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The N-particle quantum mechanical system in an external field is considered on the basis of
two-particle density functions. The main point of the presented work is to reveal the advantages
of the two-particle density formalism as compared to the common one-particle density formalism
applied to a simple example. The two-particle density formalism permits us to take into account
the exact two-particle interaction without additional models. The exchange and correlation effects
can be considered by a proper choice of the trial function. By using the presented formalism we
calculate the density of the electron gas on different metal surfaces. A simple trial function allowing
for correlations gives us a more correct fit to the experimental data on the metal dipol barriers than
corresponding calculations with the one-particle density formalism. It is also shown that a pertubation
of the external potential can be effectively taken into account by a pertubation calculation for the trial

function.
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1. Introduction

A well established method to calculate experi-
mentally measurable properties of many-particle sys-
tems is the one-particle density functional theory
[1, 2]. A difficulty of this approach is to deal with
the exchange- and correlation energy of the system.
To avoid this difficulty we proposed a more general
method based on the many-particle density function-
als [3, 4] to calculate properties of inhomogenous
quantum systems. It was shown in [3] how the corre-
lation properties in many-particle systems with two-
body type interactions can be considered more exactly
in the frame of two-particle density functional calcu-
lations. It was also shown that the problems arising
with the consideration of two-body correlations on
the basis of traditional one-particle density functional
theory are met by the choice of the trial function
in many-particle density functional calculations. We
suggested to construct the trial function by using the
general many-particle scattering theory [5].

In this paper we present an analysis of exchange
and correlation properties of particles in a many-
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particle system with two-body interactions for a sim-
ple example, the electron density in the presence of a
metallic surface. This analysis is done in the frame of
two-body density functionals with a proper choice of
the two-particle density trial function. We also con-
sider the dependence of the trial function on a pertuba-
tion of the potential and develop for this a pertubation
method on the basis of the Lagrange-Euler equation
of the variational calculation.

2. The Influence of the Trial Function on
Correlation Properties

We consider an /N-Fermi-particle quantum system
with two-body interaction in an external force field.
This system is represented by the Hamiltonian

sz N N
_ 2
H= s Y VL +> v
=1 k=1 )
2 N

where the explicite spin dependence is neglected.
To calculate the ground state energy of the sys-
tem we use the two-particle density method which
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we briefly sketch in the following. The two-particle
density of the system in a state v is defined as the
diagonal part of the reduced density matrix of second
order

na(ry,r2) = v2(riry,rira) )
with

N(N - )

3 3)

Yo (rira,riry) =

: / Y(rirary - Py i) dry - Py

Similarly to one-particle density functional theory [1],
the ground state energy of a quantum system can be
proved to be a definite functional of the ground state
two-particle density n,. The kinetic energy functional
is defined by

T'na] = (YIT ), 4)

inf
PYrny

where 7 is the kinetic energy operator

h2
T=-—Y V2, (5)

and the infimum is taken over all states 1) with two-
particle density n;. An energy functional can then be
defined as

E[n,] = T[n,] (6)

1
N1 /(V("l) +V(r))nay(ry,ry) d°rid’ry

2
e na(ry,ry)
2( . d3r1d3r2.
47!'60 |I'1 —r2|

+

Further there is a variational principle for the ground
state energy

E() = E[nz] y (7)

m
all allowed n,

where minimization over “all allowed n,” means min-
imization over all functions f : IR® x IR® — IR,
which arise as two-particle densities of an N-Fermion
quantum system. The corresponding functional for
the one-particle density formalism was developed by
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Levy and Lieb [6 - 8]. For an application of the vari-
ational principle (7), the allowed two particle densi-
ties must be characterized intrinsically. This impor-
tant problem of the so-called N-representability of
integrable functions f : IR® x IR> — IR has not yet
been solved satisfactorily.

In contrast to one-particle density functional the-
ory, however, the suggested method has the great
advantage of an exact interaction energy functional.
Only in the kinetic energy part suitable approxima-
tions are necessary. Here we used the gradient expan-
sion and especially the Kirzhnits method [9- 11]. The
result is a well known expansion

talna] = 0 [na] + tP[na] + ... (8)

with vanishing odd terms for the kinetic energy den-
sity ¢,, which is defined by

T= / / to(ry,rp) d’r d’r,. 9)

In the above mentioned expansion we have for the
zeroth and second order terms

O 1 P13 o 4 a3
t2 [nz] = Eﬁg(lgﬂ' ) n, , (10)

2
tP[ny] =

71_2 1 [(Viny)? 2 (Vanp)?
m 12N ny n

R 1
—_ Em (V%nz + V%nz) i

(11)

Now (6) and (10, 11) can be applied to an analysis of
the electron gas on metal surfaces in the frame of the
jellium model in the following way. We choose suit-
able parameter dependent trial functions for the two-
electron density, and then minimize the functional
with respect to these parameters. To show the depen-
dence of the results on the special choice of the trial
functions we use to different classes of them.

Firstly we use a very simple two-particle density
trial function as a product of one-particle densities:

1
ny(ry,ry) = En"(rl)n"(rz) (12)
with
lexp(—az)  ifz>0,
n*(r) =, - { (13)
1— %exp(az) ifz <0,
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Fig. 1. One-particle densities of the product- and the permutation trial function.

where 7, is the constant density of the metal ions.
In this approximation it is clear that correlation ef-
fects cannot occur, because there is only the electron-
electron Coulomb repulsion as interaction energy. In
a further step we choose a more complex kind of trial
functions by taking into account some permutation
properties of the system:

n3" % (ry,ry) = C[@(r1)d5(r2) + $3(r1)ei(r2)
— Bo1r)da(r)d1(r2)ea(ra)],

where

6:0) = 5 exp(~a:()+ (1 - 3 expl2))6(—2),
1s)

8= 3 (o +m)?

D, o Bl /(N 16
2a2+d3 +aio (16)

and C is the normalization constant

S
+

C=

17)

|-
[\S)

|
=

Table 1. Results for the dipole-barriere, calculated by the
variational two-particle density formalism; D pr are the
results from using the product trial-function; D per are the
results from using the permutation trial-function; Dexp are
the experimental data.

Metall 4 @0,pr Dlh,pr QQ,pe Dlh,pe Dexp
/A=3 AT eV A=Y eV eV
Rb 00119 169 0752 1929 0579 0.80
Na 0.0266 2033 1163 2294 0915 0.0
Li 0.0465 2309 1580 2582 1263 090
Ag 0.1167 2837 2622 3.126 2162 203
Cu 0.1693 3081 3226 3373 2693 3.50
Ca 0.0483 2328 1612 2602 1290 1.00
Mg 0.0867 2.655 2224 2940 1.820 2.17
Al 0.1818 3.130 3358 3422 2810 3.87

The special form of (16) is required by charge con-
servation. We hope to see real correlation effects,
because this class of trial functions differs strongly
from a product of simple electron number densities.
It was found that for all 72, the energy functional was
minimized when a; = a; =: «. In Fig. 1 the one-
particle densities, as calculated from the two-particle
density of both two-particle trial functions, are pre-
sented graphically. For a comparison with experimen-
tal data we also calculated the dipol barriere, which
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Fig. 2. Results for the dipole-barriere, calculated by the variational two-particle density formalism.

is defined by
D = e(¢(—00) — ¢(0)).

Here ¢ is the electrostatic potential of the total charge
distribution p(r) = e(—n(r) + 7.6(—z)) derived by
means of the poisson equation A¢ = (1/g9)p. In Ta-
ble 1 these results are listed for both trial functions,
together with the experimental data taken from [12]
for several metals. In Fig. 2 these data are addition-
ally presented graphically. The analysis of our cal-
culations shows that even in the frame of the simple
jellium modell the variational calculation using the
above presented two-particle density method gives a
good agreement with experimental data if one takes
into account more complex permutation properties of
the electron system on the metal surface.

(18)

3. A Pertubation Calculation in the Two-Particle
Density Functional Method

In this part of our work, we introduce a possibil-
ity to handle a more complicated external force field
as that of a periodic solid by a pertubation calcula-
tion formalism which is based on the Euler-Lagrange
equation of the two-particle density variational prob-

lem. Let us expand the external potential in a series
V=vO4yDy...

If the minimization problem is solved for the zero
order term V© the higher order terms immediately
result from the hereafter introduced pertubation cal-
culation.

As an example we apply this formalism to a solid
with periodically located atoms. We use the varia-
tional calculation in the frame of the jellium model of
Sect. 2 as a result of order zero and consider the lattice
structure by the pertubation V!, The starting point
of the pertubation calculation is the Euler-Lagrange
equation

)
= (Btnal - u / na(r1,r) rid’r;) =0, (19)
where

E[nz] = T'[n2]

1
N -1

(20)

+

/ V) + V)t ra) Eridrs

+ /nz(’lvfz)W(fhfz)d3’1d3’2,
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1

W(ry,r _
iR et I —ra|

Executing the functional derivative in (19) one gets
the identity

ST
dn, Nl

r2) — p=0.21)

We assume that according to the potential the den-
sity n, and the multiplier 4 can be expanded in a
pertubation series

V=vO,yOy | (22)
ny =n(20)+n(21)+..., (23)
p=p®+u+. 4

where the first order terms are comparatively small.
Collecting in (21) all terms order by order while tak-
ing into account that the interaction function W is
completely considered in the order zero equation, one
gets

W= 881(;) * l_l(V(O)(rl) +VO@r) + Wy, r),
(25)
(1 8T W 1 " -
= (Sn‘°))2n2 TN 1(V r) + V). (26)
2

In the kinetic energy functional of (26) we only con-
sider t(o) according to (10) and find

T w4 1
B msm S 3. @
2

Assummg that n ) as an approxnmate solution of ()
is already known from calculations in the frame of
the jellium model, the first order of the two-particle
density is then

1) 1
712 = ([1( ) _

(h4

(Ve +VO(r2))

(28)
18xh/aL ) l(n(2°))2/3.

In (28) the Lagrangian multiplier has to be calculated
from the normalization condition for n,. Certainly,
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n(20) has already the correct normalization so that the
constraint condition is

/n(zl)(rl,rz) d&*rd’r, = 0.

Therefore we have

2
a _ ) (1)
/(u TV +VOer)

(29

R 4 1
(B o 18593) " @ n, ) Pridir =0

and we obtain the Lagrangian multiplier

p® = _N2_ 7 /(V(l)("l)+v(l)(’2))

“ (n(zo)('lyrz))z/ 3drd’r

([P énar)

As an application of the pertubation calculation we
consider a periodic lattice with lattice points located
ata,n; = na; + ma, + las, where the a; denote the
three lattice vectors. For a function f € LY(IR?) the
following identity is well known:

:E:: f(r - a1znml)
n, nzl§7§
2
= S fgamie

nm,l€Z

(30)

F@r) =
(31)

where f denotes the Fourier-transform of £, g, is
a reciprocal lattice vector and V' = a; - (a; X a3) is
the volume of one cell. For a cubic lattice one has
&nmi = (2mn/al,2rm/a2,2xl/a3).

For a single-atom potential V5 decreasing suffi-
ciently fast and for a lattice with plane surface at the
hyperplane z3 = 0 one can assume that

Vi) = M(—z3+03/2) Y Vs(r — @nmi)
n,m,l€Z
( )3/2

=M(-z3+a3/2)

:E:: ‘45(£fn7nl)e-_1’g"rnla

n,m,le€Z

(32)

where M is a cut-off function like the Heaviside func-
tion. In the following we will see that no definite ex-
pression is required for M.
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With respect to the pertubation formalism pre-
sented above, it is now possible to specify different
orders of the lattice potential.

We shall only consider the terms of zero and first
order of the expansion (32). We assume the lattice to
be cubic and a; = a; = a3 =: a. With these assump-
tions the pertubation term of the potential becomes

3/2
VO = Mz - 3) L (33)
. . 2T - 2rx
. [V5(0)+2V5(7)(Zcos( - k))].

k=1
4. Application to the Calculation with the Product
Trial Function
In this section, the formalism presented above is ap-

plied to the jellium model calculation with the product
trial function

1
ny(ry,ry) = 5”(’1)”(’2)

with
C(leem >0,
n(r) = n, ]
. feazgv I3 S O’

Because of the special properties of the system, and
with the condition that M(—z +a/2) = 0 for z > 0,
one gets

2 @n)}2.
a0 (34)
It is easy to show that
R AN 2/3
n(n(,):(ﬁ_) = ((0)(,))/
+ kin (35)
@)/, (1)
. v Vs(0) - V)|,
R 4 13
Ckin = T (187%) (36)

Typical values of a show, that it is now possible to
neglect the cut-off function M completely, because
n'® decreases quickly enough. So we may write

M. Gilles et al. - Trial Functions for the Two-Particle Density Functional Variational Method

2 LEI 2/3 (2r)3/?
MDgy= [ = o ()] b o™
mn= () G OV

ny

A 2 - 27wy,
-Vs(—a—)Zcos( - 1

k=1

(37

In our model the pertubation is caused by neutral
atoms placed at the lattice points as a correction to the
homogeneous positive charge density. The ordering
number of the atoms is assumed to be Z — A, where
Z is the ordering number of the element which forms
the lattice and A is the number of electrons with which
this element contributes to the electron gas.

As the potential, built from neutral atoms at the
lattice points, we take

0, r < Rc,

where C = (Z — A)e? /4meg is the typical electro-
static constant, a.g = 0.886 - ap - (Z — A)~!/3 is the
so-called effective radius, Rc is the so-called core-
radius, which takes into account Pauli-like repulsions
of the electron hull of the atom. Here we used the
ionic radius of the metals from [13].

The Fourier transform of this potential is

(38)

62 2 e_RC/adf

Vs(k) = — =
s(k) T l/agff+k2

4
TED (39)

. (cos(k-Rc)

In order to simplify (37) we introduce the abbrevia-
tions

e 1 2r)/?

Cspec ' =3——
apee 471‘6()ij“ a3

(40)

A

Vs (%) @a)'3(Z - 4),

s {2 . (2 Z — A)e?]™!
te(Z)=n () [FRT] e

2nx;
F b b = ’
(I] ) .113) ZCOS ( " )

i=1

42)

(43)



M. Gilles et al. - Trial Functions for the Two-Particle Density Functional Variational Method

839

1,2

n(z) / n,

04 |
______ n®
02 | n©@+n®
0 1 " A A 1 1 i A1 n 4 A
-6 5 -4 3 2 -1 0 1 2 3

z/A

Fig. 3. Zero and first order of the electron density for Al.

Now we can write

nV@) = —Copec F(@1, 22,23 f(@3)  (44)
Cspec characterizes the magnitude of the first order
correction of the pertubation. In Table 2 Cgpe. in units
of 7, is listed for those metals for which the varia-
tional calculation was carried out in the frame of the
jellium model. Here one sees that the dominating fac-
tor in Cgpec is the relation Rc/acs between the core-
and the effective radius. In Fig. 3 the z; — z;-mean of
n@ +nD as a function of z3 is presented graphically
for Al as an example. To get the correction ¢V to the
one electron potential it is now necessary to solve the
Poisson equation for the pertubation charge density
pD = —en®

A¢(1) = in(l). (45)
€0
Therefore we first search for a solution of
AG(zy,72,73) = F(21,72,73)f*(23).  (46)

Table 2. Results for Cspec that characterizes the magnitude
of the first order correction of the pertubation

Metal a/A  7JA"3 Z Rc/A  Cypec/Rs  Re/ae
Rb 562 00119 37 1488 -0.0002 1097
Na 430 00266 11 1012 -0.0421 4.73
Li 350 0.0465 3 0758 -0.1574 1.71
Ag 409 0.1167 47 1011 -0.0024 7.74
Cu 361 01693 29 0947 -0.0093 5.90
Ca 558 00483 20 1051 -0.0109 5.37
Mg 320 00867 12 0780 -0.0933 3.68
Al 404 0.1818 13 0550 -0.0891 1.25

Only the behaviour in z3-direction of G is of inter-
est for later results. So we define a new potential by
averaging over the z,,z,-coordinates:

G(z3) 1=/G($1,12,I3)d11d12. 47)
This function satisfies the differential equation

¢ 1 2wz, o

S = con (2N 28y

e cos ( - ) fP(2) (48)

The complete correction to the one-electron potential
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o o o Table 3. Results of the pertubation calcu-
A A-3 ©) ) © 4+ p) ’ oL U [
MERL sl 30 & Bgity BUUSY DEIY DEE EY eyl lation with a periodic lattice for the first
Rb 562 00119 37 1488 0752 00001 0752 0.80 order of the dipol barriere D.
Na 430 0.0266 11 1.012 1.163  0.0303 1.193 0.50
Li 350 0.0465 3 0.758 1.579  0.1250 1.704 0.90
Ag 4.09 0.1167 47 1011 2.622 0.0077 2.630 2.03
Cu 361 0.1693 29 0947 3.226  0.0335 3.260 3.50
Ca 5.58 0.0483 20 1.051 1.612 0.0277 1.640 1.00
Mg 320 0.0867 12 0.780 2.224  0.1202 2.344 237
Al 404 0.1818 13 0.550 3.357 0.4458 3.803 3.87
is then 5. Conclusion
2
e :
—edD(2) = —CipecG(2). (49) The presented results show that the two-particle
€0

By averaging over the z-coordinate inside the solid
one gets the correction to the dipol barrier DV listed
in Table 3. We obtain these results by numerical inte-
gration of (48).

Compairing now the corrected values of the dipol
barriere D@ + D with the experimental data one
sees that taking into account the lattice structure of
the metal within a pertubation calculation gives no
essential improvement of the variational calculation
in the frame of the jellium model.
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