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The log-compound-Poisson distribution for the breakdown coefficients of turbulent energy dissipa-
tion is proposed, and the scaling exponents for the velocity difference moments in fully developed tur-
bulence are obtained, which agree well with experimental values up to measurable orders. The under-
lying physics of this model is directly related to the burst phenomenon in turbulence, and a detailed dis-

cussion 1s given in the last section.

1. Intermittency of Turbulence

In Kolmogorov’s 1941 theory [1], all statistically av-
eraged quantities of fully developed turbulence at scale
! depend only on the mean dissipation rate (€) and /, where
( ) denotes the ensemble average, but the fluctuation of
energy dissipation is disregarded. This theory gives the
famous —5/3 power law of the energy spectrum and the
linear scaling law of the scaling exponents for the veloc-
ity difference moments. Nevertheless, extensive experi-
mental [2] and numerical [3] studies provide evidence
that the deviation from Kolmogorov’s similarity law be-
comes increasingly significant for the higher order ve-
locity difference moments. This suggests that the fluctu-
ation of energy dissipation should contribute consider-
ably to the small scale statistics of turbulence. This prob-
lem of the internal intermittency of turbulence has gen-
erated a large literature and there are many models, such
as: log-normal distribution model [4], log-stable distri-
bution model [5], log-gamma distribution model [6],
She-Levegue model [7], etc. [8].

In this paper we propose a new possible model, from
which the derived scaling exponents are in good agree-
ment with experimental values up to measurable orders.

Consider one-dimensional averaged turbulent energy
dissipation density, as is the case in the experimental
measurements of dissipation fluctuation. Let &, denote
the energy dissipation density averaged over a scale r.
We take three arbitrary scales: r<s</ in the inertial
range, and introduce corresponding breakdown coeffi-
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cients:
er,l=£r/61’ (1)
er,[ = er,s e.v,l . (2)

By making use of the fact that the energy dissipation den-
sity is non-negative, we obtain

0<e, <lir. 3)

Novikov [9] has proposed the assumption of scale simi-
larity, which states that the probability distribution for
e, ; depends only on the scale ratio, and e, ; and e, ; are
statistically independent. From the scale similarity as-
sumption and (3), the p-th order moment of the break-
down coefficient can be expressed as

(e =UnNkP. C))

We now introduce the ratio of energy dissipation

r€E,
gri=——=¢€, 1 (rl)<1, 5)
18[

whichrepresents the ratio of the energy dissipated in scale
r to that in scale [. The p-th order moment of g, ; has the
form

(gri)y=Unror, (6)
From (2), we have

9r1=9rs9s.1- )
By making use of the random variable

Zru=-Ing,,. ®)
where 0<z, ; <o, we get from (7)

Zrl=2rs gs Zs,1 - (9)
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For arbitrary ratio //r and arbitrary integer n, let
k=(/P'", ands;=rk', i=0,1,2,...,n, (10)

We can generalize (9) in the form

(11)

On the basis of the scale similarity assumption, the ran-
dom variables on the right hand side of (11) are indepen-
dent of each other and have the same distribution func-
tion. Thus, for arbitrary //r and arbitrary integer n, the
random variable z, ; can be expressed as the sum of n in-
dependent random variables with a common distribution.
Therefore, the distribution of z,, is infinitely divisible
[10]. This important feature seems to have first been no-
ticed by Saito [6], then by Novikov [8], and other authors

[11].

Zr,l = Z.\'U,xl £a Z.\'.,.\‘z +...+ Z.\'._l,.r,. *

2. Compound-Poisson Distribution

The characteristic function of z, ; has the form

DU =(exp(ilz,))=(exp(=il Ing, 1)) (12)
l -i Aekiant
=[ 4 P(Qr,l,r/l)dq,'l-_-(_) _

0 r

The characteristic function @ is infinitely divisible if for
each n the condition

D U =D& UIN'™) (13)

in satisfied [10]. It is natural to suppose that the distribu-
tion function of z,,; is of the compound Poisson type, the
characteristic function of which has the form

¢(§,1/r)=exp[c1ni(<p—1)], (14)
r

where ¢ is a characteristic function of the arbitrary prob-
ability density functionf(called the basic probability den-
sity in the following passages). Obviously, the condition
(13) is satisfied by (14), and (14) is infinitely divisible.
Although an infinitely divisible distribution need not
be of the compound Poisson type, it can be proved the
every infinitely divisible distribution is the limit of a
sequence of compound Poisson distributions.

As r—1, z,,— 0. Therefore, the probability density
for z,; tends to the delta function 6 (z, ), as r— . Ob-
viously, the characteristic function (14) satisfies this con-
dition, since

D lUn—>1 as r—ol. (15)
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If the basic probability density takes the form of a
gamma density

f(x)=r—15,3’ g he, (16)
and the corresponding characteristic function [10] is
e =101-ilIB)", a7
then from (14) we obtain
1 \eL/a=i¢/py -1
®(L.1/r) =(;) (18)

The probability density for z, ; can be calculated by the
Fourier inversion formula

p(zlin=-1[ e @, Urdc. (19)
2r

Substituting (18) into (19), and using exponential expan-
sion, we can obtain

p(z,l/ry=exp[—cIn(l/r)- Bz]

BRI ey

S nl T(nt) (40)

If the basic probability density takes the form of a delta
function

f)=6(x-a),

then the corresponding characteristic function can be
written as

@n

p@)=expial), (22)
and from (14) we get
i clexp(iad)-1]
di(C,l/r):(;) y (23)

3. Scaling Exponents

In fully developed turbulence, the p-th order velocity
structure function follows a power law in the inertial
range

Sy =([u(x+r) —u()]?) < r*® (24)

where u is the velocity component parallel to r, r the
separation. The p-th order moment of locally averaged
energy dissipation density over a scale r has a similar re-
lation

{fye=r™®, (25)
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The Kolmogorov refined similarity hypothesis [4] states
that

E(p)=p/3+1(p/3).

Let [ equal the integral scale L, g be a constant, and
the breakdown coefficient e, ; be proportional to &,.
From (4) we obtain

(62 < (el o 17,

T(p)=-u(p).

(26)

and 27

If the basic probability density takes the form of a gam-
ma density (16), from (12) and (18) we get

p(p)=p+cll/1+p/P)'-1].

The scaling exponents for the velocity difference mo-
ments are

E(p)=c{1-U[1+p/GP)'}.

The parameter ¢ is determined by the exact relation
£(3)=1, and (29) can be rewritten as

E(p) = {1-V[1+p/GPI V-1 +1BYT.  (30)

The parameter 3 can be determined by & (6). £(6)=2—-u,
where p is the universal exponent defined by the spec-
trum of dissipation fluctuations. If we choose u=2/9,
in agreement with most experiments [12], then &(6)=
1.7778.

The prediction of the formula (30) for r=1, 2, 3, and
comparison with experiments [13] and the She-Leveque
model [7] are listed in Table 1. Evidently the prediction
of formula (30) is consistent with the experiments [13]

(28)

(29)

Table 1. Scaling exponents.

p Experi-  SL Formula (30)
ment model
[13] [7] t=1 t=2 t=3
1 0.37 0.363 0.364 0.363 0.363
2 0.70 0.695 0.696 0.695 0.695
3 1.00 1.000 1.000 1.000 1.000
4 1.28 1.279 1.280 1.280 1.281
5 1.54 1.538 1.539 1.539 1.539
6 1.78 1.778 1.778 1.778 1.778
7 2.00 2.001 2.000 1.999 1.998
8 2.23 2.210 2.207 2.204 2.203
9 2.407 2.400 2.395 2.392
10 2.593 2.581 2.572 2.568
12 2.938 2.909 2.892 2.883
14 3.254 3.200 3.172 3.157
16 3.548 3.460 3.418 3.396
18 3.824 3.693 3.636 3.606
20 4.088 3.903 3.830 3.791
oo oo 8.001 6.248 5.664
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and the She-Levegue model [7] up to measurable orders
p<10. The suitable choice of the parameter # may be de-
termined by comparison of the measured probability den-
sity of z,; and the theoretical formula (20).

The interesting prediction of (30) is the saturation of
the exponents for the velocity difference moments as
p=re=

E(w) = 1/[1-1/(1+1/B)] .

If the basic probability density takes the form of the
delta function (21), then from (23) and (12) we get

(3D

u(p)=p+clexp(-ap)-1]. (32)

From (26), the scaling exponents for the velocity differ-
ence moments are

E(p)=c[l-exp(-ap/3)].

Setting u=1-exp(-o) and using £(3)=1, (33) can be
rewritten as

s(p)=

(33)

[1-(1-u)r"], (34)

|-

where p=2/9. This is just Chen-Cao’s formula [14],
which corresponds to the log-Poisson distribution model.

4. Physical Background

It is conjectured that in three-dimensional space the
curl of velocity may become infinite in some small sets
of the domain occupied by turbulence. In fact Leray [15]
in 1932 proposed the possible appearance of singular-
ities as an explanation for turbulence. In 1949, Batche-
lor and Townsend [16] observed a fairly definite alterna-
tion between periods of quiescence, during which the
magnitude of the derivative of the velocity is small, and pe-
riods of activity during which the derivative fluctuates in
an apparently random fashion and the vorticity tends to
concentration in isolated regions. The burst phenomenon
was first observed in wall turbulence [17]. At the wall a
horseshoe-shaped vortex is beginning to be formed, and
this vortex is deformed by the flow into a more and more
enlongated U-shaped loop in streamwise direction. Due
to self-induction, the top of the loop drifts away from the
wall thereby coming into regions of ever-increasing ve-
locity. Consequently the vorticity increases because of
stretching processes. The local inflexional instability and
breakdown of the top of the vortex produces a turbulence
burst. The pressure waves associated with the turbulence
burst are propagating through the whole boundary layer.
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It is natural to suppose that the burst phenomena also oc-
cur in other turbulent flows such as in grid-generated tur-
bulence, in turbulent wake-flows, etc. In the fully turbu-
lent region the burst phenomena are obscured by the gen-
eral background turbulence, and consequently not direct-
ly noticeable. However, by filtering out this background
turbulence using a narrow bandwidth wave analyzer, Rao
et al. [18] found that the “bursts” clearly show up in the
filtered traces. The burst region is associated with high
vorticity and large dissipation, while the dissipations in
the unburst regions are very small and can be neglected.
By a direct simulation of the Navier-Stokes equations
Siggia [19] showed that the dissipation is concentrated
in a tiny region of the space. We now have a general viv-
id picture of turbulence: here and there the vortices are
formed sometimes, and due to stretching and inflexion-
al instability they ultimately breakdown (bursts). The
bursts are locally limited in space and time, but their in-
fluences are not local. The pressure waves and velocity
waves associated with bursts are propagated through the
whole region. The bursts are random variables with var-
ious intensities. Therefore, the pressure waves and ve-
locity waves have various intensities and various fre-
quencies and wave numbers, the superposition effect of
which gives very complicated flow fluctuations. The
bursts of the vortices are the cause of internal intermit-
tency in turbulence.

Assuming that the turbulence is homogeneous, we
consider the random occurance of bursts in a certain
region of scale r (the location is not relevant to the
question). We denote the random number of bursts in
this region at time 7, assuming a zero count at 7=0, by
N(7):

N(T)=i H(t-T;), t=20, (35)
i=1

where H (7) is the Heaviside step function, and 7; the time
of the i-th burst. In order to obtain the probability distri-
bution of N(7): P,(t)=Prob {N(7)=n}, the following
basic assumptions are proposed [20]:

1. The probability that a burst will occur during the time
interval (7, 7+A) is AA+ O (A), where A is a constant
and O (A) tends to zero faster than A;

2. The probability that more than one burst will occur in
(t,7+A4) is O(A). Therefore the probability of no
change in (1, 7+A4) is 1-AA-0 (4);

3. The random number of bursts that occur in some time
interval is independent of the random number of bursts
that occur in any non-overlapping interval.
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The probability of the occurrence of n bursts during
the interval (0, 7+A) can be realized in three mutually
exclusive ways: (i) all n bursts will occur in (0, 7) and
non in (7, 7+A) with probability P,(7)[1-A4-0(A4)];
(i) exactly n—1 bursts will occur in (0,7) and one
burst in (7, T+A) with probability P,_; (1) [AA+0(A)];
(iii) exactly n—k bursts will occur in (0, 7) and k bursts
in (7,7+A), where 2<k<n, with probability O(A).
Taking all these possibilities together, we have for n>1

P,(t+A)=P,(1)[1-AA]+ P,_;(T) AA+0(4),

and for n=0 (36}
Py(t+A)=Py(1) [1-A2A4]1+ O(A) . (37

For A — O we obtain from (36) the differential equa-
tions

iP,,('r)=—lP,, (1) + AP, (T), n>1 (38)

d

and EPO(T)=—Z.PO(T). 39)
The initial conditions are
Py(0)=0, P,(0)=0. (40)
From (37)-(40) it is easy to get the solutions
Py(O)()=e*, P, (t)y=eMAD"n!. (41)

This is the Poisson distribution, and {N(7),7>0} is
called the Poisson counting process.

If we denote the energy dissipation associated with the
i-th burst of the vortex in the region of scale r by D;, as-
suming that D; are independent and have identical distri-
butions, and { /N (7)} is independent of {D;}, then the to-
tal energy dissipation in the time intervall (0, 7) is

N(7)
E(t)= Y D;. (42)
i=1
{E(7), 20} is acompound-Poisson process. Here we
neglect the energy dissipation in the time interval when
there is no burst of the vortex. If T is a large enough time
interval, then the energy dissipation in unit time is ap-
proximately
re,=Légq, =E(MIT, (43)
where L is the integral scale. From (43), we obtain
Z,.=-Ing, ;=-InE(T)+In(TLg) . (44)

The second term on the right hand side of (44) is a con-
stant. Therefore, the random variable z,, ; has a log-com-
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pound Poisson distribution. The basic probability den-
sity function f (mentioned in Sect. 2) is just the probabil-
ity density of the energy dissipation associated with a
burst of the vortex. If f (x) = (x—a), then the intensity of
every burst of the vortex is a constant. This is a simpli-
fied situation.

Recently, some numerical and experimental works
[21-23] have revealed that transverse velocity incre-
ments are more intermittent than longitudinal ones. Chen
et al. [24, 25] proposed that transverse velocity incre-
ments bear the same relation to locally averaged enstro-
phy (squared vorticity) as longitudinal velocity incre-
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