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The Rayleigh-Taylor (R-T) instability of two superposed plasmas, consisting of interacting ions and 
neutrals, in a horizontal magnetic field is investigated. The usual magnetohydrodynamic equations, 
including the permeability of the medium, are modified for finite Larmor radius (FLR) corrections. From 
the relevant linearized perturbation equations, using normal mode analysis, the dispersion relation for 
the two superposed fluids of different densities is derived. This relation shows that the growth rate unsta-
bility is reduced due to FLR corrections, rotation and the presence of neutrals. The horizontal magne-
tic field plays no role in the R-T instability. The R-T instability is discussed for various simplified con-
figurations. It remains unaffected by the permeability of the porous medium, presence of neutral par-
ticles and rotation. The effect of different factors on the growth rate of R-T instability is investigated 
using numerical analysis. Corresponding graphs are plotted for showing the effect of these factors on 
the growth of the R-T instability. 

1. Introduction 

The Rayleigh Taylor (R-T) instability of a plane inter-
face separating two fluids when one is accelerated to-
wards the other or when one is superposed over the oth-
er has been studied by several authors, and Chandrasek-
har [1] has given a good account of these investigations. 
The solution of problems related to the development of 
the R-T instability is important in many areas in Physics. 
In the past two decades, the ablative R-T instability has 
been a subject of major interest in the context of inertial 
fusion [2], Allen and Hughes [3] have studied the R-T in-
stability in astrophysical fluids. 

The classical R-T instability problem has also been re-
investigated in connection with magnetic fusion prob-
lems. A generalized theory of hydromagnetic stability of 
the interface between two infinitely conducting super-
posed fluids is given by Shivamoggi [4], The classical 
problem of the small amplitude motion of two superposed 
viscous fluids, considered as an initial value problem in 
the stable and the unstable (R-T instability) case, was in-
vestigated by Prosperetti [5, 6]. Menikoff et al. [7] have 
analyzed the character of the growth rates of the normal 
modes for R-T instability of superposed incompressible 
viscous fluids in terms of dimensionless parameters and 
derived a simple R-T dispersion relation. In inertial con-
finement fusion, the R-T instability is crucial in order to 
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achieve symmetrical implosions, and many authors have 
studied the effect of various factors on the growth rate of 
the R-T instability. Mikaelian [8] has studied the growth 
rates of the R-T instability in three layered fluids and ex-
tended the analysis of N-layered fluids. 

The role of the finite Larmor radius (FLR) is also im-
portant, and the discussion of the plasma stability prob-
lem in the presence of finite ion Larmor radius correc-
tions was initiated by Rosenbluth, Krall, and Rostoker 
[9] in connection with a plasma under gravity and also 
for a slowly rotating plasma. Roberts and Taylor [10] 
have also discussed the instability problem using single 
fluid hydrodynamic equations modified to include FLR 
effects. 

In addition to this, Chandrasekhar [1] has discussed 
the R-T instability of two superposed magnetized incom-
pressible fluids and also discussed the effect of rotation 
on the R-T instability. He has considered the horizontal 
and vertical direction of the magnetic field to the separ-
ating face of two fluids. Also the axis of rotation is as-
sumed vertical for both fluids. Singh and Hans [11] have 
discussed the effect of magnetic viscosity of the R-T and 
K-H instability of superposed fluids with horizontal mag-
netic field. Kalra [12] has investigated the effect of finite 
ion Larmor radius corrections on the R-T stability of two 
superposed fluids with vertical magnetic fields. Hans 
[13] has carried out an investigation on the R-T instabil-
ity of two superposed fluids with vertical magnetic field 
and discussed the effect of FLR and collisions of neu-
trals on the growth rate of the instability. He has shown 
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that the growth rate is suppressed if the collisional fre-
quency of neutrals increases. Sharma [14, 15] has dis-
cussed the R-T instability of superposed fluids with a hor-
izontal magnetic field and vertical rotation along with 
other parameters. Bhatia [16] has discussed the R-T in-
stability of two superposed viscous conducting fluids in 
the presence of a horizontal magnetic field. Bhatia and 
Chhonkar [17] have investigated the R-T instability of 
two viscous superposed conducting fluids with horizon-
tal magnetic field and rotation. They have considered ro-
tation along the horizontal direction and magnetic field 
along the horizontal direction and concluded that FLR 
has a stabilizing influence on the superposed system. Va-
ghela and Chhajlani [18,19] have analyzed the R-T prob-
lem of partially ionized superposed conducting fluids 
with FLR, rotation and surface tension. They have con-
sidered horizontal magnetic field and also vertical rota-
tion. In addition to this, recently Gupta and Bhatia [20] 
have discussed the instability of partially ionized super-
posed fluids with horizontal magnetic fields. Also Shar-
ma and Kumar [21] have discussed the R-T instability of 
viscous fluids in a porous medium. In the cited papers 
the direction of the magnetic field and that of rotation is 
either vertical or horizontal, and the condition of instabil-
ity is different in these cases. Also the simultaneous ef-
fect of FLR, neutral collisions, rotation, and permeabil-
ity of porous media has not yet been considered. This has 
motivated the present analysis with horizontal direction 
of rotation. We also know that FLR effects play the same 
role as the viscosity of fluids, the former being some-
times called magnetic viscosity. So, for simplicity of the 
analysis we assume that the contribution of the fluid-vis-
cosity is negligible as compared to the magnetic viscos-
ity and investigate the effect of FLR on the R-T instabil-
ity. In Kelvin-Helmholtz (K-H) instability of superposed 
fluids, Shanghvi and Chhajlani [22] found that the FLR 
plays the same role as the horizontal magnetic field. Our 
object is to see the role of the FLR in the R-T instability 
and compare it with the K-H problem. 

In the light of the above discussion, in the present paper 
we discuss the R-T instability of two superposed incom-
pressible magnetized plasmas flowing over each other. 
The external magnetic field is assumed to be horizontal, 
and the plasma is assumed to be partially ionized. The 
magnetohydrodynamic equations are modified to include 
the effect of neutral particles. The effect of rotation is in-
cluded and a porous medium and its permeability are al-
so considered. The magnetohydrodynamic equations are 
modified to include the effect of finite Larmor correc-
tions. 

2. Linearized Perturbation Equations 

Consider an incompressible, inviscid, infinitely con-
ducting hydromagnetic fluid containing neutral particles. 
The fluid, having a horizontal surface, is assumed to be 
infinitely extended in the x and y directions. The mag-
netic field H(H, 0, 0), and ß = ( ß , 0, 0), are in the 
^-direction (see Figure 1). The fluid is subject to gravity 
g (0, 0, -g). It is assumed that the density of the fluid is 
larger than that of the neutral particles. The effects of 
pressure gradient and gravity on the neutrals are negli-
gible. The collisional force of neutrals with the ions is of 
the order of the pressure gradient of the ionized compo-
nent. 

The linearized perturbation equations under the above 
assumptions are 

dt 4K 

((Vxh)xH + (VxH)xh) 

ß + 2 p ( u x Q ) + pd vc (ud — u) - u 
k i 

dud 

dt 

dh 
dt 

= -Vc (ud -u), 

= Vx(uxH), 

dSp 
dt 

= - ( « • V) p , 

V h = 0 , V M = 0, 

AZ 

0 ) 

(2) 

(3) 

(4) 

(5) 

z>o 

h 

2 = 0 

(H.0,0) 
(n.0.0) 

- • X 

y. 

Fig. 1. The equilibrium configuration. 
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where u (u, v, w), ud are the perturbation velocities of the 
ionized and neutral components respectively h (hx, hy, 
hz), 8p and 8p are the perturbations, in the magnetic 
field, the density and the pressure, respectively. kx and 
p e are the permeability of the porous medium and the 
magnetic permeability of the ionized component, respec-
tively. 

The pressure tensor P, taking in account the effect of 
the finite ion-gyration radius for a given magnetic field 
along the x-direction with components is given as 

n « = o , 

n v v = - p v0 

f dw + dv ^ 
dy dz 

n z z = p v 0 

f dw dv ^ 
dy dz 

n J O . = n y , = - 2 p v 0 [ ^ | , du 

n ^ = n ^ = 2 p v0 

f du ^ 

TT TT ~ ,, I dv dw n Z v = n v z = p v 0 | — - — (6) 

We seek solutions into normal modes whose dependence 
on y, z , and t is given by 

f ( z ) exp ( i k y + n t ) , (7) 

where k is the wave number in the y-direction and n is 
the growth rate of the disturbance. We have neglected the 
contribution of viscosity in the momentum transfer equa-
tion, assuming it to be small as compared to finite Lar-
mor radius corrections, which in fact are of similar na-
ture with anisotropy in character. This is also more re-
alistic in discussions of magnetized plasma fluids. We al-
so find that Gupta and Bhatia [20] have not considered 
the effect of neutral particles on the R-T instability, as-
suming n'=n[\+a vc/(n+vc)]. We find that this is not 
true in case of dust in the plasma, as the contribution of 
uncharged dust is important in interstellar space. 

3. Dispersion Relation 

With the help of (7), and writing D for d/dz, (1-5) are 
conveniently written explicitly in terms of the compo-
nents v and w of the velocity (in the y- and z-directions, 

respectively) as 

p v[n n' + V / k x ] = 

- i k S p + 
4 K 

H\ ik — | (DH) 
n 

+ 2p w Q + VQ [p (D2 —k2)w 

+ ( D p ) ( D w ) - i k (Dp) v], 

p w [n n' + v/kx ] = 

(8) 

-D8p + -^~ 
4 n 

H D(wDH) 

- 2 p v 12 - v0 [p(D2 - k2 )v 

+ (Dp)(Dv) + ik(Dp)w]-gSp, (9) 
where 

n = 1 + 
a vr and a = pd/p. 

(n + vc) j 

From (3) and (7) it follows that 

hx=- — (DH), hv=hz= 0. 
n 

From (5) and (7) 

_ . Dw 

From (4) we get 

8 p = — — (D p). 

(10) 

(11) 

(12) 

With the help of the above equations, (8) and (9) may be 
written in the form 

p — (Dw)[n n' + v/k] ] = 
k 

-ik8p + -^-\ik H — | DH 
4 K 

w 
n 

»2 ,.2 + 2pwQ + v0 [p(D — k ) w 

+ 2 ( D p ) (Dw)] , (13) 

pw[nn' + v!k\ ] = 

D8p + 
4 K 

— D(wDH) 
n 

2 pm 
Dw 

- v 0 

+ ik (Dp) w 

p(Dz — k2 ) y (Dw) + -y (Dp) (Dz w) 
k k 

- — w (Dp) . 
n 

(14) 
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In writing these equations we have made use of the fact 
that p depends only on z. 

We shall now derive an equation for w by eliminating 
Sp from (14) with the help of (13): 

[nn' + v/ki }D(pDw) + 2ikQ(Dp)w 

+ 2 ik v0[D((Dp)(Dw))-k2 [Dp)w] 

-k2[nn' + v/Jfc, ]pw + ^—w(Dp) = 0 . (15) 
n 

This is the required equation for w. 
It should be remarked here that the density of the neu-

tral particles in the two regions z < 0 and z>0 is assumed 
to be the same. 

4. The Case of Two Superposed Fluids Separated 
Horizontal Boundary 

We shall now investigate the solutions of (15) in the 
case of two superposed fluids, in each of which the den-
sity and the speed of sound are constant and independent 
of z. We shall suppose that the common boundary which 
separates the two fluids is located in the plane z=0, and 
we shall suppose that the fluids are of infinite extent 
above and below this interface. The assumption that the 
density and the speed of sound are constant is rather ar-
tificial (it requires unusual equations of state in the two 
fluids), but it may be expected to illustrate the general 
features of the physical situation in which incompress-
ibility plays a role. 

We now consider two superposed partially ionized 
plasmas of uniform densities p{ and p2 , separated by a 
horizontal boundary at z=0. Then in each region of con-
stant p, (15) becomes 

(D2-k2) w=0. (16) 

Since w must vanish both when z—>-°° (in the lower 
plasma) and z—»oo (in the upper plasma), we can write 
the solutions, appropriate to the two regions, as 

wx=Axekz, (z<0), (17) 

w2=A2e~kz, (z > 0), (18) 

The solutions of (15) must satisfy a certain boundary con-
dition on the horizontal planes within which the fluid is 
confined. Clearly, the appropriate condition is 

w=0, (on a bounding surface). (19) 

Additional conditions must be satisfied on any horizon-
tal plane (Z = ZQ, say) on which there are discontinuities 
in the density and the speed of sound. Evidently, one con-
dition is that 

Dxv = 0, (continuous on the interface). (20) 

A second condition is obtained by integrating (15) across 
the boundary z = Zo between {ZQ-£) and (z0+e), then as-
suming (£ —> 0). In view of the continuity of w across 
z=Zo and the boundedness of p, this limiting process 
leads to 

[n n'+ v / * ! ] A0 ( p Dw) + 2 ik Q A0(p) w0 

-2 ik v0[k2A0(p)w0] 

g k 2 

+ ± AQ (p) WQ = 0 , (21) 
n 

where (A/) denotes the jump in the quantity/across the 
interface and (w)0 is the common value of w on the inter-
face. 

If we apply the conditions (19) and (20) to the solu-
tions (17) and (18), and using them in (21), we get 

[n n' + V/k]][p2 Dw2 — p\ Dw,] 

+ 2 / £ r 2 [ ( p 2 - p i ) w 0 ] - 2 V 0 / / : 3 [ ( P 2 - P i ) W 0 ] 

X k 2 

+ ~ [ ( p 2 - p . ) w0] = 0 . (22) n 

5. Discussion 

Now substituting the value of n , (22) becomes 

n' + n2 [vc (1 + a) + 2i Q (/3, - ß2) 

-2ik2v0 ( ß l - ß 2 ) + v/kl] 

+ n[2iC2vc(ß]-ß2)-2ik2v0vc(ß]- ß2) 

+ ^ L + gk(ßl-ß2)] 
k l 

+ g k vc(ß\ - ß2) = 0 , (23) 

where 

(p, + p 2 ) (P1 + P2) 

Equation (23) is the general dispersion relation includ-
ing the effect of permeability, neutral particles, FLR and 
rotation for the R-T instability of two superposed mag-
netized fluids. In the absence of rotation this reduces to 
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the dispersion relation obtained by Chhajlani and Vaghe-
la [19] without viscosity and surface tension. In the ab-
sence of the neutral particles this reduces to the disper-
sion relation obtained by Bhatia and Chhonkar [ 17] with-
out the viscosity effect. 

Now, from (23) we find that this equation is a cubic 
equation in "n". From the constant term of this equation, 
i.e. if (ßx-ß2)<0 or p i < p 2 , there will be one root giv-
ing instability and the configuration will be unstable. It 
is obvious from our configuration that if the density of 
the upper fluid is higher than that of the lower fluid, the 
system will be unstable. 

Now if px>p2, the system will be stable. But the 
dispersion relation is a cubic equation, and for the 
necessary condition of the stability each coefficient 
should be positive, and it will be positive when p i > p 2 

and [Q(ßx-ß2)-k2 vo(ßx-ß2)]>0. 
To see the effect of the various factors on the condi-

tion of instability, let us reduce (23), eliminating the fac-
tors one after the other. For the FLR correction v0=0, 
(23) becomes 

n3+n2 [Vc (\ + a) + 2i Q(ßx -ß2) + v/kx] 
v vr + n 2i Qvc(ßx~ ß2) + —±+gk(ßx-ß2) 

+ gkvc(ßx-ß2) = 0. (24) 

For vc=0, (24) reduces to 

n2+n [2 i Q (ßx-ß2)+v/k,]+gk (ßx-ß2) =0 . (25) 

If in (25) v=0, we get 

n2+n [2 i Q (ßx-ß2)]+g k (ßx-ß2) =0. (26) 

When X2 = 0, then (26) becomes 

n2+gk(ßx-ß2) = 0 . (27) 

The condition of instability for (24), (25), (26) and (27) 
are same, for p 2 > p i the system becomes unstable. From 
these we find that the permeability, collisional frequen-
cy of neutral particles and rotation in the horizontal di-
rection do not affect the condition of instability, they do 
have the damping effect there by reducing the growth rate 
of instability, and thus they tend to stabilize the system. 

If v = v c=0 and 12=0, (23) reduces to 

n2-n [2 i k2 Vo(ß\-ß2)]+g k (ßx-ß2) = 0 . (28) 

This dispersion relation has already been discussed by 
Singh and Hans [11]. The solution of (28) is given by 

n=iv0k2(ßx-ß2) 

=F [g k (ßx-ß2) +v2k4 (ßx-ß2)2]1'2. (29) 

Equation (29) gives the result obtained by Kalra [12] in 
his eq. (10), for static superposed fluids under gravity. 
We find that the effect of the Larmor radius is to reduce 
the growth rate of the system otherwise monotonically 
unstable; the perturbation makes them over stable. 

To show the effect of rotation in the horizontal direc-
tions with FLR, when v= v c=0 we have 

n2+n [2 i Q (ßx-ß2)-2 i k2 v0 (ßx-ß2)] 

+gk(ßx-ß2)=0. (30) 

The solution of (30) is 

n = -i(ßx-ß2)(Ü-k2vo) (31) 

^[gk(ßx-ß2)+(ßx-ß2)2(Ü-k2 v0)2]1 / 2 . 

This is the modified result which includes the effect of 
rotation along with FLR. 

Now we wish to look into the effect of various factors 
on the growth rate of instability. For this discussion our 
dispersion relation (23) is put in a non-dimensional form 
by the substitutions 

1 / 2 ' k ~ (gk)"2' C (gk)"2' 

Q = 

(gk) 
~j2 i V0 = v 0 ( £ * ) , vp = 

(gk) 1/2 ' 

where vn = — . 

Equation (23) takes the following form after substitu-
tions: 

n 3 + n2 [vc (1 + a) + 2iÜ(ßx - ß2) 

- 2 i * 2 Vo ( A - 0 2 ) + v p ] 

+ n[2il2vc(ßx-ß2) 

-2ik2 V0vc(ßi-ß2) 
+ vp vc +(ß{-ß2)] + Vc(ßx-ß2) = 0. (32) 

Equation (32) is a cubic equation in n with complex co-
efficients. We solve this equation for (ß2-ßx) >0 for var-
ious values of Q, vc and v 0 . For a=0.1 , ßx=0.2, ß2=0.& 
(potentially unstable configuration), these calculations 
are presented in Table 1, where we have given the growth 
rate (real positive part of h) against the wave number k, 
(from £ = 0 to k = 1) for Q (angular velocity) = 5, 10, 15, 
v0 (FLR) = 1, 2, 3 and vc (collision frequency)=0.2, 0.4, 
0.6. It can be clearly seen from Table 1 that, as v0 and 
Cl are increasing, h decreases showing thereby the sta-
bilizing character of the effect of FLR as well as rotation. 
Also we see from Table 1 that the growth rate increases 
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Table 1. 

Values of growth rate (multiplied by 100) 

v c = 0 . 2 v c = 0 . 4 v c = 0 . 6 v c = 0 . 2 v c = 0 . 2 v c = 0 . 2 v c = 0 . 2 
v 0 = 1.0 v 0 = 1.0 v ( ) = 1.0 v ( ) = 2 . 0 v o = 3 . 0 v o = 1 . 0 v „ = 1 . 0 
Q=5.0 Ü=5.0 Ü=5.0 fi=5.0 Ü=5.0 ß = 10 tf = 15 

0.0 
0.2 
0 .4 
0.6 
0.8 
1.0 

2 4 . 6 9 1 4 0 . 4 7 5 5 4 . 1 3 2 2 4 . 6 9 1 2 4 . 6 9 1 2 1 . 7 3 0 2 0 . 8 7 8 
2 4 . 4 1 4 4 0 . 0 1 1 5 3 . 5 1 6 2 4 . 1 4 1 2 3 . 8 7 2 2 1 . 5 8 4 2 0 . 7 7 7 
2 3 . 6 0 7 3 8 . 6 5 2 5 1 . 7 0 1 2 2 . 5 8 6 2 1 . 6 2 1 
2 2 . 3 3 9 3 6 . 4 9 5 4 8 . 7 9 1 2 0 . 2 7 3 
2 0 . 7 1 0 3 3 . 6 9 5 4 4 . 9 6 7 17 .533 
18 .838 3 0 . 4 4 5 4 0 . 4 7 9 1 4 . 6 7 9 1 1 . 6 3 0 

2 1 . 1 5 1 2 0 . 4 7 7 
1 8 . 4 5 2 2 0 . 4 5 5 1 9 . 9 8 9 

1 9 . 5 2 9 1 9 . 3 2 9 
18 .415 18 .518 

14 .965 

Table 2. 

k Values of growth rate (multiplied by 100 

ß,=0.2,/?2=0.8, vj,= 1, vc=0.2, v 0 =l , 0=5 

a=0.2 a = 0 . 4 a=0.6 

0.0 24.683 24.666 24.647 
0.2 24.407 24.391 24.374 
0.4 23.602 23.591 23.579 
0.6 22.337 22.332 22.326 
0.8 20.711 20.713 20.714 
1.0 18.842 18.850 18.858 

as vc increases, for the same k, thereby exhibiting the de-
stabilizing character of the collision frequency in the 
presence of FLR and Coriolis forces. The results are 
shown in the Figs. 2, 3 and 4. 

It is seen from Table 2 that for small wave numbers 
the growth rate decreases as a (the dust density) increas-
es, while for large wave numbers the growth rate increas-
es with a . We thus see that the dust density has a dual 
role, stabilizing for small wave numbers (large wave 
length) and destabilizing for large wave numbers (small 
wave length). Further it can be easily seen that the range 
of the wave numbers for which the dust density has a sta-
bilizing influence increases with the dust density. 

In the absence of FLR, the permeability and rotation 
equation (32) becomes 

h'+n2[vc(l + a)]+h[(ßl-ß2)] + vc(ßl-ß2)=0. (33) 

This equation has been solved numerically for various 
values of the non-dimensional parameters. The results 
are presented in Figure 5. The stabilizing effect of the 
collision frequency is shown in this figure, where we plot 
the real positive root (leading to instability) for various 
values of «against the non-dimensionalized collision fre-

vc=os 

vc=0.t 

1 1 1 1 1 1 
0.00 0.20 0 .40 0.60 0.80 1.00 1.20 

K 

Fig. 2. The growth rate nof the unstable mode, plotted against 
the wave number k for the collision frequencies vc=0.2,0.4 and 
0.6 with 12=5, vo=\,ß2=0.8, ßi=0.2 and a=0 .1 . 

Fig. 3. The growth rate nof the unstable mode, plotted against 
the wave number k for the FLR v 0 = l , 2 and 3 with {2 = 5, 
vc=0.2, ß2=0.8, ßi=0.2 and a=0.1. 

quency vc, taking ß2=0.8 and ßj=0.2. We find that the 
growth rate is superposed with the increase of collision 
frequency and of dust density. When we add the Corio-
lis force, Fig. 5 is modified, and results are shown in Fig-



943 P. K. Sharma and R. K. Chhajlani • Effect of FLR on the R-T Instability of Magnetized Plasma 

R 

Fig. 4. The growth rate nof the unstable mode^ plotted against 
the wave number k for the angular velocities £2=5, 10 and 15 
with vc=0.2, v0= 1, /32=0.8, ßx =0.2 and a = 0 . 1 . 

Fig. 5. The growth rate n, plotted against the wave number k 
for «=0 .6 , 0.8 and 1.0 with ß2=0.& and £ ,=0 .2 . 

ure 6. In this case the growth rate is superposed with the 
increase of collision frequency and of dust density, show-
ing thereby the stabilizing character of the effect of col-
lision frequency. 

Fig. 6. The growth rate n, plotted against the wave number k 
for a=0 .6 , 0.8 and 1.0 with Q=5, # , = 0 . 8 and ßx=0.2. 
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