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Microscopic expressions for the elastic constants of binary liquid crystalline mixtures composed
of short rigid uniaxial molecules are derived in the thermodynamic limit at small distorsions and
a small density. Uniaxial and biaxial nematic phases are considered. The expressions involve the
one-particle distribution functions and the potential energy of two-body short-range interactions. The
theory is used to calculate the phase diagram of a mixture of rigid prolate and oblate molecules.
The concentration dependence of the order parameters and the elastic constants are obtained. The

possibility of phase separation is not investigated.
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1. Introduction

The elastic constants of liquid crystals are the ma-
terial constants that appear in the description of al-
most all phenomena where the variation of the di-
rector is manipulated by external fields [1]. They
are of technological importance because liquid crys-
tals have found wide application, €. g., in display de-
vices, laser technique, holography, termography, nu-
clear and microwave techniques. On the other hand,
the elastic constants give information on the micro-
scopic anisotropic intermolecular forces. They are
also needed in the study of defects in liquid crys-
tals [2].

There are microscopic theories [3 - 8] that give
working expressions for the elastic constants of one-
component uniaxial nematic liquid crystals. But in
technical applications very often some special proper-
ties are required, and chemically pure substances with
the desired ones are hard to find. That is why mix-
tures are widely used. It is clear that theories which
allow to understand the physical properties of mix-
tures are helpful in designing mixtures with the pre-
scribed technical parameters. Miscibility studies are
also important from a more fundamental point of view
— to identify new phases. The rule that is used is the
following: if two phases are continuously miscible
without crossing any (first- or second-order) transi-
tion line, they have the same symmetry. This method
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can often be carried out under the microscope (in a
concentration gradient) and is faster than taking an
X-ray picture [1].

In this paper we present a statistical theory of
the elastic constants of binary liquid crystalline mix-
tures. Uniaxial and biaxial nematic phases will be
considered. Since a theoretical description of biax-
ial phases (and mixtures) is rather complex [9, 10]
we developed our theory with some approximations:
rigid molecules, small density and the thermodynamic
limit. Our aim is to express the elastic constants by
means of the one-particle distribution functions and
the potential energy of molecular interactions. The
thermodynamic limit suggests that we neglect sur-
face effects. Nevertheless we will obtain some known
relations for the surface elastic constants and we will
interprete those relations as consistency conditions.

The phase behaviour of liquid crystal mixtures has
been studied using a number of theoretical methods.
A large variety of phase diagrams was presented in the
paper by Sivardiere [11] where the Ising-like model
was introduced. Brochard et al. [12] considered the
less artificial Maier-Saupe model and gave a catalogue
of allowed diagrams for mixtures of nematogens.
In 1973 Alben [13] considered a mean-field lattice
model with discrete orientations to describe steric in-
teractions in mixtures of rods and discs. He predicted
the existence of a biaxial phase in the composition
range between two uniaxial phases. Similar results
have been obtained for van der Waals lattice mod-
els in mean-field [14] and renormalization group [15]
theories. The question of thermodynamical stability
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against phase separation was addressed by Palffy-
Mubhoray et al. [16] within a mean-field theory. The
geometric mean assumption about the pseudopoten-
tial leads to instability of a biaxial phase, whereas
a deviation from this assumption leads to a stable
biaxial phase [17]. A mean-field theory was also
used to describe binary mixtures of biaxial molecules
[18,19]. Mixtures of rods and spheres were studied
by Agren [20], Humphries and Luckhurst [21], and
Martire et al. [22]. The result is that the introduc-
tion of spheres induces, via a small two-phase re-
gion, a transition to an isotropic phase. Mixtures of
rods of different length-to-width ratios were analysed
by Peterson et al. [23], Warner and Flory [24], and
Lekkerkerker et al. [25]. Recently, different demixing
mechanisms in hard rod [26] and rod-plate mixtures
[27] were analysed by van Roij and Mulder.

As far as the elastic constants are concerned, to
our knowlwdge there are no experimental data on
biaxial phases. In 1989 Kini and Chandrasekhar [28]
studied the effects of external magnetic and electric
fields applied in different geometries. They showed
that it is feasible to determine some of the twelve
elastic constants. Our theory could help to predict the
temperature and concentration dependence of them in
the case of binary mixtures.

Our paper is organized as follows: In Sect. 2 we
present a phenomenological continuum theory of ne-
matic liquid crystals. In Sect. 3 we describe a sta-
tistical theory of nematic phases and derive general
expressions for the elastic constants in the case of
uniaxial and biaxial nematic phases. Exemplary cal-
culations of the values of the elastic constants are
presented in Sect. 4, where the Corner potential en-
ergy is applied and a mixture of rods and discs is
analysed. In Sect. 5 we summarize the results of this
work.

2. Phenomenological Approach
2.1. Description of a Phase

In this section we describe nematic liquid crys-
tals from a phenomenological point of view [29].
We assume that at every point r inside a consid-
ered phase we can define three orthonormal ver-
sors (L(r), M(r), N(r)) which reflect properties of this
phase. In case of a biaxial phase they determine di-
rections of its two-fold axes of symmetry. The vec-
tors (L,M,N) create the local frame which can be
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expressed by means of a space-fixed reference frame
(€z,ey,€) as

L=R,eq, M= Ry.e,, N =Rs,e,, (1)

where the matrix elements R;, (z = 1,2,3 and a =
x,y, z) satisfy the conditions

RiaRje =044, (2)
RichiB = 60([3- (3)

Relations (2) and (3) express the orthogonality and the
completeness of the local frame. Note that repeated
indices imply summation. The homogeneous phase is
described by Ry = 0i4.

2.2. Distorsion Free Energy

Let us call Fy the free energy due to the distorsion
of the local frame (L, M, N). A general expression of
its density f,(r) was derived in [29] in the case of
small distorsions. It has the form

1
2

1

far) =kijD;; + 3

KisurDig Dy + = Ligin Sige, (4)

where k;;, Kk, Lqji are elastic constants,
1
D;; = ifjklRiaRkBaaRlﬁv (5)

Sijk = Sjir = 0a(RiaDjr + RijaDit), (6)

and €;; is an element of the antisymmetric tensor (we
set up the convention €133 = +1). The elastic constants
satisfy the symmetry relations

Kijki = Kiijy Lije = Ljik. (7

In general, the linear first order terms with k;; give
6 bulk and 3 surface terms; the quadratic first order
terms with K;;; give 39 bulk and 6 surface terms;
the terms with L;;; give 18 surface terms. The to-
tal number of bulk and surface terms is 45 and 27,
respectively.

When a considered phase has a D,, symmetry
group, the distorsion free-energy density has the form
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L
2

1 1 1
+ -2-K2121(D21)2 + §K2222(D22)2 % §K2323(D23)2

1 1 1
+ EKSIBI(DBI)Z + 5-7('3232(1732)2 + 51(3333(D33)2

1 1
fa==Kiun(Dy)* + §K|212(D12)2 + EK1313(D13)2

+ K1122D11 D2 + K1133D11 D33 + K233D2 D33

+ Ki1221D12D21 + K1331D13D31 + K2332D93 D3
+ L123S123 + L2315231 + L3125312. 8

The terms with K give 12 bulk and 3 surface terms,
whereas the terms with L; ;. give 3 surface terms. The
total numbers of bulk and surface terms are 12 and 6,
respectively.

When a considered phase possesses a D, Sym-
metry group, the number of elastic constants is
smaller. Let the z axis be oriented along the axis
of symmetry. Then the distorsion free-energy density
has the form

1 1
ﬁ=5mﬁ%N¥+gﬁwwamf

+ -1-K3[N x (V x N)J?
: ©
e 5KN [(N-V)N =NV -N)]

+%K5V (N -VN+N(V -N).

Therefore, in case of an uniaxial phase we have 3 bulk
(K,, K, and K3) and 2 surface terms (K4 and K3).
One can calculate the distorsion free energy from its
density (8) or (9) by

ﬂ:/wh (10)
Note that we can not reject surface terms in (8) or (9)
although we assume the thermodynamic limit. This
will be explained in Sect. 5.

2.3. Basic Deformations

Splay, twist, and bend are known as the three ba-
sic types of deformations in the continuum theory of
uniaxial nematics. They describe spatial variations of
the director N(r) and extract from the distorsion free
energy terms with K, K, and K3, respectively. In
[10] 18 basic deformations proper for the continuum
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theory of biaxial nematics were given. They were di-
vided into five groups and connected with relevant
elastic constants: 3 twists (for K,;;;), 6 splays and
bends (for K;;;;), 3 modified twists (for L;;;) and two
groups of 3 double twists (for K;;; and for K;;;;). In
the formulas for deformations a parameter € was used
(1/e is a certain length). Small € meant a small defor-
mation and a conformation close to the homogeneous
one (L(O),M(O),MO)). The vectors of the local frame
were expanded into a power series with respect to €

L=L9+eLV+LP+...,

M=M(0)+€M(l)+62M2)+...,
N=NO+e NV 4+ NP4+ ..

(In

It appeared that the most important terms in (11) were
those linear in €. They were sufficient to calculate the
distorsion free enery up to the second order in € and
to calculate the elastic constants of biaxial nematic
liquid crystals. For the sake of completeness we list
the terms linear in € from (11) for all groups of defor-
mations. The first group is, for Ky,

LY =(0,0,0), MV =(0,0,z), NV= (0, —2,0), (12)
for K222,

L= (0,0, —y), M"=(0,0,0), NV'= (y,0,0), (13)
and for K3333,

LY=(0,2,0), MV = (-z,0,0), NV=(0,0,0). (14)
The second group is, for K32,

L= (0,0,-2),M" = (0,0,0)N"= (z,0,0), (15)
for K313,

LY =0, -z,00,M"V = (z,0,0),N"=(0,0,0), (16)
for K121,

L?=(0,0,0), MV = (0,0, —y), NV=(0,,0), (17)
for K733,

L =(0,y,0), MV = (-y,0,0), NV = (0,0,0), (18)
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for K331,
LV =(0,0,0), MV = (0,0, 2), NV= (0, —z,0), (19)
and for K3;3;,

L= (0,0,z), M= (0,0,0), NV= (-2,0,0). (20)
The third group is, for L3,

L= (0,z,0), MY = (-z,0,0), NV=(0,0,0), (21)
for Ly,

L= (0,0,0), MV = (0,0,y), NV= (0, —y,0), (22)
and for L3,

LY=(0,0,-2), MP=(0,0,0), NV=(z,0,0). (23)
The fourth group is, for K2,

LY =(0,0,-y), MV = (0,0,z), NV = (y, -z, 0), (24)
for K133,

LP=(0,2,0), M = (-2,0,z), NV = (0, -z, 0), (25)
and for K733,

LV=(0, z,—y), MV = (=z,0,0), NV = (3,0, 0). (26)
The fifth group is, for K33,

LV =(0,0,-z),M" = (0,0,y), NV = (z,-y, 0), (27)
for K331,

LV=(0,z,0), MV = (-z,0,2),NV=(0,~2,0), (28)
and for K733,

LV=(0,y,-2), M= (-y,0,0), NV=(z,0,0). (29)

3. Microscopic Approach
3.1. Description of a System

This section is devoted to the microscopic analy-
sis of binary mixtures of uniaxial nematogens which
create a homogeneous phase. Let us consider a mix-
ture which consists of two types of rigid uniaxial
molecules A and B. Orientations are described by
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two angles ¢ and 6 or by a unit vector §2. We assume
a small density approximation, and we take only two-
body short-range interactions into account. The po-
tential energies #15 depend on a vector of the distance
between molecules and orientations of molecules.

The microscopic free energy of the binary mixture
has the form [30]

pF= 3 [ )G {miGxn)ad1 -1}

I=A,B
1

2

(30)
> / d(Hd@R)G1 ()G ;) f

1,J=A,B

where G(1) = G(ry, $2,) (I = A, B) are the one-
particle distribution functions with the normalizations

/d(l)G;(l):N;, (31)

d(1) = drdf2, = drid¢,df, sinfd,, N; denotes the
number of molecules I in the volume V (N4 +
Np = N), fl are the Mayer functions f{/ =
exp(—(®!) —1,3=1/kpT, and

A AN
> (27Tm1> (27TJ1) '
The subscript 5 in A! denotes 5 degrees of free-
dom of an infinitely thin molecule, although we use
this description also for spatially extended uniaxial
molecules. T" denotes the temperature, m is the mass
of a molecule I, and J; is a parameter with a di-
mension of a moment of inertia (for a very prolate
molecule it is exactly the moment of inertia with re-
spect to the axis perpendicular to the molecule). Our
set of state variables consists of 7', V', N4 and Np.
The free energy (30) consists of the ideal terms (with
Al) and the excess terms directly related to inter-
molecular forces. The ideal terms are those of the
ideal gas.

The expression (30) was derived systematically for
binary mixtures from the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy equations in the thermody-
namic limit (N — oo,V — 00, N/V = const) [30].
Two-particle distribution functions were expressed in
terms of one-particle distribution functions and the
two-particle correlation functions of the simple form
exp(—3®1y). This assumption guarantees the proper
limit of the unary system.

(32)
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The equilibrium distributions G; minimizing the
free energy (30) satisfy

In[G(1)A] - ) / d2G,ff

J=A,B (33)
= const.

In the homogeneous phase the distribution function
G does not depend on the position of a molecule and
G (1) = Gor(£2)). In order to obtain Gy; one should
solve (33) together with (31).

3.2. Distorsion Free Energy

In order to define the microscopic distorsion free
energy Fy one should first identify a homogeneous
free energy Fy. We would like to divide the total free
energy F' into a homogeneous free energy Fj and the
distorsion free energy Fy. We postulate that

BFy =

d(1)G (1) {In[G ()AL} - 1}
2z

I=A,B

1
-3 ¥ [ana@cie. 2060 2051

I1,J=A,B

1
-3 ¥ [awe@6ir, 206,02 205

1,J=A,B

(34)

The definition (34) is equivalent to that by Poniewier-
ski and Stecki [6]. This is a well-founded assump-
tion if we also assume slow variations of the vectors
(L,M,N). We will also restrict the one-particle distri-
bution functions G to the class of G; functions. This
method was succesfully used in the past [5, 31, 32].

Thus, the distorsion free energy can be written as

Fy=F - F, (35)
were F' and Fj are given by (30) and (34), respectively.
As we expect, for the homogeneous phase Fy becomes
zZero.

In the subsequent sections we will construct the
distribution functions for distorted phases and we will
derive the microscopic formulas for the elastic con-
stants. Biaxial and uniaxial nematic phases will be
considered separately.

967

3.3 Elastic Constants of Biaxial Phases

It was shown in [10, 33] that in the case of a homo-
geneous biaxial nematic phase composed of uniaxial
molecules the one-particle distribution functions G
depend on two arguments:

Gor(2) = Gor(12 - e, 2 - e.), (36)
where it is assumed that the vectors e,, of the reference

frame coincide with the phase symmetry axes. In the
distorted phase we postulate that

G1(r, 2) = Gor(Q1, Q2), @37
where the relevant arguments are
(",Q)=Q'L("),
o (38)

Q2(r, £2) = 2 - N(r).

The local orientation of the phase is described by
the vectors (L, M, N). We can use the distorsion free-
energy density (8) and apply basic deformations de-
scribed in Section 2. We will follow a procedure sim-
ilar to one described in [10]. Let us expand the argu-
ments (38) in a power series with respect to e,

Qi=QY+eQ" +&Q7 +--, (39)

where by means of the expansions (11) we build

QP (r,2) =02 L7 @),

(p) — . N®) 40)
Q¥ (r,2) = 2 -NP(r).

The expansion of G has the form
Gi(r, 2) = Gor (@Y, @)

+e Z 2:Gor(@QY, @M@
i=1,2
+é Z 3:Gor(@Q, Q@Y
i=1,2
2
€
+5 Y 0:0,Gor (@Y, Q" QS
2 1,7=1,2

+0(e).

(41)

When we substitute the expansion (41) into the dis-
torsion free energy (35) we get
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1
BFs=y / ddDE Y S 3:Gu(@09,Gos(62)| - 201, 200 2, 22)

1,J=A,B  ij=1.2 (42)
+ Q1 20Q 1, 22+ QU2 20Q (12, 2] + O(e).
We substitute the basic deformations into the microscopic distorsion free energy (42) and to the phenomeno-

logical distorsion free energy (8). By comparison we get the microscopic formulas for the elastic constants.
The first group is

1
BKn = E/dnldQZduui Z ffzJW{ywzjy» (43)
I1,J=A,B
1
BKym = E/dﬂldﬂzduui > FEUL - WU - wi, (44)
1,J=A,B
1
BK3333 = 3 / did2dudl > FHULUS,. (45)
1,J=A,B

The second group is

1
BKi212 = 2 /d.{)ldﬂzduui > Bl -whs -wi), (46)
1,J=A,B
1
BK313 = E/dﬂldﬂzduui Z UL US, (47
1,J=A,B
1
BE7121 = i/dﬂldﬂzdlmi Z fEwWLws,, (48)
1,J=A,B
: 1
Bk =5 / dddu Y FIULUL, (49)
1,J=A,B
1
BK3131 = E/dﬂndﬂzduui Z Wi, W3, (50)
1,J=A,B
1
BEK3iy = 7 /dnldﬂzduui Z F5 WU, = W3, - W) D
I1,J=A,B
The third group is
Lig3 = La31 = L312 = 0. (52)
The fourth group is
R 1
BKin = Z/dnldQZduuxuy Yo Il - wiywy, + WUy - wi)), (53)
1,J=A,B
; 1
BKyy = 7 / d21d2duuyu. Y fF [ - UL - Wi) — U], - W3], (54)
1,J=A,B
1
BKy33 = 7 /dnldn2duuzu2 Z 5= UIIyWi; - WIIyUZJy]~ (55)

1,J=A,B
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The fifth group is,
K21 = K122, K331 = K133, K2332 = K233. (56)

To make the formulas for the elastic constants more
compact we write

Ul =9,Gor(Q, Q) 2,,

(57)
Wl =8,Gor(Q\, Q(ZO))-Qa-

3.4. Elastic Constants of Uniaxial Phases

In a homogeneous uniaxial phase we have one
global symmetry axis which can be oriented along
e .. The one-particle distribution functions depend on
a one argument, thus

01Gor(2-e,,2-¢.)=0, Ul =0. (58)
The microscopic expressions for the elastic constants
that result from (43) - (56) are

o1
BK1 =5 / d2\d2dul Y fEWL WL (59
1,J=A,B

1
pK; = 3 / d2id2dudd S fWELWL,(60)
1,J=A,B

1
BK; =3 / dd2dud? Y fTWLW, 61)
1,J=A,B

1
Ky = E(Kl + K>), (62)

Ks=0. (63)
Note that the results (62) - (63) are consistent with the
wide discussion on surface elasticity by Yokoyama
[34]. These expressions results from (52) and (56)
when we change the symmetry of the phase from
biaxial to uniaxial.

4. Exemplary Calculations

The aim of this section is to express the elastic
constants by means of the order parameters which can
be measured in experiments. We will apply the Corner
potential energy of interactions because in principle
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it allows detailed calculations without any additional
approximations. On the other hand, it is quite realistic.

4.1. Homogeneous Phases

In order to simplify calculations for the biaxial
phase we assume that the one-particle distribution
functions Go; depend only on the angle between the
long axis of a molecule, determined by a unit vector
£2, and some symmetry axis, determined by a unit
vector ey,

Gor(§2) = Gor(£2 - eg). (64)
For the uniaxial phase we will assume thate4 = ep,
whereas for the biaxial phase e 4 - ep = 0. It is conve-
nient to define dimensionless functions f;

Gro($2 -er) = f1(£2 - e;)N;/4nV, (65)

where the normalization condition is

1
/dﬂf,(!)-e;)/47r=/ dzfr(z)=1. (66)
0

The order parameters are defined as

1
(Pj)1 = /0 dzP;(z)f1(x). (67)

The functions f; can be expanded in an infinite series
with respect to the Legendre polynomials

fi@= > @j+1)(P;)P;). (68)

j—even

It is useful to describe the nematic ordering of
molecules I in a mixture by a symmetric traceless
second-rank tensor S’ with elements [35]

1
Slﬁ = <.Qa(23 == 5(50‘5)[

[

1 (69)
= /dnf,(n : e,)[fzanﬁ - 5505].

We can show that

1
Sas = (P [(ea - eres - en) = 3(eq -e5)]. (10)
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The tensor S’ is diagonal only if e; is equal to e, e,
or e, . Finally, we define an average tensor S as

S = 2,8 +25S”, (71)
where we used concentrations z; = N;/N. We note
that because of our approximation (64), the tensors s!
are uniaxial (2 different eigenvalues). But the average
tensor S is in general biaxial (3 different eigenvalues)
ifey -eg =0.

Let us consider the Corner potential energy of the
form &) (u/a?7), where u is the distance between
molecules I and J, u = uA, o'’ depends on vectors
2, 2, and A. For ¢/’ one can write the general
expansion proposed by Blum and Torruela [36]. It
involvs the 3-j Wigner symbols and the standard rota-
tion matrix elements. The same expression was used
to describe interactions of biaxial molecules in [33].
In the case of uniaxial molecules, the lowest order
terms of the expansion give
o (921,92, 4) =

+0’“(A ) (72)

+ ol A-2,) + o} (02, 2,)%.

There are a number of posibilities for the functional
dependence of {5 onu/a’”, and some of them were
given in [10]. We do not have to specify it now, be-
cause this dependence will be hidden in a function
B,(T™) defined as

Bs(T*)=/ dz z° fia(x)
o00 (73)
- /0 dz 2* [exp(~AB () — 1],

where T* = 1/[3¢ is a dimensionless temperature and
eisadepth of the potential energy (we assume for sim-
plicity that it is the same for both types of molecules).

Thanks to the form of the Corner potential energy
one can rewrite (30) and (33) in the form

BF = (74)

Z / 42Ny f1(z) {Inlf@)N AL jamV] - 1}

I=A,B

= Z N AT Y K

IJAB j—even

P;) Pj(er - ey),
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In(fr(21-en]— Y A S K[/ (75)
J=A,B j—even
P(Ql e1)( >JP (er-ey) = const,

where

MY = (6d7y’ By(T*)2m* Ny /4 V, (76)

K™ (cosf,cos ;) = %/dqﬁld A(e? Jal?y. (17)

As a consequence of the definition (77) we can ex-
press the kernel K7/ as a sum with even Legendre
polynomials

EY@y= > K}/P@Py), 8
J,k—even
K =2j+1)2k+1)
(79)

1 1
- / dz / dy K" (z,y)P;(x) Py (y).
0 0

Note that for /7 given by (72) the kernel is diagonal.
Equations (75) imply that f; should be written as

In(fr@]= Y CjPi).

j—even

(80)

It allows as to transform (75) into a set of equations

CJI — Z /\IJIX’;]"]<Pj)JPj(eI : eJ)v
J=A,B

(81)

where j = 2,4,6 and I = A, B. The normalization
condition (66) must be also enclosed. In the case of the
uniaxial (biaxial) phase we havee;-e; =1 (e;-e; =
617)- The stable solution of (81) which has the lowest
free energy will describe a homogeneous phase.

4.2. Elastic Constants for Uniaxial Phases

We insert the expansion (68) into (59) - (61). It
appears that only a finite number of terms gives a
nonzero contribution. Thus we get the explicit depen-
dence the elastic constants on the order parameters:

Z Z 17”F Yi{Px)s, (82)
I1,J=A,B j,k—even
I = €T*By(T* )0l !’ NNy /(4nV ), (83)
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IJ.5

1 —57
Foh=3 / dnldnsz(Aszw”h(Z”) @9
0

T2
- Pi(0212)Pp($22:)(25 + 1)(2k + 1),
where s = 1, 2, 3. We calculated the coefficients Fs{ JJ &

analytically. In order to present their structure we list
them as an array, where vanishing coefficients are zero

Fida Pl 0 0 o
Fii, Fla Flie 0 0
0 P Fl¢ Pl o @)
o 0 R Py Fli
0 0 0 FsI‘{O 8 Fa,lO,lO‘

4.3. Elastic Constants for Biaxial Phases

Let us insert the expansion (68) into (43) - (56).
Similarly to the uniaxial case, it appears that a finite
number of terms gives a nonzero contribution. The
dependence of the elastic constants on the order pa-
rameters has the form

Kun= Y n®PFPR(P)s(P:)s, (86)
J,k—even
Kom= Y, [AAF2]k< 5)a{Pi) a
J,k—even AB
G35 (Ps)a(Pe) B @)
— PG (P;) B(Py)a
+nPBFER(P;)5(Py)s),
Ky = Z A4 FLA (P a(Pe) a, (88)
J,k—even
K = z [ nAAFLA(P) a(Pe) a
J,k—even
i T TR,
—1P4GT5(P;) B(Py) 4
+nPBFEE(P;)p(Py)s),
Kisiz= Y n*F(P)a(Pi)a, (90)
J,k—even
Kyo= Y. nPBFBL(P)s(P:)5, 1)
J,k—even
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Kopz= Y. n**F(P)a(Pr)a, 92)
j,k—even
Kyan= Y n°BF3}(P)s(P)s, (93)
J,k—even
Kpn= Y. [ AAF{(P) a(Pe) a
Jj,k—even
ABG3]k< > <Pk> (94)
= PGS (Py)(Pe)a
+nPBFER(P;)5(Pu)s),
1
Kim=g ¥ ["BHf‘f,i NalPds  (99)

+778AH1]k<P> (Py)a+nPP8
- (FPR-FER(P,)p(Pu)s),

Kuss—%_; [ n*PHL S (P;)a(Pe)p 6
— P HEA(P,)5(Py)a),
K2233=%M2;w [T AELA - FAP) alPo)a
+n*PHE () a(Pi)g O
+ 0P HE A (P;)5(Pu)a),
where

Gs gk = E /dﬂldQZdA(As)z-leQZI(UIJ/UéJ)s

- Pi(212) P (122:)(2 + D2k +1),  (98)

1
Hll}lk = 5/d.QldﬂszAyAzQlth(a”/JéJ)S

- Pi(12)P(122:)(25 + D2k + 1), (99)

H = / d92,d92,dAA A, 21,2207 Jal7)

- Pi(12)Pp(£22.)(25 + 1)(2k + 1), (100)

1
H, =~ / d02,d02,d AA A, 2. 2 (0" [0}

2
- Pl(212) Pe(£22:)(25 + 1)(2k + 1). (101)
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The structure of the coefficients G/ Gk and H 0 k18
similar to F//, *. The coefficients depend only on the
parameters a’ J

One can notice that some of the biaxial elastic con-
stants depend on the properties only one of the two
types of molecules. This is the result of the assump-
tion (64) and in general is not true.

4.4. Mixture of Rods and Discs

It is known that phase diagrams of mixtures can be
very complex. The aim of this section is to test predic-
tions of the theory for a model mixture. We considere
amixture of prolate and oblate molecules because it is
expected to reveal a biaxial phase. Later we will refer
to prolate and oblate molecules as rods and discs, re-
spectively. We apply the square-well potential energy
defined as

+oo foru/o < 1

Ppujo)=< —e forl <u/o < Rsw (102)

0 foru/o > Rsw,

B = y{ [ () — 1 ersi -0 -1},
(103)

We have chosen Rgy =2and V/N = (10l m01)?, where
lmor denotes some molecular length. Note that Iy
determines the length scale, whereas € determines the
energy scale. The elastic constants will be expressed
in €/ln0). For simplicity reasons we assume that only
one (isotropic, uniaxial nematic, or biaxial nematic)
phase is present. It corresponds to the solution with
the minimum free energy. The possibility of phase
separation will not be investigated. The molecular
parameters o/’ can be connected with the geometry of
molecules by means of the excluded volume method
described in [33]. In order to get rods and discs we
have chosen the following set of these parameters:

AA

_— BB _ IJ
UO —4lm0], 00 = 101m0|, 0'0 = (00 +UO ),
AA - AA _ BB _ _BB _
01" =013" =3lmol, 011° =01y = —4nol,
LJ II LJ JJ
‘711 =015 G =9y
7 =0. (104)
*The electronic version of all coefficients F’ J Go J] H i %

and K| IJ is available from the authors on request
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O
Rod

44

2 Disc

O..
-2
_4.,

-6-8 -6 4 -2 0 2 4 6 8

Fig. 1. Cross-sections of the zero equipotential surface of
the potential energy for rods and discs (units are equal to
Imot). The dashed line denotes the axis of rotary symmetry.

1
 §

0.91
0.81
0.71
0.61
0.57 Rods Discs
0.41
0.3
0.2

0.1

004 045 0.5 0.55 0.6 0.65 0.7 0.75

Fig. 2. Temperature dependence of the order parameters
(P2) a (Rods) and (P,) g (Discs) for the unary systems. 7’
denotes the dimensionless temperature.

The volume of a molecule I one can estimate as

Vol —/dA[o”(ez,ez,A)] /24 (105)

= K11, )08y n /48 = ZI«. Lol n/48.

The volumes of the molecules are Vi, ~ 14503
and VB, ~ 26703 . The cross-sections of the zero
equipotential surface of the potential energy are
shown in Figure 1.

The transition temperatures of unary systems from
the isotropic to the uniaxial nematic phase are
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1.61
1.41
1.21
H
0.8
0.6
041
0.21

004 045 0.5 0.55 0.6 0.65 0.7 0.75

Fig. 3. Temperature dependence of the elastic constants for
the unary systems. 7" denotes the dimensionless tempera-
ture.

0.75

Isotropic
0.7

0.651

0.61
T

08T Disclike

0.51 Rodlike

0.451
Biaxial
05,06 07 08 09

040 01 02 03 04

Fig. 4. Phase diagram of the mixture of rods and discs.
Four phases are present: isotropic, rodlike uniaxial nematic,
disclike uniaxial nematic and biaxial nematic. 7' denotes the
dimensionless temperature and x = x 4 is the concentration
of rods in the mixture.

T% = 0.555 and T = 0.734. The temperature de-
pendence of the order parameters (P,) and the elas-
tic constants for unary systems are shown in Figs. 2
and 3.

On changing the composition of the mixture we
were looking for possible uniaxial and biaxial ne-
matic solutions of (81). We checked the stability of
all solutions against perturbations of nematic sym-
metry. The phase diagram of the mixture is shown in
Figure 4.

We performed a detailed analysis of the mixture
at the temperature 7* = 0.45. We have found the
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1
Rods
0.5
Average
Rods
[
Average
Discs Discs
050 01 02 03 04 05 _06 07 08 09

X

Fig. 5. (3/2)S%, (Rods), (3/2)SZ, (Discs) and (3/2)Sz»
(Average) vs composition for the mixture of rods and discs
at the temperature 7 = 0.45 (z = z 4 denotes a portion of
rods in the mixture).

0.5
Rods Discs
(4
Average
Average
Discs Rods
050 01 02 03 04 05 _06 07 08 09

X

Fig. 6. (3/2)S;, (Rods), (3/2)SE, (Discs) and (3/2)S,,
(Average) vs. composition for the mixture of rods and discs
at the temperature 7 = 0.45 (z = x4 denotes a portion of
rods in the mixture).

following solutions present for all x 4:

1. The unstable isotropic solution with (P,); =0
(not physical).

2. The stable rodlike uniaxial nematic solution with
(P)a > 0 and (P,)p < 0O (physical for 0.679 <
4 < 1.0).

3. The stable disclike uniaxial nematic solution
with (P;) 4 < 0 and (P,)p > 0. (physical for 0.0 <
x4 < 0.557).

4. The stable (positive) biaxial nematic solution
with (P,); > 0. (physical for 0.557 < z4 < 0.679).
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1
Discs \\
0.57
Average
Discs
0f \
Average

Rods Rods

050 01 02 03 04 05,06 07 08 09

Fig. 7. (3/2)S2 (Rods), (3/2)SE (Discs) and (3/2)S..
(Average) vs. composition for the mixture of rods and discs

at the temperature 7™ = 0.45 (z = x4 denotes a portion of
rods in the mixture).

"
Z

050 01 02 03 04 05,06 07 08 09

Fig. 8. Elastic constants calculated for the physical solution
vs composition for the mixture of rods and discs at the
temperature 7™ = 0.45 (z = x4 denotes a portion of rods
in the mixture).

5. The stable (negative) biaxial nematic solution
with (P,); < 0 (not physical).

In order to get the physical solution we combine
solutions with the lowest free energy (see the phase
diagram). In Figs. 5 - 7 we present the diagonal el-
ements of the tensor order parameters S’ and S. In
Fig. 8 the elastic constants calculated for the phys-
ical solution are shown. In order to understand the
connections between the uniaxial and biaxial elastic
constants we also plotted in Fig. 9 the elastic constants
calculated for the positive biaxial solution.
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In Fig. 9 one can notice that the introduction of
rods to the unary uniaxial nematic system of discs
with z 4 = 0 (or the introduction of discs to the unary
uniaxial nematic system of rods with z 4 = 1) breakes
the uniaxial symmetry. This leads to splittings of the
uniaxial elasic constants and a creation of new elastic
constants. A similar effect was obtained for unary sys-
tem of biaxial molecules in [10]. A decrease of tem-
perature induced the breaking of uniaxial symmetry
and it caused splittings of uniaxial elastic constants
and a creation of new constants. In the case of our mix-
ture the physical picture of Fig. 8 exhibits only a small
biaxial “window”, and splitting points are covered by
the elastic constants of the uniaxial phases. One can
observe only final results of changes. But generally
one can not exclude that such splittings will appear
for certain mixtures. We add that the concentration
dependence of the elastic constants for 7% = 0.52
can be found in [37], where also a mixture of rods of
different lengths was concerned.

5. Conclusions

In this paper we derived the microscopic formulas
for the elastic constants of binary mixtures of uniax-
ial nematic liquid crystals. In order to calculate the
values of the elastic constants one needs the potential
energy of molecular interactions and the one-particle
distribution functions. The theory was developed for
rigid molecules interacting via two-body short-range
forces. We showed that the Corner potential energy
is very useful for calculations. The elastic constants
were expressed as a finite series in terms of the or-
der parameters. The role of the temperature is more
transparent: it determines the order parameters via the
function B,(T*), (76), and it has a direct influence on
the elastic constants via the function B4(T™), (83).
The Corner potential energy allow us to predict the
result of a generalization of the molecular interac-
tions. Let us assume that o/’ is given by a more
complex expression than (72), e. g., with higher pow-
ers of (2 - £2,)°. Then the kernel (77) will be again
expressed as a sum (78) but higher number of coef-
ficients K[/ will be nonzero. This will lead to more
complex one-particle distribution functions f;. They
will be described by a higher number of the coeffi-
cients C]‘-’ in (80). Finally, we will get longer series
for the elastic constants.

Our theory was applied to a mixture of prolate and
oblate uniaxial molecules. The phase diagram and the
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2
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Fig. 9. Elastic constants calcu-
lated for the positive biaxial so-
lution vs composition for the
mixture of rods and discs at the

temperature 7" = 0.45 (z =z 4
denotes a portion of rods in the
mixture). The physical range is

. 06

050 01 04 05

concentration dependence of the elastic constants in
uniaxial and biaxial nematic phases were obtained.
Theoretical predictions for the behaviour of binary
mixtures of nematogens are extremely model depen-
dent. Some mean field lattice models [13], extended
Onsager theories and mean field van der Waals-type
theories [14] have predicted that mixtures of rodlike
and disclike nematogens should produce biaxial ne-
matic phases. Conversely, both molecular mean-field
theories [16] and MC simulations of mixtures of rods
and discs [38] predict that these binary mixtures will
separate into two uniaxial phases. The latter predic-
tion is consistent with the lack of experimental evi-
dence for biaxial phases in such mixtures. In our sys-
tem of rods and discs, from Sect. 4.4 a biaxial phase
appears below a certain temperature although a phase
separation is not excluded. We note that in our phase
diagram all lines of transitions are first order lines.
This is non-typical because usually uniaxial-biaxial
transitions were reported as second order [13]. But
within the Landau theory one can describe both pos-
sibilities [35] and it must be decided by the experiment
which is true.

Now we would like to explain the relations (52),
(56), (62) and (63) for the elastic constants. Firstly, the
general expressions (8) and (9) for the phenomeno-

07

08 09 1 for0.557 < z4 < 0.679.

logical distorsion free energy include bulk and surface
terms that can be identified univocally. Secondly, in
order to derive the microscopic distorsion free energy
(42) we neglected some surface terms according to the
thermodynamic limit. But other surface contributions
are still present in a hidden form. Lastly, when we
compare the microscopic and phenomenological free
energies, those hidden terms will produce consistency
relations for the elastic constants.

The theory gives a comfortable starting point for
different possible generalizations. It recovers the
known expressions in the limit of a unary system
and, on the other hand, can be easy extended to the
case of three (or more) component mixtures. In or-
der to go beyond a low density approximation one
should replace in the free energy the Mayer functions
with a better approximation of the direct correlation
function ¢, (the exact form of ¢, is unknown). There
exist some solutions for ¢; in the case of simple mod-
els (see [39]), and they can be incorporated into our
theory.
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