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Microscopic expressions for the elastic constants of binary liquid crystalline mixtures composed 

of short rigid uniaxial molecules are derived in the thermodynamic limit at small distorsions and 
a small density. Uniaxial and biaxial nematic phases are considered. The expressions involve the 
one-particle distribution functions and the potential energy of two-body short-range interactions. The 
theory is used to calculate the phase diagram of a mixture of rigid prolate and oblate molecules. 
The concentration dependence of the order parameters and the elastic constants are obtained. The 
possibility of phase separation is not investigated. 
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1. Introduction 

The elastic constants of liquid crystals are the ma-
terial constants that appear in the description of al-
most all phenomena where the variation of the di-
rector is manipulated by external fields [1]. They 
are of technological importance because liquid crys-
tals have found wide application, e. g., in display de-
vices, laser technique, holography, termography, nu-
clear and microwave techniques. On the other hand, 
the elastic constants give information on the micro-
scopic anisotropic intermolecular forces. They are 
also needed in the study of defects in liquid crys-
tals [2]. 

There are microscopic theories [3 - 8] that give 
working expressions for the elastic constants of one-
component uniaxial nematic liquid crystals. But in 
technical applications very often some special proper-
ties are required, and chemically pure substances with 
the desired ones are hard to find. That is why mix-
tures are widely used. It is clear that theories which 
allow to understand the physical properties of mix-
tures are helpful in designing mixtures with the pre-
scribed technical parameters. Miscibility studies are 
also important from a more fundamental point of view 
- to identify new phases. The rule that is used is the 
following: if two phases are continuously miscible 
without crossing any (first- or second-order) transi-
tion line, they have the same symmetry. This method 
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can often be carried out under the microscope (in a 
concentration gradient) and is faster than taking an 
X-ray picture [1]. 

In this paper we present a statistical theory of 
the elastic constants of binary liquid crystalline mix-
tures. Uniaxial and biaxial nematic phases will be 
considered. Since a theoretical description of biax-
ial phases (and mixtures) is rather complex [9,10] 
we developed our theory with some approximations: 
rigid molecules, small density and the thermodynamic 
limit. Our aim is to express the elastic constants by 
means of the one-particle distribution functions and 
the potential energy of molecular interactions. The 
thermodynamic limit suggests that we neglect sur-
face effects. Nevertheless we will obtain some known 
relations for the surface elastic constants and we will 
interprete those relations as consistency conditions. 

The phase behaviour of liquid crystal mixtures has 
been studied using a number of theoretical methods. 
A large variety of phase diagrams was presented in the 
paper by Sivardiere [11] where the Ising-like model 
was introduced. Brochard et al. [12] considered the 
less artificial Maier-Saupe model and gave a catalogue 
of allowed diagrams for mixtures of nematogens. 
In 1973 Alben [13] considered a mean-field lattice 
model with discrete orientations to describe steric in-
teractions in mixtures of rods and discs. He predicted 
the existence of a biaxial phase in the composition 
range between two uniaxial phases. Similar results 
have been obtained for van der Waals lattice mod-
els in mean-field [14] and renormalization group [15] 
theories. The question of thermodynamical stability 
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against phase separation was addressed by Palffy-
Muhoray et al. [16] within a mean-field theory. The 
geometric mean assumption about the pseudopoten-
tial leads to instability of a biaxial phase, whereas 
a deviation from this assumption leads to a stable 
biaxial phase [17]. A mean-field theory was also 
used to describe binary mixtures of biaxial molecules 
[18,19]. Mixtures of rods and spheres were studied 
by Agren [20], Humphries and Luckhurst [21], and 
Martire et al. [22]. The result is that the introduc-
tion of spheres induces, via a small two-phase re-
gion, a transition to an isotropic phase. Mixtures of 
rods of different length-to-width ratios were analysed 
by Peterson et al. [23], Warner and Flory [24], and 
Lekkerkerker et al. [25]. Recently, different demixing 
mechanisms in hard rod [26] and rod-plate mixtures 
[27] were analysed by van Roij and Mulder. 

As far as the elastic constants are concerned, to 
our knowlwdge there are no experimental data on 
biaxial phases. In 1989 Kini and Chandrasekhar [28] 
studied the effects of external magnetic and electric 
fields applied in different geometries. They showed 
that it is feasible to determine some of the twelve 
elastic constants. Our theory could help to predict the 
temperature and concentration dependence of them in 
the case of binary mixtures. 

Our paper is organized as follows: In Sect. 2 we 
present a phenomenological continuum theory of ne-
matic liquid crystals. In Sect. 3 we describe a sta-
tistical theory of nematic phases and derive general 
expressions for the elastic constants in the case of 
uniaxial and biaxial nematic phases. Exemplary cal-
culations of the values of the elastic constants are 
presented in Sect. 4, where the Corner potential en-
ergy is applied and a mixture of rods and discs is 
analysed. In Sect. 5 we summarize the results of this 
work. 

2. Phenomenological Approach 

2.1. Description of a Phase 

In this section we describe nematic liquid crys-
tals from a phenomenological point of view [29], 
We assume that at every point r inside a consid-
ered phase we can define three orthonormal ver-
sors (L(r), M(r), N(r)) which reflect properties of this 
phase. In case of a biaxial phase they determine di-
rections of its two-fold axes of symmetry. The vec-
tors (L ,M, AO create the local frame which can be 

expressed by means of a space-fixed reference frame 
(^D CyiVz) as 

L = Rlaea, M = R2aea, N = R3aea, (1) 

where the matrix elements Ria (i = 1 ,2 ,3 and a = 
x, y, z) satisfy the conditions 

RiaRja — i 

RicxRiß = öa(3- (3) 

Relations (2) and (3) express the orthogonality and the 
completeness of the local frame. Note that repeated 
indices imply summation. The homogeneous phase is 
described by Ria = öia. 

2.2. Distorsion Free Energy 

Let us call F d the free energy due to the distorsion 
of the local frame (L, M, AO. A general expression of 
its density fd(r) was derived in [29] in the case of 
small distorsions. It has the form 

/d(r) = ktjDij + -KijkiDijDki + -LljkSljk, (4) 

where ki j , K l J ki , L l jk are elastic constants, 

= ^jkiRiaRkßdaRiß, ^ 

Sijk = Sjik = da(RiQDjk + RjaDlk), (6) 

and €tjk is an element of the antisymmetric tensor (we 
set up the convention 6123 = +1). The elastic constants 
satisfy the symmetry relations 

Kijkl = -ftkliji Lijk — Ljik- (7) 

In general, the linear first order terms with kl3 give 
6 bulk and 3 surface terms; the quadratic first order 
terms with K l jk i give 39 bulk and 6 surface terms; 
the terms with Lljk give 18 surface terms. The to-
tal number of bulk and surface terms is 45 and 27, 
respectively. 

When a considered phase has a D2h symmetry 
group, the distorsion free-energy density has the form 
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/ d = ^ i i i i ( ^ n ) 2 + \ K M I ( D N F + L~KL3L3(DL3)2 

+ ^ 2 1 2 l ( £ > 2 l ) 2 + \K2222(D22)2 + \ K2323(D23)2 

+ ^A'3I3L(^3L)2 + ^A'3232(^32)2 + \ K3333(D33)2 

+ A' i \22DWD22 + Ä ' i 1 3 3 Ö 1 1 D 3 3 + K2233D22D33 

+ A'1221^12^21 + K\33\D\3D3\ + K2332 D23 D32 

+ L\2iSn3 + L23iS23\ + L3\2S3\2- (8) 

The terms with K t j ki give 12 bulk and 3 surface terms, 
whereas the terms with L ^ give 3 surface terms. The 
total numbers of bulk and surface terms are 12 and 6, 
respectively. 

When a considered phase possesses a D0QH sym-
metry group, the number of elastic constants is 
smaller. Let the 2 axis be oriented along the axis 
of symmetry. Then the distorsion free-energy density 
has the form 

/d = • AO2 + \K2[N • (V x AO]2 

(9) 
+ X-K3[N x ( V x AO]2 

+ X- A ' 4 V • [(N • V)N - N(V • AO] 

+ X-K5V • [{N- V)N + N(V • AO]. 

Therefore, in case of an uniaxial phase we have 3 bulk 
(K1, K2 and K3) and 2 surface terms (K4 and K$). 
One can calculate the distorsion free energy from its 
density (8) or (9) by 

FD = / dr / d . (10) 

theory of biaxial nematics were given. They were di-
vided into five groups and connected with relevant 
elastic constants: 3 twists (for K a n ) , 6 splays and 
b e n d s ( f o r KIJIJ), 3 m o d i f i e d t w i s t s ( f o r LLJK) a n d t w o 
groups of 3 double twists (for KLLJ3 and for AT^;). In 
the formulas for deformations a parameter e was used 
(1/6 is a certain length). Small e meant a small defor-
mation and a conformation close to the homogeneous 
one (L ( 0 ) ,M< 0 ) ,N< 0 )). The vectors of the local frame 
were expanded into a power series with respect to e 

L = L(0) + e L(l) + e2L<2) + ..., 

M = M<0) + e M ( 1 )
 + e2M<2) + . . . , 

N =Ni0) + e r f l ) + e2N{2)
 + . . . . 

(11) 

Note that we can not reject surface terms in (8) or (9) 
although we assume the thermodynamic limit. This 
will be explained in Sect. 5. 

2.3. Basic Deformations 

Splay, twist, and bend are known as the three ba-
sic types of deformations in the continuum theory of 
uniaxial nematics. They describe spatial variations of 
the director N(R) and extract from the distorsion free 
energy terms with K\, K2 and K3, respectively. In 
[10] 18 basic deformations proper for the continuum 

It appeared that the most important terms in (11) were 
those linear in e. They were sufficient to calculate the 
distorsion free enery up to the second order in e and 
to calculate the elastic constants of biaxial nematic 
liquid crystals. For the sake of completeness we list 
the terms linear in e from (11) for all groups of defor-
mations. The first group is, for K m i , 

L ( 1 ) = (0 ,0 ,0) , tf0 = (0,0, x), rf1) = (0, - z , 0), (12) 

for Ä'2222' 

L (1 ) = (0,0, - y ) , tfX) = (0 ,0 ,0 ) , rf{) = (;y,0,0), (13) 

a n d f o r AT3333, 

L ( 1 ) = ( 0 , 0 ) , ^ 1 ^ ( - 2 , 0 , 0 ) , ^ ° = ( 0 , 0 , 0 ) . ( 1 4 ) 

The second group is, for A'1212, 

L ( 1 ) = ( 0 , 0 , - x ) , t f { ) = ( 0 , 0 , O X A ^ = Or, 0 , 0 ) , ( 1 5 ) 

for A'i3i3, 

L ( 1 ) = (0 , - x , 0 ) , t f l ) = (x, 0 , 0 ) , r f l ) = ( 0 , 0 , 0 ) , ( 1 6 ) 

for #2121, 

L ( 1 ) = ( 0 , 0 , 0 ) , TFL) = ( 0 , 0 , - y ) , rfl) = (0 , y, 0 ) , ( 1 7 ) 

for A'2323, 

L (1 ) = (0, y,,0), tfX) = ( - y , 0 , 0 ) , rfX) = (0 ,0 ,0 ) , (18) 
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for Ä3131, 

L ( 1 ) = ( 0 , 0 , 0 ) , M < 1 ) = ( 0 , 0 , z), (0 , 0) , (19 ) 

and for A'3232, 

L ( 1 ) = ( 0 , 0 , z), AF<1) = ( 0 , 0 , 0 ) , = ( - z , 0 , 0 ) . ( 2 0 ) 

The third group is, for L123, 

L ( 1 ) = (0, x, 0), A ^ 0 = (-x, 0 ,0 ) , Ml) = (0 ,0 ,0) , (21) 

for L 2 31, 

L ( 1 ) = (0 ,0 ,0 ) , A/*0 = (0 ,0 , y), N™ = (0, - y , 0), (22) 

and for L312, 

L ( 1 ) = ( 0 , 0 , - 2 ) , = ( 0 , 0 , 0 ) , N 0 ^ ( 2 , 0 , 0 ) . (23) 

The fourth group is, for K\\22, 

L ( 1 ) = ( 0 , 0 , - 2 / ) , ^ ° = ( 0 , 0 , x\rfV = (Y, -X, 0), (24) 

for A'n33, 

L ( 1 ) = ( 0 , 2 , 0 ) , M 0 * = ( - 2 , 0 , X), A ^ = (0, - X , 0), (25) 

and for #2233, 

L ( 1 ) = (0, 2,-</), Al1» = ( - 2 , 0 , 0 ) , ^ = (</, 0 ,0) . (26) 

The fifth group is, for K\22\ , 

L(l) = ( 0 , 0 , - x ) M L ) = (0 ,0 , y),rf1l) = ( X , - y , 0 ) , (27) 

for #1331, 

L ( 1 ) = (0, X, 0)Ml) = (-X, 0, 2), = (0, - 2 , 0 ) , (28) 

and for Ä'2332, 

L (1 ) = (0, y,-2),Afl)= (-y, 0 ,0 ) , /V<0 = (2 ,0 ,0 ) . (29) 

3. Microscopic Approach 

3.7. Description of a System 

This section is devoted to the microscopic analy-
sis of binary mixtures of uniaxial nematogens which 
create a homogeneous phase. Let us consider a mix-
ture which consists of two types of rigid uniaxial 
molecules A and B. Orientations are described by 

two angles <j> and 6 or by a unit vector 1?. We assume 
a small density approximation, and we take only two-
body short-range interactions into account. The po-
tential energies depend on a vector of the distance 
between molecules and orientations of molecules. 

The microscopic free energy of the binary mixture 
has the form [30] 

ßF d ( l ) G / ( l ) { l n [ G / ( l M 5
; ] - l } 

I=A,B J 

Y . | d ( l ) d ( 2 ) G / ( l ) G J ( 2 ) / 1
/
2 - 7 , 

(30) 

I,J=A,B 

where G / ( l ) = G/(ri , i?i) ( I = A, B) are the one-
particle distribution functions with the normalizations 

d ( l ) G / ( l ) = A7/, (31) 

d ( l ) = d r i d ß i = d r id0 id$ i sin , N i denotes the 
number of molecules I in the volume V (Na + 
Nb = N), f(2 are the Mayer functions f(2 = 
exp(- /?#{ 2

J) - 1, ß = \/kBT, and 

j f h 2 ß y / 2 (h2ß 
\2nmi J 

A's = 
2-kJJ 

(32) 

The subscript 5 in AJ
5 denotes 5 degrees of free-

dom of an infinitely thin molecule, although we use 
this description also for spatially extended uniaxial 
molecules. T denotes the temperature, mi is the mass 
of a molecule I , and J / is a parameter with a di-
mension of a moment of inertia (for a very prolate 
molecule it is exactly the moment of inertia with re-
spect to the axis perpendicular to the molecule). Our 
set of state variables consists of T , V, NA and NB. 
The free energy (30) consists of the ideal terms (with 
A[) and the excess terms directly related to inter-
molecular forces. The ideal terms are those of the 
ideal gas. 

The expression (30) was derived systematically for 
binary mixtures from the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy equations in the thermody-
namic limit (N 00, V 00, N/V = const) [30]. 
Two-particle distribution functions were expressed in 
terms of one-particle distribution functions and the 
two-particle correlation functions of the simple form 
e\p(—ß^{2 )• This assumption guarantees the proper 
limit of the unary system. 
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The equilibrium distributions G / minimizing the 
free energy (30) satisfy 

ln[G/(l)A5
7] " £ / d (2)G J (2) / 1

/ / 
7 A D J J=A,B 

= const. 

(33) 

In the homogeneous phase the distribution function 
G i does not depend on the position of a molecule and 
G / ( l ) = Go/(J?i). In order to obtain Go/ one should 
solve (33) together with (31). 

3.2. Distorsion Free Energy 

In order to define the microscopic distorsion free 
energy Fd one should first identify a homogeneous 
free energy Fo. We would like to divide the total free 
energy F into a homogeneous free energy Fo and the 
distorsion free energy F d . We postulate that 

ßF0 = (34) 

£ / d ( l ) G / ( l ) { l n [ G / ( l ) A 7 ] - l } 
I=A,B J 

~ \ £ / d(l)d(2)G7(r!, fi,)Gj{ru n 2 ) f t f 
I,J=A,B 

~ Z £ / d(l)d(2)G7(r2 , ß 2 ) / 1
7 / . 

The definition (34) is equivalent to that by Poniewier-
ski and Stecki [6]. This is a well-founded assump-
tion if we also assume slow variations of the vectors 
(L, A/, N). We will also restrict the one-particle distri-
bution functions G j to the class of Go/ functions. This 
method was succesfully used in the past [5, 31, 32]. 

Thus, the distorsion free energy can be written as 

Fd = F — Fo, (35) 

were F and Fo are given by (30) and (34), respectively. 
As we expect, for the homogeneous phase Fd becomes 
zero. 

In the subsequent sections we will construct the 
distribution functions for distorted phases and we will 
derive the microscopic formulas for the elastic con-
stants. Biaxial and uniaxial nematic phases will be 
considered separately. 

3.3 Elastic Constants of Biaxial Phases 

It was shown in [10, 33] that in the case of a homo-
geneous biaxial nematic phase composed of uniaxial 
molecules the one-particle distribution functions G / 
depend on two arguments: 

G t o ( ß ) = G 0 / ( ß - e x , ß - e x ) , (36) 

where it is assumed that the vectors ea of the reference 
frame coincide with the phase symmetry axes. In the 
distorted phase we postulate that 

G/( r , rt) = G 0 / ( Q i , Q 2 ) , 

where the relevant arguments are 

Q,(r , ß ) = ß - L ( r ) , 

Q2(r, Ü) = f2 N(r). 

(37) 

(38) 

The local orientation of the phase is described by 
the vectors (L, A/, N). We can use the distorsion free-
energy density (8) and apply basic deformations de-
scribed in Section 2. We will follow a procedure sim-
ilar to one described in [10]. Let us expand the argu-
ments (38) in a power series with respect to e, 

Q, = Q? ) + <Q<?> + c2Q?> + - - - , (39) 

where by means of the expansions (11) we build 

Q\p\r, f l ) = f i • L<p)(r), 

Q(
2
p\r, n) = t2-Nip\r). 

The expansion of G/ has the form 

G/( r , ß ) = G 0 / ( Q (
1

0 ) , g f ) 

+ e £ a i G 0 / ( < 2 f , Q f ) < ^ 1 ) 

+ / £ 9 i G 0 / ( g (
1

0 ) , Q f ) Q S 2 ) (41) 

(40) 

i=l,2 

+ Y £ dJjGodQ'^QfW'W;' 
i,j= 1,2 

+ 0(e3). 

When we substitute the expansion (41) into the dis-
torsion free energy (35) we get 
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ßFd=l- fd(\)d(2)e2 ]T f(2
J 3iGo/(ßi)3iGoj(ß2)[-2Q(

i
1)(ri,ßi)Q5l)(r2,ß2) 

J I,J=A,B i,j= 1,2 (42) 

+ f}2) + Q?\r2, ßOQ^fo, n2)] + 0(e3). 

We substitute the basic deformations into the microscopic distorsion free energy (42) and to the phenomeno-
logical distorsion free energy (8). By comparison we get the microscopic formulas for the elastic constants. 
The first group is 

^ i i i i = \ [ d ß i d f l 2 d « i t t i £ f n W l y W ^ (43) 

ßK2222 = ~ [ d ß i d ß z d H t i i X ! - - (44) 

ßKm3=l- f d^dfyduu] X f l i K K - (45) 
^ I,J=A,B 

The second group is 

ßKm2 = \ f düxdü2duu2
x £ /iW* - W(X)(U2

J
Z - W2

J
X\ (46) 

J I ,J=A,B 

ßKm3 = i f dÜYdÜ2duu2
x X f n K U L (4?) 

^ I,J=A,B 

ßK2m = i f düxdü2d uu2
y X ftiWlyWly, (48) 

^ I,J=A,B 

ßK2m = \ j df2xdn2duu2
y X f n K K ' (49) 

ßl< 3131 = \ f df2{df22duu2
z X fnwlyw2y^ (50) 

ßK3232 = i f df2{df22d uu2
z X fniUL ~ W{X)(U2

J
2 - W2

J
X). (51) 

^ I,J=A,B 

The third group is 

^123 = -̂ 231 = -̂ 312 = 0. (52) 

The fourth group is 

/?#ii22 = \ f düxdü2duuxuy X f n [(UL - W;x)W2
J
y + W;y(U2

J
z - W&)], (53) 

ßK2233 = i f dnxdf}2duuyuz X f n [ - UtyiUi - - (U(z - W>x)U2
J
y], (54) 

I,J=A,B 

ßh'n33 =l-J d ß , d ß 2 d UUXUZ X f n I - KW2y - Wlyu2y] • (55) 
I,J=A,B 
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The fifth group is, 

K\22\ = #1122, A'i33i = #1133, i^2332 = #2233- (56) 

969 

it allows detailed calculations without any additional 
approximations. On the other hand, it is quite realistic. 

To make the formulas for the elastic constants more 
compact we write 

(57) 
UL = DIG0I(Q\°\ QF^ÜA, 

WI
A=D2GQI(QF,QF){LA. 

3.4. Elastic Constants of Uniaxial Phases 

In a homogeneous uniaxial phase we have one 
global symmetry axis which can be oriented along 
ez. The one-particle distribution functions depend on 
a one argument, thus 

3 1 G 0 / ( ß - « x , ß - O = 0, U i = 0. (58) 

The microscopic expressions for the elastic constants 
that result from (43) - (56) are 

ßKl=
l- fdüxdü2duu2

x £ f(2
JW;xW2U59) 

I,J=A,B 

ßK2 = l- f dnxdn2duu2
y £ fl2

Jw;xw2
J
x,m 

ßK3 = ^Jdf2ldn2duu2
z J2 /iWaW£,(61) 

I,J=A,B 

K4 = -(Kl+K2), 

K5 = 0. 

(62) 

(63) 

4.1. Homogeneous Phases 

In order to simplify calculations for the biaxial 
phase we assume that the one-particle distribution 
functions Go/ depend only on the angle between the 
long axis of a molecule, determined by a unit vector 
f i , and some symmetry axis, determined by a unit 
vector c / , 

G0i(f2) = GoiW • c/). (64) 

For the uniaxial phase we will assume that = 
whereas for the biaxial phase CA-^B = 0. It is conve-
nient to define dimensionless functions / / 

GI0(F2 • e j ) = / / ( ß • c / ) 7 V / / 4 J T V , ( 6 5 ) 

where the normalization condition is 

j d ß / / ( ß • c / ) / 4 t t = j f d x f j ( x ) = 1. (66) 

The order parameters are defined as 

(Pj)I= f dxPjWfdx). (67) 
Jo 

The functions / / can be expanded in an infinite series 
with respect to the Legendre polynomials 

fi(x)= £ (2j + \){Pj)iPj(x). (68) 

j—even 

Note that the results (62) - (63) are consistent with the 
wide discussion on surface elasticity by Yokoyama 
[34]. These expressions results from (52) and (56) 
when we change the symmetry of the phase from 
biaxial to uniaxial. 

4. Exemplary Calculations 

The aim of this section is to express the elastic 
constants by means of the order parameters which can 
be measured in experiments. We will apply the Corner 
potential energy of interactions because in principle 

It is useful to describe the nematic ordering of 
molecules I in a mixture by a symmetric traceless 
second-rank tensor S 7 with elements [35] 

SLß = {^attß — aß)l 

= — j d O f d Ü - e j ) 

We can show that 

(69) 

sLß = (p2)i (ea • <?/)(*/3 • eri - - ( e a • eß) (70) 
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The tensor S1 is diagonal only if ei is equal to ex, ey 

or ez. Finally, we define an average tensor S as 
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(75) 

S = XaSa + XbSB, (71) 

where we used concentrations xi = N j / N . We note 
that because of our approximation (64), the tensors S1 

are uniaxial (2 different eigenvalues). But the average 
tensor S is in general biaxial (3 different eigenvalues) 
\ f e A - e B = 0 . 

Let us consider the Corner potential energy of the 
form #12 (u/aIJ), where u is the distance between 
molecules I and J,u = uA, oIJ depends on vectors 
f? i , fi2 and A. For aIJ one can write the general 
expansion proposed by Blum and Torruela [36]. It 
involvs the 3-j Wigner symbols and the standard rota-
tion matrix elements. The same expression was used 
to describe interactions of biaxial molecules in [33]. 
In the case of uniaxial molecules, the lowest order 
terms of the expansion give 

a I J ( f } u A) = (70
/J + a[i(A • f2,)2 (72) 

+ a^(A-f22)2+ aiJ(f2rf22)2. 

There are a number of posibilities for the functional 
dependence of on w/cr / J , and some of them were 
given in [10]. We do not have to specify it now, be-
cause this dependence will be hidden in a function 
BS{T*) defined as 

BS(T*) d£ xs f\2(x) - f Jo 
f oo 

= d x x s [ e x p ( - ^ 1 2 ( x ) ) - l ] , 
Jo 

(73) 

ßF = (74) 

E [ d x N j f j W ^ n V ^ N j A l / l n V ] - 1} 
I=A,BJO 

4 E N ' X ' J E K t f i P j M P J j P f a . e j ) , 

l n [ / / ( ß i • « / ) ] - E X U E K 

J=A,B 

•IJ 
j j 

j—even 

PJ(Ü[-eriiPjjjPjier-ej) = const, 

where 

where T* = 1 /ße is a dimensionless temperature and 
e is a depth of the potential energy (we assume for sim-
plicity that it is the same for both types of molecules). 

Thanks to the form of the Corner potential energy 
one can rewrite (30) and (33) in the form 

\ I J = (<7qJ)3 B2(T*)2ir2 N j /4nV, (76) 

A ' / J ( c o s # i , c o s 02) = d(f)\d A(crIJ/crbJji. (77) 

As a consequence of the definition (77) we can ex-
press the kernel KIJ as a sum with even Legendre 
polynomials 

KIJ(x,y)= E KtfPjWPkiy), (78) 
j,k—even 

K j i = ( 2 j + l ) ( 2 f c + l ) 

• dx dyK 
Jo Jo 

IJ (x,y)Pj(x)Pk(y). 
(79) 

Note that for <JIJ given by (72) the kernel is diagonal. 
Equations (75) imply that / / should be written as 

l n [ / / 0 r ) ] = E (80) 
j—even 

It allows as to transform (75) into a set of equations 

Cj = E ^JI<jj(Pj)jPj(ei-ej\ (81) 
J=A,B 

where j = 2 , 4 , 6 and I = A, B. The normalization 
condition (66) must be also enclosed. In the case of the 
uniaxial (biaxial) phase we have C/ • e j = \ (ei • e j = 
61 j ) . The stable solution of (81) which has the lowest 
free energy will describe a homogeneous phase. 

4.2. Elastic Constants for Uniaxial Phases 

We insert the expansion (68) into (59) - (61). It 
appears that only a finite number of terms gives a 
nonzero contribution. Thus we get the explicit depen-
dence the elastic constants on the order parameters: 

K * = E E v f J F l i k ( P M P k ) j , (82) 
I,J=A,B j,A:—even 

I,J=A,B j—even r ] I J = e r B ^ X o ^ f N j N j / i 4tt1/)z , (83) J J \ 5 
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, J 2 J even 

+ 1 X 2 * + 1), # 3 1 3 1 = X *lBBF?fk(P3)B(Pk)B, 
j,k —even 

where s = 1 ,2 ,3 . We calculated the coefficients F j j k 

analytically. In order to present their structure we list A'3232 = X 71AA F\Afk 
them as an array, where vanishing coefficients are zero j^-even 

-VABGf*k(P3)A(Pk)B 

-VBAG^k(P3)B(Pk)A 

+ VBBF?fk(P3)B{Pk)B 

971 

(92) 

(93) 

F I J 
s,2,2 

FIJ 
8,2,4 0 0 0 

pIJ 
s,4,2 

FIJ s, 4,4 FIJ 
r 3,4,6 0 0 

0 FIJ s,6,4 pIJ 
3,6,6 8,6,8 0 

0 0 FIJ 
s, 8,6 FIJ 

S, 8,8 FIJ 8,8,10 
0 0 0 FIJ s,10,8 pIJ 

(94) 

(85) 

#1122 = \ E [ ^ ^ ( ^ M ^ ) * (95) 
j,k—even 

4.3. Elastic Constants for Biaxial Phases + V
BAHBfk(Pj)B[Pk)A + v

BB 

• (F2
Bfk-Fl

B
J
B

t)(p;,B{pk}B Let us insert the expansion (68) into (43) - (56). 
Similarly to the uniaxial case, it appears that a finite ^ 
number of terms gives a nonzero contribution. The A'II33 = - X \-r]ABHjfiB

k(PJ)A(Pk)B 

dependence of the elastic constants on the order pa- j,k-e\ea 
rameters has the form 

(96) 

#1111= £ V B B F 2
B B k(P j )B(Pk ) B , 

j,k—even 

#2222 = £ [ v A A F 2
A

J i ( P j ) A ( P k ) A 
j,k—even 

-VABGl°k(P3)A(Pk)B 

- V B A G 2 A
k { P j ) B ( P k ) A 

+ V B B F 2
B B K ( P J ) B ( P K ) B 

#3333 = X V A A F 2
A

J
A

K ( P J ) A ( P K ) A , 
j,k—even 

#1212= X {riA AF,A A
k(P3)A(Pk)A 

j,k—even 

~VABGAfk(PJ)A(Pk)B 

— yBAGfjk(Pj)B(Pk)A 

+ VBBFl
Bfk(PJ)B(Pk)B], 

# 1 3 1 3 = X T]AAFAjk {Pj) A {Pk) Ai j,k —even 

# 2 1 2 1 = X B FBJK (PJ ) B {PK ) B ? 
j,k—even 

(86) 

(87) 

(88) 

(89) 

(90) 

(91 ) 

-VBAH2
Bfk(PJ)B(Pk)A 

#2233 = ^ X [ V A A ( F 2
A A

K - F * A
K ) ( P J ) A ( P K ) A 

j,lc—even 

+ V
ABH^k(Pj)A(Pk)B (97) 

+ V
BAHB/k(Pj)B(Pk)A], 

where 

G ^ = l - j df2idf22dA(As)2f2\zf22x(crIJ/ctq"7)5 

• P ; ( ß i x ) P £ ( r ? 2 * ) ( 2 j + l)(2fc + 1), (98) 

H{fjk = \ j df2xd^2dAAyAzQXyQ2x(oIJ/o1^)5 

• P'3(f2\x)P'k(n2z)(2j + 1)(2 k + 1), (99) 

H[?Jk =l-J dn{dn2dAAxAzn{yn2y(.oIJ/a!,3)5 

• P;(Qlx)Pi(Q2z)(2j + 1)(2k + 1), (100) 

H j f j k = \ J dCI\df22dAAxAyQ\zf}2y(crIJ/crI
0

J)5 

• P'3(QXx)P'k(Q2z)(2j + 1)(2k + 1). (101) 
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T h e s t ruc tu re of the c o e f f i c i e n t s G[J
JK a n d is 

similar to FJJ
JK*. The coefficients depend only on the 

parameters a - J . 
One can notice that some of the biaxial elastic con-

stants depend on the properties only one of the two 
types of molecules. This is the result of the assump-
tion (64) and in general is not true. 

4.4. Mixture of Rods and Discs 

It is known that phase diagrams of mixtures can be 
very complex. The aim of this section is to test predic-
tions of the theory for a model mixture. We considere 
a mixture of prolate and oblate molecules because it is 
expected to reveal a biaxial phase. Later we will refer 
to prolate and oblate molecules as rods and discs, re-
spectively. We apply the square-well potential energy 
defined as 

+oo for u/o < 1 

#12 (u /o ) = - € for 1 < u/u < #sw (102) 

0 for u/cr > i?sw, 

BS(T*) = - L { [exp - 1 - 1) - l } . 

(103) 

We have chosen i?Sw = 2an6V/N = (10/moi)3, where 
/moi denotes some molecular length. Note that /moi 
determines the length scale, whereas e determines the 
energy scale. The elastic constants will be expressed 
in e/lmo\. For simplicity reasons we assume that only 
one (isotropic, uniaxial nematic, or biaxial nematic) 
phase is present. It corresponds to the solution with 
the minimum free energy. The possibility of phase 
separation will not be investigated. The molecular 
parameters a - J can be connected with the geometry of 
molecules by means of the excluded volume method 
described in [33]. In order to get rods and discs we 
have chosen the following set of these parameters: 

RAA 
'0 = 4/mol, a0B = 10/mol, <7QJ = +cr0J)> 

JJ 1 JI .JJ • 

—AA _ „AA 
11 = ^12 

- „II all » 
JJ 

= 31 mol 5 
„BB _ RB _ A, <JU - c r 1 2 - —4<mo], 

IJ - „JJ a i2 =o ii ' 

C7;[J = 0 . (104) 

"The electronic version of all coefficients FIJ, , GIJ , , HIJ, 
and is available from the authors on request. 

Rod 

r Disc 

6̂ 8 - 6 

Fig. 1. Cross-sections of the zero equipotential surface of 
the potential energy for rods and discs (units are equal to 
/moi)- The dashed line denotes the axis of rotary symmetry. 

0 0.4 0.45 0.55 0.6 0.75 

Fig. 2. Temperature dependence of the order parameters 
(PI)A (Rods) and (PI)B (Discs) for the unary systems. T 
denotes the dimensionless temperature. 

The volume of a molecule / one can estimate as 

ym
7
0l = j d A [ o n ( e z , e z , A ) ] 3 / 2 4 (105) 

= K n ( \ , l ) (<7o 7) 37r/48 = E # / / K 7 / ) 3 7 r / 4 8 . 

The volumes of the molecules are « 145/^0, 
and V^ , ss 267/^ol. The cross-sections of the zero 
equipotential surface of the potential energy are 
shown in Figure 1. 

The transition temperatures of unary systems from 
the isotropic to the uniaxial nematic phase are 
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2 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

s. Discs 

J Rods 

0 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 -0.5 o 0.1 0.2 0.3 0.4 0.5 „ 0.6 0.7 0.8 0.9 

Fig. 3. Temperature dependence of the elastic constants for Fig. 5. (3/2)SX X (Rods), (3/2)SX X (Discs) and (3/2)SXX 
the unary systems. T denotes the dimensionless tempera- (Average) vs composition for the mixture of rods and discs 
ture. at the temperature T* = 0.45 (X = xA denotes a portion of 

rods in the mixture). 
0.75 

0.7 

0.65 

0.6 
T 

0.55 

0.5 

0.45 

Isotropic 

Disclike 

Rodlike 

Biaxial 

0 4 o 0.1 0.2 0.3 0.4 0.5 . 0.6 0.7 0.8 0.9 1 

Fig. 4. Phase diagram of the mixture of rods and discs. 
Four phases are present: isotropic, rodlike uniaxial nematic, 
disclike uniaxial nematic and biaxial nematic. T denotes the 
dimensionless temperature and x = x\ is the concentration 
of rods in the mixture. 

T*A = 0.555 and T*B = 0.734. The temperature de-
pendence of the order parameters (P2) / and the elas-
tic constants for unary systems are shown in Figs. 2 
and 3. 

On changing the composition of the mixture we 
were looking for possible uniaxial and biaxial ne-
matic solutions of (81). We checked the stability of 
all solutions against perturbations of nematic sym-
metry. The phase diagram of the mixture is shown in 
Figure 4. 

We performed a detailed analysis of the mixture 
at the temperature T* = 0.45. We have found the 

-0.5 o 0.1 0.2 0.3 0.4 0.5 „ 0.6 0.7 0.8 0.9 1 

Fig. 6. (3/2)S* (Rods), ( 3 / 2 ( D i s c s ) and (3/2)SYY 
(Average) vs. composition for the mixture of rods and discs 
at the temperature T* = 0.45 (X = XA denotes a portion of 
rods in the mixture). 

following solutions present for all XA-
1. The unstable isotropic solution with (P2)I = 0 

(not physical). 
2. The stable rodlike uniaxial nematic solution with 

(P2)A > 0 and (P2)B < 0 (physical for 0.679 < 
< 1.0). 

3. The stable disclike uniaxial nematic solution 
with (P2)A < 0 and (P2)B > 0. (physical for 0.0 < 
xA < 0.557). 

4. The stable (positive) biaxial nematic solution 
with (P 2 ) / > 0. (physical for 0.557 < xA < 0.679). 
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-0.5 0 0.1 0.2 0.3 0.4 0.5 „ 0.6 0.7 0.8 0.9 1 

Fig. 7. ( 3 / 2 ( R o d s ) , (3 /2 )5„ (Discs) and (3/2)5,2 
(Average) vs. composition for the mixture of rods and discs 
at the temperature T* = 0.45 (x = xA denotes a portion of 
rods in the mixture). 

1.5 

0.5 

o-

-0 5 0 0.1 0.2 0.3 0.4 0.5 x 0.6 0.7 0.8 0.9 1 

Fig. 8. Elastic constants calculated for the physical solution 
vs composition for the mixture of rods and discs at the 
temperature T* = 0.45 (x = XA denotes a portion of rods 
in the mixture). 

5. The stable (negative) biaxial nematic solution 
with {Pi ) i < 0 (not physical). 

In order to get the physical solution we combine 
solutions with the lowest free energy (see the phase 
diagram). In Figs. 5 - 7 we present the diagonal el-
ements of the tensor order parameters S 7 and S. In 
Fig. 8 the elastic constants calculated for the phys-
ical solution are shown. In order to understand the 
connections between the uniaxial and biaxial elastic 
constants we also plotted in Fig. 9 the elastic constants 
calculated for the positive biaxial solution. 

In Fig. 9 one can notice that the introduction of 
rods to the unary uniaxial nematic system of discs 
with XA - 0 (or the introduction of discs to the unary 
uniaxial nematic system of rods with XA - 1) breakes 
the uniaxial symmetry. This leads to splittings of the 
uniaxial elasic constants and a creation of new elastic 
constants. A similar effect was obtained for unary sys-
tem of biaxial molecules in [10]. A decrease of tem-
perature induced the breaking of uniaxial symmetry 
and it caused splittings of uniaxial elastic constants 
and a creation of new constants. In the case of our mix-
ture the physical picture of Fig. 8 exhibits only a small 
biaxial "window", and splitting points are covered by 
the elastic constants of the uniaxial phases. One can 
observe only final results of changes. But generally 
one can not exclude that such splittings will appear 
for certain mixtures. We add that the concentration 
dependence of the elastic constants for T* = 0.52 
can be found in [37], where also a mixture of rods of 
different lengths was concerned. 

5. Conclusions 

In this paper we derived the microscopic formulas 
for the elastic constants of binary mixtures of uniax-
ial nematic liquid crystals. In order to calculate the 
values of the elastic constants one needs the potential 
energy of molecular interactions and the one-particle 
distribution functions. The theory was developed for 
rigid molecules interacting via two-body short-range 
forces. We showed that the Corner potential energy 
is very useful for calculations. The elastic constants 
were expressed as a finite series in terms of the or-
der parameters. The role of the temperature is more 
transparent: it determines the order parameters via the 
function B2(T*), (76), and it has a direct influence on 
the elastic constants via the function B4(T*), (83). 
The Corner potential energy allow us to predict the 
result of a generalization of the molecular interac-
tions. Let us assume that a I J is given by a more 
complex expression than (72), e. g., with higher pow-
ers of (J?i • f i 2 ) 2 . Then the kernel (77) will be again 
expressed as a sum (78) but higher number of coef-
ficients A ' 7 / will be nonzero. This will lead to more 
complex one-particle distribution functions / / . They 
will be described by a higher number of the coeffi-
cients C j in (80). Finally, we will get longer series 
for the elastic constants. 

Our theory was applied to a mixture of prolate and 
oblate uniaxial molecules. The phase diagram and the 
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concentration dependence of the elastic constants in 
uniaxial and biaxial nematic phases were obtained. 
Theoretical predictions for the behaviour of binary 
mixtures of nematogens are extremely model depen-
dent. Some mean field lattice models [13], extended 
Onsager theories and mean field van der Waals-type 
theories [14] have predicted that mixtures of rodlike 
and disclike nematogens should produce biaxial ne-
matic phases. Conversely, both molecular mean-field 
theories [16] and MC simulations of mixtures of rods 
and discs [38] predict that these binary mixtures will 
separate into two uniaxial phases. The latter predic-
tion is consistent with the lack of experimental evi-
dence for biaxial phases in such mixtures. In our sys-
tem of rods and discs, from Sect. 4.4 a biaxial phase 
appears below a certain temperature although a phase 
separation is not excluded. We note that in our phase 
diagram all lines of transitions are first order lines. 
This is non-typical because usually uniaxial-biaxial 
transitions were reported as second order [13]. But 
within the Landau theory one can describe both pos-
sibilities [35] and it must be decided by the experiment 
which is true. 

Now we would like to explain the relations (52), 
(56), (62) and (63) for the elastic constants. Firstly, the 
general expressions (8) and (9) for the phenomeno-

Fig. 9. Elastic constants calcu-
lated for the positive biaxial so-
lution vs composition for the 
mixture of rods and discs at the 
temperature T* = 0.45 (x = xa 
denotes a portion of rods in the 
mixture). The physical range is 

0^8 0 .9 1 for 0.557 < xA < 0.679. 

logical distorsion free energy include bulk and surface 
terms that can be identified univocally. Secondly, in 
order to derive the microscopic distorsion free energy 
(42) we neglected some surface terms according to the 
thermodynamic limit. But other surface contributions 
are still present in a hidden form. Lastly, when we 
compare the microscopic and phenomenological free 
energies, those hidden terms will produce consistency 
relations for the elastic constants. 

The theory gives a comfortable starting point for 
different possible generalizations. It recovers the 
known expressions in the limit of a unary system 
and, on the other hand, can be easy extended to the 
case of three (or more) component mixtures. In or-
der to go beyond a low density approximation one 
should replace in the free energy the Mayer functions 
with a better approximation of the direct correlation 
function c2 (the exact form of c2 is unknown). There 
exist some solutions for c2 in the case of simple mod-
els (see [39]), and they can be incorporated into our 
theory. 
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