a n 
d i s t r ibu t ion canno t be seen as c lear ly as s tated by R u d e r m a n . T h i s resu l t s f r o m the f ac t that fo r a 
c o r r e c t de t e rmina t ion of the dev ia t ions the non- l inea r t r a n s f o r m a t i o n m u s t be c o n s i d e r e d . D e p e n d i n g 
o n the p r e p r o c e s s i n g of the i m a g e s the resul ts c o n c e r n i n g the h ie ra rch ica l invar iance d i f f e r e d widely . 
It s e e m s that this new invar iance can be c o n f i r m e d on ly fo r loga r i thmica l ly t r a n s f o r m e d i m a g e s . 
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1. Introduction 

The development of the mamalian visual system 
is strongly dependent on early visual stimulation [1] 
and thus is influenced by the statistics of its envi-
ronment. Hence the visual system is expected to be 
optimally adapted to the statistics of natural images 
it deals with. Natural images are far from random 
and contain distinctive features and particular types 
of structures. In order to understand the way visual 
information is processed and the coding strategy em-
ployed within the primary visual cortex the statistical 
properties of visual input patterns are of primary in-
terest. Early stages of information processing seem to 
encode only simple features like oriented edges, lines 
or bars and disparity. They thereby represent visual in-
formation in a less redundant and more efficient way. 
Whether efficient coding means mere redundancy re-
duction [2, 3], mutual information maximization [4], 
reconstruction fidelity [5] or sparseness of coding [6] 
is still in dispute and is currently explored by many 
groups. However, the proper coding strategy certainly 
depends on the statistical properties of the stimulus 
patterns occuring in a natural or urban environment. 

R e p r i n t r e q u e s t s to Prof . E l m a r W. L a n g ; Fax: + 4 9 941 
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There have been several recent investigations of the 
statistical properties of natural images [7, 8, 9, 10]. 
Since there is no way to collect enough data to fully 
characterize an image environment, these studies seek 
to identify a simple underlying structure or invariance 
property in the image probability distribution. One 
such symmetry frequently assumed is translational 
invariance. Whether it will always hold with natural 
images is not clear, however. Undoubtedly their most 
robust statistical property is an invariance to scale [8]. 
Recently, evidence has been presented supporting the 
notion of a hierarchical invariance in natural scenes. 
It relates to the conversion of exponential histograms 
to Gaussian distributions via local non-linear trans-
formations. 

In this investigation we further explore these invari-
ance properties of images taken in natural and urban 
environments and compare them to an artificial refer-
ence ensemble constructed to have strictly Gaussian 
statistics. 

2. Image Ensembles and Preprocessing 

Image ensembles have been gathered from natu-
ral as well as urban environments. Photographs were 
taken with a photo camera (Minolta Dynax 7000i, 
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35-70 mm autofocus) with fixed aperture ( / / 5 . 6 ) and 
variable exposure time. 

Processed photographs then have been digitized 
with a Dia-Scanner ScanMaker 35t at a resolution of 
622 dpi or alternatively with the scanner HP ScanJet 
Ilex using 150 dpi resolution. Both scanners coded 
the image brightness to eight bits (256 grey levels). 

Most images, however, have been sampled (30 s for 
each scene) with a CCD video camera (JVC Compact 
VHS-Camcorder GR-AX48,4-50 mm) with fixed fo-
cal length (natural scenes 50 mm, urban scenes 4 mm) 
and variable aperture. Of each scene five images were 
directly fed into a computer with a framegrabber (Cor-
tex CXI00 , Stemmer PC-Syteme GmbH, Kehlheim, 
Germany). Image brightness again is encoded with 
256 grey levels. 

From these digitized images with variable sizes 
smaller ones with a constant size of 256 x 256 pixels 
were chosen and formed the various image ensem-
bles from which the image statistics were extracted. 
Depending on the environment, three natural ensem-
bles (NAT1-3) and one urban ensemble (ZIV) have 
been formed. In addition, an artificial ensemble (K2) 
has been considered for comparative purposes. These 
ensembles will be described in the following. 

2.1. The Artificial Ensemble K2 

Fourier images with 1 / | k |-amplitude spectra and 
random phases were generated on a computer and 
inverse Fourier-transformed into the spatial domain 
to generate an image which is perfectly scale in-
variant, hence is characterized by a power spectrum 
S (| k I) a 1 / | A: |2 . To this end a square grid in Fourier 
space has been chosen with M grid points along any 
of the two dimensions. Each pixel value represented 
one Fourier coefficient according to 

I= I T T E X P W = 7 1 E X P W ) 

if W o ( 1 ) 

0 if k = 0 

27T nx v . , M M 
, y = ~MA n x ' y = ~ ~2 '"" T ' ^ G [ ' -1, 

where A = l°/pixel is the pixel distance in degrees. 
The phase angles 0 have been chosen at random from 
the interval given. With F ( - k ) = F* ( k ) the Fourier 

transform into the spatial domain resulted in an image 
with real valued pixel intensities 

i r 1 
/ ( r ) = — / — cos(-kr + 0 ) d A : (2) 

Jo \ k \ 

and a maximal and minimal intensity given by 

7max = y ^ y ^ . a n d / m a x = - 7 m i n • ( 3 ) 

k x j ) k y j ) ^ J k l + k 2 

The distribution of these pixel intensities / ( x ) is 
Gaussian [11] with mean 0 (given by F ( k = 0) = 0) 
and standard deviation 07 given by Parceval's theo-
rem [7, 12] 

^ = 2 = £ £ r ä - ( 4 > 
kx ky kxj0kyj0 x y 

After determining for each Fourier-transformed im-
age the corresponding maximal and minimal pixel 
intensities, the latter have been rescaled linearly to 
span the intervall [ 0 , . . . , 255] according to 

J ( r ) = 2 5 5 . 0 / ( r ) ~ / m i n = 127.5 ( 1 + . (5) 
- 'max - 'min \ • 'max / 

This transformation results in positive pixel intensi-
ties only and provides the same range of pixel in-
tensity values for all digital images to be considered 
later. Figure 1 presents an example of the images thus 
obtained. 

The actual spread of the rescaled pixel intensities 
can be characterized by the relation (see Table 1 for 
comparison) 

CT2 M_ a2 

( / m a x - / m , n ) ^ " I t M ' ^ 

Table 1. Calculated image size Mexp using (6). (/max — /mm) 
has been determined from 5000 (M = 512,256), 10000 
(M = 128,64) and 50000 (Af = 32, 16,8) artificial images. 

Image size M ( ^ m a x — 7 m j n ) M e x p 

5 1 2 2 7 8 6 3 . 1 0 7 2 5 0 7 . 1 6 7 7 

2 5 6 1 2 2 4 2 . 5 4 2 4 2 5 5 . 5 9 7 8 

1 2 8 5 2 9 6 . 9 6 4 0 1 2 8 . 6 3 5 0 

6 4 2 2 3 5 . 6 4 0 2 6 4 . 9 0 8 7 

3 2 9 1 3 . 3 6 2 3 3 4 . 3 7 1 3 

1 6 3 5 6 . 2 5 8 6 1 6 . 5 9 3 4 

8 1 2 8 . 6 6 3 4 8 . 3 9 4 8 
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Fig. 1. Examples of the images used in this study. Figure (a) shows an example of the artificial image ensemble K2. It has 
been obtained by inverse Fourier-transformation of images in frequency space with a l/|fc|2-power spectrum and random 
phase. They resemble the images examined by Field, though they were obtained by multiplying the amplitude spectrum of 
random images with \/\k\ and transforming the resulting images back to the spacial domain. In Fig. (b) an example of the 
natural ensemble NAT3 representative for all examined natural images can be found. This image has been obtained with a 
CCD camera within a forest and represents averages over five single frames (see text for details). Figure (c) is an example 
for the images of the urban image ensemble ZIV. They have been obtained with a CCD camera at different places at the 
campus of the University of Regensburg. Grabbing five pictures and averaging over these images results in the example 
shown here. 

The distribution of pixel intensities I ( x ) after 
rescaling with 7max as calculated using (5) is thus 
given by 

P ( J ) = 07 
2 5 5 M 0 F 

exp - ( — v \2M) 127.5 
- 1 

(7) 

2.2. The Natural Ensemble NAT1 

Photographs have been taken on a sunny winter 
day around a little lake, with focal lengths 35 mm 
(NAT 135) and 70 mm (NAT170), respectively and 
aperture / / 5 . 6 . The pictures have been digitized with 
a Dia-Scanner (ScanMaker 35t) with 622 dpi resolu-
tion. Then 96 images with size 256 x 256 pixels each 
were extracted randomly from these digitized images. 
It is to be noted that due to an internal transfer function 
the scanner did not represent the whole range of grey 
levels properly and produced pixel histograms with 
frequent gaps. This led to artefacts in the statistical 
evaluation and renders the results obtained of limited 
value only. 

2.3. The Natural Ensemble NAT2 

Photographs have been taken on a sunny day in 
April at the border and within a forest, with focal 

lengths 35 mm (NAT235) and 70 mm (NAT270) and 
aperture f /5.6. The pictures have been digitized with 
a scanner (HP ScanJet IIxc) with 150 dpi resolution, 
and a total of 102 images with size 256 x 256 pixels 
each were extracted at random then. 

2.4. The Natural Ensemble NAT3 

Various scenes have been taken within a forest 
on a windy day in June with a CCD video camera 
with fixed focal length (50 mm) and variable aper-
ture. From every scene filmed for 30 s five single 
images have been gathered and directly fed into the 
computer with a framegrabber. From these individual 
frames an average image has been constructed, and 
then 100 smaller sized images (256 x 256 pixels each) 
have been extracted at random. One example of these 
images can be found in Figure 1. 

2.5. The Urban Ensemble ZIV 

Scenes have been filmed with a video camera dur-
ing August around the campus of the University of 
Regensburg, with focal length 4 mm and variable 
aperture. The small focal length has been chosen to 
have enough structure in the images and to avoid large 
unstructured surfaces. Also any curvilinear image dis-
tortions introduced by the optics of the camera could 
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Tab le 2. S u m m a r y of the used foca l l engths f o r cer ta in 
e n s e m b l e s and the resu l t ing pixel d i s t ances a c c c o r i n g to (8). 

Focal length [mm] Ensemble Pixel distance [degree] 

4 ZIV 0.0877 
50 NAT3 0.0083 
35 NAT1/NAT2 0.065 
70 NAT1/NAT2 0.034 

be avoided thereby. Naturally occuring contours like 
trees have been carefully avoided, too. The scenes 
thus contain only man-made structures as may be seen 
from Figure 1. Again 97 images of size 256 x 256 pix-
els have been extracted for later analysis. 

2.6. Estimation of Pixel Distances 

Pixel distances will be expressed in degrees of an-
gle a due to large variations in the size of the visual 
field with changing focal length. A reference line of 
known length b has been placed a known distance d 
apart and has been photographed or filmed. With in-
creasing focal length the number of pixels p increases, 
hence the angular range per pixel decreases. Table 2 
summarizes the pixel distances estimated according to 

a = 2p~1 arctan ( J . (8) 

3. Ensemble Statistics 

To evaluate the image statistics and to discover pos-
sible invariance properties, raw pixel intensities have 
been transformed first either linearly or non-linearly 
to difference or log-contrast intensities, respectively. 
According to the Weber-Fechner-law [13] the sensa-
tional strength of any sensory input variable is gen-
erally proportional to the logarithm of the stimulus 
intensity. Hence any pixel intensity has been trans-
formed to a logarithmic contrast intensity 

= = (9) 

with Iq chosen to result in an intensity distribution 
with zero average, i. e. X ) x L ( x ) = 0. This loga-
rithmic contrast function better mimics the behaviour 
of the visual system, which also focuses on contrast 
rather than intensity differences [6, 14]. Further any 
inhomogenities concerning the light flux falling onto 

a surface are thereby equalized largely [15 - 17]. Be-
sides this non-linear transformation the pixel inten-
sities have been linearly transformed, too, to yield 
difference intensities with zero average 

*(* ) = D(x) = I ( x ) - { I ) 

1 XT- (10) 
with (/> = — £ / ( * ) , 

x X 

with N x the number of pixels in the image. We will 
refer to these linearly transformed pixel intensities as 
difference intensities henceforth. All digitized images 
have been treated in both ways, and some results will 
depend on the data treatment as will be demonstrated 
shortly. 

3. L Translational Invariance 

Almost all investigations so far generally assumed 
translational invariance of the images considered, 
though this is by no means trivial as landscape im-
ages will always have sky in their upper part, for 
example. If images are indeed translationally invari-
ant, then any two-point-correlation function Ax(y ) = 
($ ( x ) ( x + y ) ) of pixel intensities at points x and 
y will depend on their relative distance only and not 
on x itself. The average has to be taken over all 
images comprising the ensemble under investigation. 
Besides calculating, for different starting points x , 
the second order correlation function Ax (y) of pixel 
intensities, whether expressed as logarithmic contrast 
values or as difference intensities, an average correla-
tion function has been determined also according to 
the relation 

= F E = ^ J > ( X ) £ ( x + y ) ) , 
x x  x X 

(11) 

which gives the mean over the number of pixels con-
tained in any given image. Whereas any comparison 
of correlation functions centered at individual origins 
x is difficult because of the unavoidable noise and 
because of an insufficient number of members of the 
ensemble, the averaged correlation functions provide 
a much smoother measure of translational invariance. 
The results do not depend on whether difference in-
tensities or logarithmic contrast values are used to cal-
culate the intensity correlation function. Hence only 
the results where the difference intensities have been 
used are shown in this section. 
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Fig. 2. Average correlation function A (y) for the ensembles NAT1 (a), NAT2 (b), NAT3 (c) and ZIV (d) for the difference 
intensities. Contours are shown at equal intervals of correlation. It can be seen that vertical correlations increase from 
NAT1 to NAT3, which can be related to the increasing number of vertical structures contained within the images. In 
contrast, maximal correlations can be found in the horizontal direction reflecting the large horizontal structures in the 
pictures of the ensemble ZIV. 

The average correlation functions of the various 
image ensembles are compared in Fig. 2 for the nat-
ural images and for the images from an urban en-
vironment. Though seemingly translationally invari-
ant, rotational isotropy is increasingly lost as more 
and more vertical structures (stemming from trees 
largely) dominate the natural images, whereas the av-
erage correlation function from images of the urban 
environments reflect the predominance of horizontal 
contours. 

3.2. Scale Invariance 

Since Deriugin [18] investigated invariance proper-
ties of television images, several researchers demon-

strated the scale invariance of natural images [7 - 9, 
19 - 21]. If scale invariance prevails, the power spec-
trum ( k ) of the intensity distribution, given by 

S*(k) = j dy exp (-ik y){$(x)$(x + y)) 

• m 

(12) 

dy exp(—z A: y )<? ( y ) 

should, after averaging over all orientations, scale like 

« r r 4 - 7 (13) (|*|) k \2~v 

with the modulus of the spatial frequency and 
t] ^ 0 an anomalous exponent. With a nonclassical 
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exponent, pixel intensities need to be renormalized 
upon changing the scale according to 

(14) 

with c the scale factor and u a universal exponent 
independent of the physical property studied. Image 
statistics thus become independent of the lens' focal 
length used, i. e. they are independent of the distance 
of observation. 

After preprocessing, the images sampled via photo 
camera or video camera are discretized versions of 
the environment portrayed. To calculate the power 
spectrum, the substitutions 

x —• xmn = (ma, na), 

$(x) —• <Pmn = 0 (ma, na) 

(15) 

(16) 

had to be made, resulting in a discretized version of 
the power spectrum given by 

^ - ( j S i O ÄÜ <17) 

N, M-1 
• n ^ (f)t

mTlWrnnexp(-2Trikrsxrnn) 

with a the pixel distance measured in degrees, Nt the 
number of images in the ensemble, 0 < m, n < 255 
the pixel index, krs = ( j j j , j g ) , M = 256, - f < 
r,s < y- the discretized spatial frequency and M 
the number of pixels in each spatial direction. Wmn 

represents a window function, the detailed form of 
which is not too important, to alleviate the artefacts, a 
two-dimensional Fourier transform of a square image 
will inevitably exhibit. A two-dimensional Bartlett 
window is used for convenience [8, 22]. 

Scale invariance must show up in any arbitrarily 
chosen physical property of the image ensemble, but 
it does not tell the form of the stationary distribution 
from which the are drawn. Both aspects may 
be further investigated through the process of coarse 
graining [23], which replaces an N x N block of pixel 
intensities by their average according to 

= 
1 

N 2 

N 

E 
m,n= 1 

(18) 

If the underlying probability distribution Pn ($) of 
the scaling fields with scaling variable N is indeed 
scale invariant, it must not change upon changing N 
except for some renormalization of the scaling fields 
(14) in case of an anomalous exponent r\ 4 0 [24]. 
In order to compare pixel histograms of different N , 
the scaling fields should be normalized with their rms 
value. With $(x) = D(x) representing difference 
intensities and normally distributed pixel intensities, 
one would have a Gaussian distribution according to 

with D = 
D 

(19) 

nRMS ' 

In case of non-linearly transformed log-contrast in-
tensities <P(x) = L(x), the correspondingly trans-
formed and normalized distribution with zero average 
becomes 

P(L) = VlVL exp (aiL + L) 
255 M y f t 

( / (7/ \ 2 / e x p ( c r L L + Z) 
I ~ \ 2 m ) ( 127.5 - 0 ) ' 

o2
L = j L2P (L) d L, (20) 

[255 
L = l n ( / 0 ) = / ln (I) P ( / ) d I 

Jo 
-ln(255) 

LP(L)dL. 
' —oo - i : 

Except for investigating the distribution of differ-
ence intensities or the logarithmic contrast values 
it is advantageous also to consider the distribution 
of local gradients G « |V# | in the images. If the 

= D(x) are normally distributed and scale 
invariant, a Rayleigh distribution of local gradients 
would result [25, 26]: 

P ( G ) = ^ G e x p 
7T --

- 4 G 2 

G 
with G = -=r—. (21) 

Gn 

The corresponding distribution of local gradients 
G = yjG2+Gl in case of logarithmically trans-
formed pixel intensities ^(JC) = L(x), as well 
as the average local gradient G = f d G x f d GyG 
• P ( G x l G y ) must be obtained numerically assum-
ing factorization of the joint probability density 
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1e-07 
-8 -6 - 4 - 2 0 2 

logarithmic contrast/standard deviation 

Fig. 3. Comparison between the theoretically derived and the experimentally determined distribution of the non-linearly 
transformed pixel intensities (a) and corresponding local gradients (b). A very good match between the distributions can 
be seen. The distribution of gradients does not match exactly due to the numerical calculations. The parameters according 
to (20) are: ctj = 1487.499, a L = 0.268, L = 4.815. 

(a) (b) 

0.0001 

0.01 

0.0001 

- 4 - 2 0 2 
difference intensity/standard deviation 

Fig. 4. Scaling of the distributions of difference intensities (a, b), and logarithmic contrast values (c, d) with the correspond-
ing distributions of gradients (b, d) over scales N = 1,2,4, 8,16, and 32 for the artificial ensemble K2. The histogram for 
the difference intensities resembles almost perfectly a Gaussian or Rayleigh distribution, respectively. The deviation of the 
distributions of logarithmic contrast values from a Gaussian or Rayleigh-distribution must be attributed to the non-linear 
preprocessing. Hence, to determine differences from Gaussian behaviour when examining natural and urban ensembles, 
one must not use a Gaussian or Rayleigh-distribution for comparison. 
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P(Gx,Gy) = P(Gx)P(Gy) with P(Gx,y) chosen 
according to (20). The resulting theoretical distribu-
tion functions are compared to the experimental re-
sults of the artificial image ensemble K2 in Figure 3. 

3.2.1. S t a t i s t i c s of the a r t i f i c i a l e n s e m b l e K2 

As a reference, the statistics of the artificial ensem-
ble K2 is presented in Fig. 4 for the linearly and the 
non-linearly transformed pixel intensities. The related 
power spectrum, calculated via the Fourier transform 
of the correlation function according to 

S*(k) = J d y exp ( - i k r ) ( * ( x ) * ( x + y ) ) , 

(22) 

corroborates the scale invariance property of the im-
ages forming the ensemble K2. Hence, S oc 
\k | a yields with a = - 1 . 9 5 1 ± 0.052 the best esti-
mate in the least squares sense. The small deviation 
of the exponent from the theoretical value a = 2 
is due to the large scatter of the data at high wave 
numbers. Also the pixel intensities, having been nor-
malized to 256 greylevels, exhibited some rounding 
errors leading to small deviations from the exact scal-
ing behaviour, too. Because of the large scatter at high 
wave numbers, the power spectra of natural and ur-
ban image ensembles are not to be obtained directly 
via a Fourier transform of the related second order 
correlation functions of pixel intensities. The result-
ing power spectra are averages over all orientations, 
of course. A coarse graining of the pixel intensities 
has been performed for the scales N = 1 ,2 ,4 ,8 ,16 , 
and 32. Whereas the linearly transformed pixel in-
tensities show the expected Gaussian and Rayleigh 
distributions, the non-linearly transformed pixel val-
ues show characteristic deviations due to the corre-
sponding non-linear transformation of the probability 
density function, as can be seen from Fig. 4 for the 
linearly and the non-linearly transformed intensities. 
Hence all logarithmically transformed pixel contrast 
values of the various image ensembles investigated 
have to be compared to these transformed probabil-
ity distributions to judge any characteristic deviations 
of natural image histograms from random image his-
tograms. The orientationally averaged power spectra, 
however, seem to be robust against any of these trans-
formations. 

Table 3. S u m m a r y of the a n o m a l o u s e x p o n e n t r/ a c c o r d i n g 
to (13) . 

Ensemble Transformation Slope —2 + t] V 

K2 linear - 1 . 9 6 9 ± 0 . 0 0 2 0.031 
K2 non-linear - 1 . 9 3 3 ± 0 . 0 0 2 0.067 
NAT235 linear - 1 . 9 6 7 ± 0 . 0 1 9 0.034 
NAT235 non-linear - 2 . 0 4 1 ± 0 . 0 1 5 - 0 . 0 4 1 
NAT270 linear - 2 . 2 1 5 ± 0 . 0 1 6 - 0 . 2 1 5 
NAT270 non-linear - 2 . 2 1 5 ± 0 . 0 1 8 - 0 . 2 1 5 
NAT3 linear - 2 . 3 1 9 ± 0 . 0 5 4 - 0 . 3 1 9 
NAT3 non-linear - 2 . 3 6 9 ± 0.062 - 0 . 3 6 9 
ZIV linear - 2 . 6 3 4 ± 0.052 - 0 . 6 3 4 
ZIV non-linear - 2 . 6 6 5 ± 0.054 - 0 . 6 6 5 

3.2.2. S t a t i s t i c s of the n a t u r a l e n s e m b l e s N A T 

Again the power spectra show an increasing asym-
metry in going from NAT1 to NAT3 due to the in-
creasing predominance of vertical contours in these 
images, though the results are not shown here. The 
spectra show an approximate scaling over more than 
five orders of magnitude with small anomalous ex-
ponents collected in Table 3. Results are also fairly 
robust against any transformation of the pixel inten-
sities. The pixel histograms show characteristic devi-
ations from the corresponding distributions of the K2 
ensemble. Since we want to show that if pixel inten-
sities are logarithmically transformed the deviation 
from Gaussian behaviour cannot be seen as clearly as 
stated by Ruderman [8], we will show only the distri-
butions of non-linearly transformed pixel intensities. 

Figure 5 shows the histograms for the non-linearly 
transformed pixel intensities of the ensemble NAT3. 
The averaging procedure used to obtain these images, 
however, had no noticable effect on the histograms. 
It is our finding that any kind of smoothing applied 
by averaging over a certain number of images or by 
convolving the images using a Gauss-kernel improves 
the results of the coarse graining procedure since such 
operations lead to smoother pixel histograms for the 
linearly as well as for the non-linearly transformed 
pixel intensities. 

Most remarkable is the almost exponential distribu-
tion for high logarithmic contrast values and gradients 
as can be seen clearly from Figure 5. 

3.2.3. S t a t i s t i c s of the u rban e n s e m b l e Z IV 

The images of this ensemble contain man-made 
structures only with prominent horizontal and verti-
cal contours. This is reflected in the power spectrum 
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Fig. 5. Scaling of the distributions of logarithmic contrast values (a) and gradients (b) over scales N = 1,2,4, 8,16, and 
32 for the natural ensemble NAT3. 
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Fig. 6. Scaling of the distributions of logarithmic contrast values (a) and gradients (b) over scales N = 1,2,4,8,16, and 
32 for the urban ensemble ZIV. 

which is very asymmetric along the kx and ky di-
rection. It is also of interest that the anomalous scal-
ing exponent 77 of the orientationally averaged power 
spectrum shows the largest anomalous exponent of 
all image ensembles considered in this study (cf. Ta-
ble 3). Still scaling is confirmed over almost five or-
ders of magnitude. 

The histogram of the linearly transformed pixel in-
tensities shows an almost perfect coincidence with a 
Gaussian distribution with small deviations for very 
low pixel intensities only. To the contrary the his-
togram of local gradients exhibits pronounced devia-
tions from a Rayleigh distribution at very small and 
high gradients and also strong suppression for inter-
mediate values. Again an almost exponential prob-
ability distribution is obtained experimentally over 
most of the range of local gradients encountered. The 

decay of the exponential is much weaker than in case 
of the natural ensemble NAT3, i. e. high local gradi-
ents are much more probable in urban than in natural 
environments. The histograms for the logarithmically 
transformed intensities and the corresponding gradi-
ents are shown in Figure 6. 

3.2.4. C o m p a r i s o n of l o g a r i t h m i c a l c o n t r a s t 
d i s t r i b u t i o n s 

Figure 7 shows the distributions of the logarith-
mically transformed pixel intensities for all ensem-
bles together with the theoretically derived distribu-
tion and the histograms of local gradients. 

The distributions of the logarithmically trans-
formed pixel intensities show for all ensembles only 
small differences at high log contrast values ( / » 70) 
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Fig. 7. Scaling of the distributions of logarithmic contrast values (a) and gradients (b) for the real-world ensembles 
NAT2/NAT3/ZIV and the theoretically derived histograms from Figure 3. 

when compared to the theoretically distribution. For 
low values ( / C Iq) the ensemble NAT2 exhibits 
the greatest deviations, whereas the other ensembles 
again resemble the theoretical histogram rather well. 
The images of the ensembles NAT3 and ZIV comprise 
a greater range of grey values, since the photographs 
underlying the ensemble NAT2 have been quite dark. 
Again this demonstrates the dependence of the results 
concerning the coarse graining on the method used to 
construct the image ensembles. 

The comparison of the experimentally obtained 
distributions of local gradients of the ensembles NAT3 
and ZIV with the theoretical histogram shows an in-
creasing probability of very small and very large gra-
dients in going from the theoretical distribution to 
NAT3 and ZIV. This is due to the increasingly pro-
nounced edges and large unstructured areas in the 
latter images. Ensemble NAT2 shows similar results 
for small gradients, but results become unreliable for 
large local gradients. Since the range of grey values 
in these images is quite small, the occurence of large 
gradients will be underestimated in the corresponding 
probability distribution. 

3.3. Hierarchical Invariance 

Recently Ruderman [8] discussed the possibility 
of a hierarchical invariance of natural images. It is 
related to the observation that simple linear filter-
ing of logarithmic contrasts produces exponential his-
tograms much like those observed experimentally. If 
these exponential tails are due to a superposition of 
many distributions with widely differing variances, 

one may try to find a local non-linear transformation 
which can turn the distributions to Gaussians. The 
transformation proposed by Ruderman [8] amounts 
to calculating 

<r(x) 

with <?(x) the average pixel intensity (whether lin-
early or non-linearly transformed) within a block of 
size N x N pixels and a(x) the standard deviation 
of pixel intensity fluctuations within the block. This 
process enlarges regions of low local contrast and 
reduces regions of large local contrast. Besides these 
variance modified images one may as well consider so 
called variance images. These have been constructed 
in the present investigation in two different ways. One 
may either substitute any pixel intensity by the related 
variance of pixel intensity fluctuations within block 
N x N without thereby changing the image size or 
one may substitute the whole block of pixel intensities 
by the variance of their intensity fluctuations. We will 
refer to both procedures as variance images without 
and with block substitution, respectively. The pixel 
intensities of these variance images may be trans-
formed in the same way as the original images. The 
interesting observation is that these variance images 
seem to exhibit similar histograms as do the origi-
nal images. This observation asks for the possibility 
to iterate this procedure and to its possible outcome. 
In doing so one may select the block size according 
to the smallest possible kurtosis of the distribution of 
pixel intensities, as Gaussian distributions are charac-
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F i g . 8. D i s t r i b u t i o n s of t h e l i n e a r l y (a , b ) a n d n o n - l i n e a r l y (c, d ) t r a n s f o r m e d p ixe l i n t e n s i t i e s (a , c ) a n d the c o r r e s p o n d i n g 
l o c a l g r a d i e n t s (b , d ) f o r e n s e m b l e N A T 3 a n d t h e i t e r a t ion p r o c e d u r e without b l o c k s u b s t i t u t i o n . F o r e a c h t r a n s f o r m a t i o n 
t e n s t e p s w i t h 100 i m a g e s h a v e b e e n p e r f o r m e d . 

terized by vanishing kurtosis (fourth moment of the 
distribution). Hence the resulting histograms would 
resemble Gaussian distributions as closely as possi-
ble. Variance modified as well as variance images 
have been constructed for both the artificial ensemble 
K2 to provide a reference system and the ensemble 
NAT3 of natural images. The results for the other nat-
ural ensembles NAT 1/2 and the urban ensemble ZIV 
are qualitatively the same as for ensemble NAT3 and 
are not shown here. 

3.3.1. The a r t i f i c i a l e n s e m b l e K2 

Ten iterations with 100 images of the ensemble 
K2 have been performed to obtain variance modified 
images of block sizes 3 x 3 to 19 x 19 pixels. For every 
iteration the block size resulting in the lowest kurtosis 
has been chosen. If a hierarchical invariance prevails, 
all histograms should exhibit a similar shape, which 

was clearly not observed with linearly transformed 
pixel intensities but seems to hold in case of non-
linearly transformed pixel intensities (log contrasts). 
The calculations for the artificial ensemble have been 
performed for comparative purposes. 

3.3.2. The na tu ra l e n s e m b l e N A T 3 

Again ten iterations with 100 images of the ensem-
ble NAT3 have been performed to obtain variance 
modified images of block sizes 3 x 3 to 19 x 19 pix-
els and the block size resulting in the lowest kurtosis 
has been chosen during every iteration. The resulting 
histograms for linearly transformed pixel intensities 
are shown in Fig. 8 without and in Fig. 9 with block 
substitutions. Large deviations from Gaussian statis-
tics are found in case of linearly transformed pixel 
intensities which do not support the hierarchical in-
variance hypothesis. As with the ensemble K2, the 
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logarithmic contrast histograms do indeed approach 
Gaussian statistics with increasing number of iter-
ations, hence supporting the notion of a hierarchical 
invariance. Contrary to scale invariance the result does 
depend strongly on the way the raw pixel intensities 
are transformed. 

4. Conclusions 

Natural images are far from random and occupy an 
infinitesimally small volume in the space of all pos-
sible images. The information contained in natural 
images is thus highly redundant and asks for a more 
convenient encoding scheme than simply expressing 
them on a pixel-by-pixel basis. It is the statistical 
structure of these images which determines the most 
suitable encoding algorithm according to some well 
defined optimality criterium. Since there is no way 
to collect enough data to fully characterize an image 

environment one seeks to identify possible symme-
tries and invariance properties of the underlying im-
age probability distribution. 

Recent investigations of the statistical nature of 
natural images having generally assumed a transla-
tional invariance of such images, have demonstrated 
an invariance to scale and have proposed a new hier-
archical invariance in these images [7, 6, 8]. 

We have investigated all three invariance proper-
ties in ensembles of natural and urban images and, 
further, constructed an artificial ensemble of random 
images with purely Gaussian statistics. Although one 
might not expect translational invariance to hold in 
non-random images in general - sky will always 
be in the upper part of any natural or urban image, 
for example - we could provide strong evidence in 
favour of translational invariance in the image ensem-
bles using a smoothing procedure to calculate second 
order correlation functions of pixel intensities. This 
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helped alleviate the unavoidable scatter in the correla-
tion functions due to insufficient ensemble averaging. 
The calculated two point correlation functions were 
mostly highly asymmetric, thus reflecting prominent 
contours in the underlying images. This is most obvi-
ous in comparing the ensembles NAT3 and ZIV. 

The artificial ensemble K2 proved useful to explore 
the characteristics of any deviations of histograms of 
pixel intensities and local gradients in non-random 
images from Gaussian statistics. This is important, as 
we have shown that any non-linear preprocessing of 
raw pixel intensities renders Gaussian and Rayleigh 
distributions inappropriate to compare with the corre-
sponding pixel and local gradient histograms of nat-
ural and urban images. After appropriate coordinate 
transformations, the resulting distributions of loga-
rithmically transformed pixel intensities and related 
distributions of local gradients exhibited less dramatic 
deviations from Gaussian and Rayleigh distributions, 
though the general conclusions of earlier investiga-
tions [8] remain still valid. Concerning the hierarchi-
cal invariance of natural images recently discussed 
by Ruderman [8] we persued the proposed iterative 
scheme of replacing pixel intensities by the variance 
of the intensity distribution within a pixel block of 
size N x N. This has been done in two different 
ways whereby the size of the image has been reduced 

according to the appropriate block size or not. With 
block substitution the iteration could be performed 
only two or three times, whereas without block sub-
stitution as many as ten iterations could be performed. 
Contrary to results reported by Ruderman [8] the out-
come of this iterative procedure depended strongly on 
the preprocessing of the raw pixel intensities. With 
logarithmic contrast pixel intensities, indications of a 
hierarchical invariance could indeed be found while 
with difference intensities no such invariance was ob-
served. Contrary to scale invariance, these results are 
not robust against any non-linear transformation of the 
pixel intensities and renders this invariance related 
to the hierarchical structure of natural images less 
generally valid. As the visual information processing 
system of mamals seems to rely on logarithmic con-
trast intensities, the proposed variance normalization 
invariance may still have relevance to the possibility 
to Gaussianize natural images via this iterative pro-
cedure. Exploring natural image statistics further is 
clearly essential to a fundamental understanding of 
visual information processing. 
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