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The TV-particle quantum mechanical system in an external field is considered on the basis of 
two-particle density functions. The main point of the presented work is to reveal the advantages 
of the two-particle density formalism as compared to the common one-particle density formalism 
applied to a simple example. The two-particle density formalism permits us to take into account 
the exact two-particle interaction without additional models. The exchange and correlation effects 
can be considered by a proper choice of the trial function. By using the presented formalism we 
calculate the density of the electron gas on different metal surfaces. A simple trial function allowing 
for correlations gives us a more correct fit to the experimental data on the metal dipol barriers than 
corresponding calculations with the one-particle density formalism. It is also shown that a Pe r tuba t ion 
of the external potential can be effectively taken into account by a Per tubat ion calculation for the trial 
function. 
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1. Introduction 

A well established method to calculate experi-
mentally measurable properties of many-particle sys-
tems is the one-particle density functional theory 
[1, 2]. A difficulty of this approach is to deal with 
the exchange- and correlation energy of the system. 
To avoid this difficulty we proposed a more general 
method based on the many-particle density function-
als [3, 4] to calculate properties of inhomogenous 
quantum systems. It was shown in [3] how the corre-
lation properties in many-particle systems with two-
body type interactions can be considered more exactly 
in the f rame of two-particle density functional calcu-
lations. It was also shown that the problems arising 
with the consideration of two-body correlations on 
the basis of traditional one-particle density functional 
theory are met by the choice of the trial function 
in many-particle density functional calculations. We 
suggested to construct the trial function by using the 
general many-particle scattering theory [5]. 

In this paper we present an analysis of exchange 
and correlation properties of particles in a many-

particle system with two-body interactions for a sim-
ple example, the electron density in the presence of a 
metallic surface. This analysis is done in the frame of 
two-body density functionals with a proper choice of 
the two-particle density trial function. We also con-
sider the dependence of the trial function on a Pertuba-
tion of the potential and develop for this a Pertubation 
method on the basis of the Lagrange-Euler equation 
of the variational calculation. 

2. The Influence of the Trial Function on 
Correlation Properties 

We consider an ./V-Fermi-particle quantum system 
with two-body interaction in an external force field. 
This system is represented by the Hamiltonian 

ti 2 N N 

fc=l fc=l 
2 N 

r t - r , r 

(1) 

Reprint requests to Prof. Dr. H. Neumann; 
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where the explicite spin dependence is neglected. 
To calculate the ground state energy of the sys-

tem we use the two-particle density method which 
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we briefly sketch in the following. The two-particle 
density of the system in a state ip is defined as the 
diagonal part of the reduced density matrix of second 
order 

r*2(ri,r2) = l2(r\r2,rxr2) 

with 

W r r N(N - 1) 

(2) 

(3) 

/ V>(rir2r3 • • • r N)ip* (r\r'2r3 •••rN)d3r3 • • • d 3 r N . 

Similarly to one-particle density functional theory [ 1 ], 
the ground state energy of a quantum system can be 
proved to be a definite functional of the ground state 
two-particle density n2. The kinetic energy functional 
is defined by 

T[n2] := inf {iP\T\iP), 
-0'—»12 

where T is the kinetic energy operator 

(4) 

. 2 N 

2m ^ k (5) 
k=1 

and the infimum is taken over all states ip with two-
particle density n2. An energy functional can then be 
defined as 

E[n2] = T[n2] 

+ Ä T I 7 / ( y ( r i ) + y ( r 2) ) w 2( r i , r 2 )d 3 r 1 d 3 r 2 

(6) 

47T£o 
f n2(ri, 

J k i -
^ d 3 r l d

3 r 2 . 
ri 

Further there is a variational principle for the ground 
state energy 

EQ = min E[n2], 
all allowed n 2 

(7) 

where minimization over "all allowed n2" means min-
imization over all functions / : IR x IR IR, 
which arise as two-particle densities of an N-Fermion 
quantum system. The corresponding functional for 
the one-particle density formalism was developed by 

Levy and Lieb [6-8] . For an application of the vari-
ational principle (7), the allowed two particle densi-
ties must be characterized intrinsically. This impor-
tant problem of the so-called ./V-representability of 
integrable functions / : IR3 x IR3 — • IR has not yet 
been solved satisfactorily. 

In contrast to one-particle density functional the-
ory, however, the suggested method has the great 
advantage of an exact interaction energy functional. 
Only in the kinetic energy part suitable approxima-
tions are necessary. Here we used the gradient expan-
sion and especially the Kirzhnits method [9-11]. The 
result is a well known expansion 

t2[n2\ = t f [ n 2 \ + t?[n2\ + ... (8) 

with vanishing odd terms for the kinetic energy den-
sity t2, which is defined by 

t2(rur2)tfrxd?r2. (9) 

In the above mentioned expansion we have for the 
zeroth and second order terms 

m N 5 

tf[n2] = h 1 
mllN 

h2 1 

( V m 2 ) 2
 | (V2rc2)2 

712 n 2 

(10) 

(11) 

m \2N 
(V\n2 + V\n2) . 

Now (6) and (10, 11) can be applied to an analysis of 
the electron gas on metal surfaces in the frame of the 
jellium model in the following way. We choose suit-
able parameter dependent trial functions for the two-
electron density, and then minimize the functional 
with respect to these parameters. To show the depen-
dence of the results on the special choice of the trial 
functions we use to different classes of them. 

Firstly we use a very simple two-particle density 
trial function as a product of one-particle densities: 

n%(rur2)=X-na(rx)na(r2) 

with 

nQ(r) = n + 

\ exp(—az) if z > 0, 

1 — \ exp(a,z) if z < 0, 

(12) 

(13) 
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Fig. 1. One-particle densities of the product- and the permutation trial function. 

where n+ is the constant density of the metal ions. 
In this approximation it is clear that correlation ef-
fects cannot occur, because there is only the electron-
electron Coulomb repulsion as interaction energy. In 
a further step we choose a more complex kind of trial 
functions by taking into account some permutation 
properties of the system: 

n 2
a " a 2 ( r i , r 2 ) = C[<t>\(rl)<j>\(r1) + <^(r,)02(r2) 

- /30i(ri)</>2(ri)0i(r2)02(r2)], 
(14) 

where 

M r ) = ^ exp( -a iz )d (z ) + ( l - i exp(a iz f )O( -z ) , 

(15) 

3 ( a i + Q 2 ) 2 

2 a \ + or2 + a i a 2 

and C is the normalization constant 

22-ß 

(16) 

(17) 

Table 1. Results for the dipole-barriere, calculated by the 
variational two-particle density formalism; Dth,pr are the 
results from using the product trial-function; Ah,per are the 
results from using the permutation trial-function; Dexp are 
the experimental data. 

Metall n+ 
/ A " 3 

a0,pr 
/ A " 1 

-Dth,pr 
/eV 

<*0,pe 
/ A - 1 

Ah,pe 
/eV 

Dexp 
/eV 

Rb 0.0119 1.690 0.752 1.929 0.579 0.80 
Na 0.0266 2.033 1.163 2.294 0.915 0.50 
Li 0.0465 2.309 1.580 2.582 1.263 0.90 
Ag 0.1167 2.837 2.622 3.126 2.162 2.03 
Cu 0.1693 3.081 3.226 3.373 2.693 3.50 
Ca 0.0483 2.328 1.612 2.602 1.290 1.00 
Mg 0.0867 2.655 2.224 2.940 1.820 2.17 
Al 0.1818 3.130 3.358 3.422 2.810 3.87 

The special form of (16) is required by charge con-
servation. We hope to see real correlation effects, 
because this class of trial functions differs strongly 
from a product of simple electron number densities. 
It was found that for all n+ the energy functional was 
minimized when a\ = a 2 =: a . In Fig. 1 the one-
particle densities, as calculated from the two-particle 
density of both two-particle trial functions, are pre-
sented graphically. For a comparison with experimen-
tal data we also calculated the dipol barriere, which 
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Fig. 2. Results for the dipole-barriere, calculated by the variational two-particle density formalism. 

is defined by 

D = e ( 0 ( - o o ) - 0(oo)). (18) 

Here 0 is the electrostatic potential of the total charge 
distribution p(r) = e(—n(r) + n+9(—z)) derived by 
means of the poisson equation A4> = (1 /eo)P- In Ta-
ble 1 these results are listed for both trial functions, 
together with the experimental data taken from [12] 
for several metals. In Fig. 2 these data are addition-
ally presented graphically. The analysis of our cal-
culations shows that even in the frame of the simple 
jellium modell the variational calculation using the 
above presented two-particle density method gives a 
good agreement with experimental data if one takes 
into account more complex permutation properties of 
the electron system on the metal surface. 

3. A Pertubation Calculation in the Two-Particle 
Density Functional Method 

In this part of our work, we introduce a possibil-
ity to handle a more complicated external force field 
as that of a periodic solid by a Pertubation calcula-
tion formalism which is based on the Euler-Lagrange 
equation of the two-particle density variational prob-

lem. Let us expand the external potential in a series 

V = V(0) + F(1) + • • • 

If the minimization problem is solved for the zero 
order term V ( 0 ) the higher order terms immediately 
result from the hereafter introduced Pertubation cal-
culation. 

As an example we apply this formalism to a solid 
with periodically located atoms. We use the varia-
tional calculation in the frame of the jell ium model of 
Sect. 2 as a result of order zero and consider the lattice 
structure by the Pertubation V ( 1 ) . The starting point 
of the Pertubation calculation is the Euler-Lagrange 
equation 

^ ( E [ n 2 ] - ß j n 2 ( r 1 , r 2 )d 3 r 1 d 3 r 2 ) = 0 , (19) 

where 

E[n2] = T[n2] (20) 

+ / ^ r i ) + ^ r 2 ) ) n 2 ( r i , r 2 ) d 3 r 1 d 3 r 2 

+ / t i 2 (r i , r 2 ) iy (r i , r 2 )d 3 r id 3 r 2 , 
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W(r , , r 2 ) = 
1 1 

4tt£0 \r 1 -r2\ 

Executing the functional derivative in (19) one gets 
the identity 

5 T 
— + - _ ( v ( r i ) + V ( r 2 ) ) + W(run) - ß = o.(2i) 
on2 N — 1 

We assume that according to the potential the den-
sity n2 and the multiplier n can be expanded in a 
Pertubation series 

V = F(0) + V(1) 

n 2 = n f + r41) + 

(22) 

(23) 

(24) 

where the first order terms are comparatively small. 
Collecting in (21) all terms order by order while tak-
ing into account that the interaction function W is 
completely considered in the order zero equation, one 
gets 

M(0) = — + ß Snf 

1 
N — 1 (V^ir^ + V ^ ^ + Wir^), 

, ( D -
5 lT 

n[ l ) + 
1 

N - 1 

(25) 

( F ( 1 V i ) + ^ (1)(r2)).(26) 

.(i) 

( l S T r 4 ) 1 / 3 ! ) " 1 ^ ) 2 / 3 / r 4 
I m 57V 

(28) 

In (28) the Lagrangian multiplier has to be calculated 
from the normalization condition for n2. Certainly, 

n{2} has already the correct normalization so that the 
constraint condition is 

J 1 , r 2 )d 3 r 1 d 3 r 2 = 0. (29) 

Therefore we have 

/ ^ " ' - ^ ( v - V . i + v " " ^ ) ) ) 

\m5N 3 / z 

and we obtain the Lagrangian multiplier 

^ ( , ) = Ä T r T / ( F ° ) ( r i) + ^ ( 1 V 2 ) ) 

• ( n f ( r 1 , r 2 ) ) 2 / 3 d 3 r 1 d 3 r 2 ( 3 0 ) 

As an application of the Pertubation calculation we 
consider a periodic lattice with lattice points located 
at a n m / := na\ + ma2 + la3, where the at denote the 
three lattice vectors. For a function / € £ !(IR3) the 
following identity is well known: 

F(r) := £ / ( r 

(27T)3/2 

Onml) 

V E /<* 
n,m,l£Z 

nm/ )e ~
irSnml 

(31) 

In the kinetic energy functional of (26) we only con-
sider <20) according to (10) and find 

{bnfj1 m 57V 3 ^ ) ' ( 2 ? ) 

Assuming that n2
] as an approximate solution of () 

is already known from calculations in the frame of 
the jellium model, the first order of the two-particle 
density is then 

where / denotes the Fourier-transform of / , gnml is 
a reciprocal lattice vector and V = • (a2 x a3) is 
the volume of one cell. For a cubic lattice one has 
Snmi = (27rn/al,27rm/a2,27r//a3). 

For a single-atom potential V$ decreasing suffi-
ciently fast and for a lattice with plane surface at the 
hyperplane x3 = 0 one can assume that 

Vtot(r) = M(-x3+a3/2) ^ Vs(r - anml) 

(2tt)3/2 

= M ( - x 3 + a 3 / 2 ) v ' (32) 

E Vs(g nml 

V 

Je"**»»', 

where M is a cut-off function like the Heaviside func-
tion. In the following we will see that no definite ex-
pression is required for M. 
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With respect to the Pertubation formalism pre-
sented above, it is now possible to specify different 
orders of the lattice potential. 

We shall only consider the terms of zero and first 
order of the expansion (32). We assume the lattice to 
be cubic and a\ = a2 = a3 =: a. With these assump-
tions the Pertubation term of the potential becomes 

fc=l 

(33) 

2-KXK 

4. Application to the Calculation with the Product 
Trial Function 

In this section, the formalism presented above is ap-
plied to the jellium model calculation with the product 
trial function 

1 
n2(ri,r2) = -n(rx)n(r2) 

n (1 )(r) = - — 
n + 

2 x l / 3 ! 

Cfcin 
>(0) , 2/3 (27T)3/2 

(n( V))' 
V 

• lit 

fc=i 
n ' v a 

(37) 

with 

In our model the Pertubation is caused by neutral 
atoms placed at the lattice points as a correction to the 
homogeneous positive charge density. The ordering 
number of the atoms is assumed to be Z — A, where 
Z is the ordering number of the element which forms 
the lattice and A is the number of electrons with which 
this element contributes to the electron gas. 

As the potential, built from neutral atoms at the 
lattice points, we take 

where C = (Z — A)e2/4-KEO is the typical electro-
static constant, aeff = 0.886 • • (Z - A ) ~ 1 / 3 is the 
so-called effective radius, Rc is the so-called core-
radius, which takes into account Pauli-like repulsions 
of the electron hull of the atom. Here we used the 
ionic radius of the metals from [13]. 

The Fourier transform of this potential is 

n(r) = n+ 
x3 > o, 

\ - U a x \ x3 < 0, 

Because of the special properties of the system, and 
with the condition that M(-x + a/2) = 0 for x > 0, 
one gets 

M ( 1 ) = 
N - 1 V 

It is easy to show that 

(27T)3/2 . 
v Vs( 0). 

n (1 )(r) = 
1/3 

( n ( 0 V ) ) 2 / 3 

Ckin 

( 2 7 r ) V V s ( 0 ) - F ( 1 )(r) V 

(34) 

(35) 

Vs(k) = -
2 g —^c/ae(T 

47T£0 V 7T 1 /a2
ff + k2 

( cos (kRc) + —— s'm(kRc)]. 
V kat ff / 

(39) 

In order to simplify (37) we introduce the abbrevia-
tions 

a spec := 3 
1 (2tt)3/2 

47T£o C k i n a 3 

^ ) {2n+)l'\Z - A), 
a 

(40) 

(Z - A)e 21 

47T£0 

- 1 
, (41) 

h2 4 
Cid» = — — (18tt4) 

m 15 v ' 
4 \ l /3 (36) 

Typical values of a show, that it is now possible to 
neglect the cut-off function M completely, because 
n ( 0 ) decreases quickly enough. So we may write 

1 ( 2-kx \ 
F(XI,X2,X3) := - 2_,COS ( ^ " ^ J ' ( 4 2 ) 

/ := - n n 
(0) (43) 
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1,2 

839 

Fig. 3. Zero and first order of the electron density for Al. 

Now we can write 

(r) = -CspecF(xux2,x3)f2/\x3) (44) 

Cspec characterizes the magnitude of the first order 
correction of the Pertubation. In Table 2 Cspec in units 
of n+ is listed for those metals for which the varia-
tional calculation was carried out in the frame of the 
jellium model. Here one sees that the dominating fac-
tor in CSpec is the relation Rc/aeff between the core-
and the effective radius. In Fig. 3 the x\ — £2-mean of 
n(0) + n d ) a s a f u n c t i o n of x3 is presented graphically 
for Al as an example. To get the correction 0 (1) to the 
one electron potential it is now necessary to solve the 
Poisson equation for the Pertubation charge density 
pd) = -en (l) 

Ad>w = - n ( 1 ) . 

Therefore we first search for a solution of 

(45) 

Table 2. Results for Cspec that characterizes the magnitude 
of the first order correction of the Pertubation 

Metal a/A n + / A - 3 Z fic/A Cspec ^c / ae f f 

Rb 5.62 0.0119 37 1.488 -0.0002 10.97 
Na 4.30 0.0266 11 1.012 -0.0421 4.73 
Li 3.50 0.0465 3 0.758 -0 .1574 1.71 
Ag 4.09 0.1167 47 1.011 -0 .0024 7.74 
Cu 3.61 0.1693 29 0.947 -0 .0093 5.90 
Ca 5.58 0.0483 20 1.051 -0 .0109 5.37 
Mg 3.20 0.0867 12 0.780 -0 .0933 3.68 
Al 4.04 0.1818 13 0.550 -0.0891 1.25 

Only the behaviour in ^-direct ion of G is of inter-
est for later results. So we define a new potential by 
averaging over the xi ,^-coordinates: 

G(xi) := J G ( x i , x 2 , x i ) d x \ d x 2 - (47) 

This function satisfies the differential equation 

d2G 1 ,27V„•)/•>, , _ = _ C O S ( _ ) / 2 / 3 ( , ) . (48) 

AG(xi, x2, x3) = F(xu x2, x3)f2/\x3). (46) The complete correction to the one-electron potential 
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Metal a/A n + A - 3 Z Rc'A D ( 0 ) / eV D ( 1 ) /eV D(0) + D ( i ) / e V £>ex p/eV 

Rb 5.62 0.0119 37 1.488 0.752 0.0001 0.752 0.80 
Na 4.30 0.0266 11 1.012 1.163 0.0303 1.193 0.50 
Li 3.50 0.0465 3 0.758 1.579 0.1250 1.704 0.90 
Ag 4.09 0.1167 47 1.011 2.622 0.0077 2.630 2.03 
Cu 3.61 0.1693 29 0.947 3.226 0.0335 3.260 3.50 
Ca 5.58 0.0483 20 1.051 1.612 0.0277 1.640 1.00 
Mg 3.20 0.0867 12 0.780 2.224 0.1202 2.344 2.17 
Al 4.04 0.1818 13 0.550 3.357 0.4458 3.803 3.87 

Table 3. Results of the Pe r tuba t ion calcu-
lation wi th a per iodic lattice for the first 
order of the dipol barriere D. 

is then 

e2 

= —CspecG(z). (49) 
£0 

By averaging over the 2-coordinate inside the solid 
one gets the correction to the dipol barrier D ( 1 ) listed 
in Table 3. We obtain these results by numerical inte-
gration of (48). 

Compairing now the corrected values of the dipol 
barriere Z?(0) + T>(1) with the experimental data one 
sees that taking into account the lattice structure of 
the metal within a Pertubation calculation gives no 
essential improvement of the variational calculation 
in the frame of the jellium model. 

5. Conclusion 

The presented results show that the two-particle 
density formalism of many-particle quantum mechan-
ical systems may easily take into account correlation 
and exchange properties. By variational calculations 
based on the presented method, the two-particle den-
sities can be chosen in a simple form by consider-
ing permutation properties of two body systems in 
external fields. The Pertubation of external fields in-
fluences the trial functions. The corrections of the 
trial functions due to this effects can be estimated by 
the variational method based on the Euler-Lagrange 
equation. 
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