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The log-compound-Poisson distribution for the breakdown coeff icients of turbulent energy dissipa-
tion is proposed, and the scaling exponents for the velocity d i f ference moment s in fully developed tur-
bulence are obtained, which agree well with experimental values up to measurable orders. The under-
lying physics of this model is directly related to the burst phenomenon in turbulence, and a detailed dis-
cussion is given in the last section. 

1. Intermittency of Türbulence cients: 

In Kolmogorov's 1941 theory [1], all statistically av-
eraged quantities of fully developed turbulence at scale 
/ depend only on the mean dissipation rate (e) and /, where 
( ) denotes the ensemble average, but the fluctuation of 
energy dissipation is disregarded. This theory gives the 
famous - 5 / 3 power law of the energy spectrum and the 
linear scaling law of the scaling exponents for the veloc-
ity difference moments. Nevertheless, extensive experi-
mental [2] and numerical [3] studies provide evidence 
that the deviation from Kolmogorov's similarity law be-
comes increasingly significant for the higher order ve-
locity difference moments. This suggests that the fluctu-
ation of energy dissipation should contribute consider-
ably to the small scale statistics of turbulence. This prob-
lem of the internal intermittency of turbulence has gen-
erated a large literature and there are many models, such 
as: log-normal distribution model [4], log-stable distri-
bution model [5], log-gamma distribution model [6], 
She-Levegue model [7], etc. [8], 

In this paper we propose a new possible model, from 
which the derived scaling exponents are in good agree-
ment with experimental values up to measurable orders. 

Consider one-dimensional averaged turbulent energy 
dissipation density, as is the case in the experimental 
measurements of dissipation fluctuation. Let e r denote 
the energy dissipation density averaged over a scale r. 
We take three arbitrary scales: r<s<l in the inertial 
range, and introduce corresponding breakdown coeffi-
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erJ = £r/Ei, 

^r,l ^r.s Csj 

(1) 

(2) 

By making use of the fact that the energy dissipation den-
sity is non-negative, we obtain 

0 < erj < l/r . (3) 

Novikov [9] has proposed the assumption of scale simi-
larity, which states that the probability distribution for 
er i depends only on the scale ratio, and er s and es l are 
statistically independent. From the scale similarity as-
sumption and (3), the p-th order moment of the break-
down coefficient can be expressed as 

(e?j) = (l/r)^. (4) 

We now introduce the ratio of energy dissipation 

<lr,i =~~ = er,i (r/l)<\, (5) l£t 

which represents the ratio of the energy dissipated in scale 
r to that in scale I. The p-th order moment of qr l has the 
form 

(q?j) = ( l / r y ( p ) - p . (6) 

From (2), we have 

<]rj = qr<s <lsj • (7) 

By making use of the random variable 

Zr,i = - ^ q r J , (8) 

where 0<z r / <°°, we get from (7) 

Zr,l = Zr,s + Zs,l • (9) 
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For arbitrary ratio l/r and arbitrary integer n, let 

k = (l/r)Vn, and jf = rki, i = 0, 1, 2 , n , (10) 

We can generalize (9) in the form 

Zr,l = Z.VO..V, + ^.vi,.v2 + • • • + j,, • (11) 

On the basis of the scale similarity assumption, the ran-
dom variables on the right hand side of (11) are indepen-
dent of each other and have the same distribution func-
tion. Thus, for arbitrary l/r and arbitrary integer n, the 
random variable zr j can be expressed as the sum of n in-
dependent random variables with a common distribution. 
Therefore, the distribution of zr,i is infinitely divisible 
[10]. This important feature seems to have first been no-
ticed by Saito [6], then by Novikov [8], and other authors 
[11]. * 

2. Compound-Poisson Distribution 

The characteristic function of zrj has the form 

, 1/r) = ( e x p ( i £ z r / ) ) = ( e x p ( - / £ \nqr i)) (12) 

= j 4rJ p(lr,l' r//)dqrj = f-1 n \ r / 

JC + M(-iC) 

The characteristic function 0 is infinitely divisible if for 
each n the condition 

<Z>(£, l/r) = <£"(£, l/r)Un) ( 1 3 ) 

in satisfied [ 10]. It is natural to suppose that the distribu-
tion function of zrj is of the compound Poisson type, the 
characteristic function of which has the form 

<f>(£, l/r) = exp c I n - ( 9 - 1 ) (14) 

where <p is a characteristic function of the arbitrary prob-
ability density function/(called the basic probability den-
sity in the following passages). Obviously, the condition 
(13) is satisfied by (14), and (14) is infinitely divisible. 
Although an infinitely divisible distribution need not 
be of the compound Poisson type, it can be proved the 
every infinitely divisible distribution is the limit of a 
sequence of compound Poisson distributions. 

As r—>/, zr,/—>0. Therefore, the probability density 
for zr,i tends to the delta function 8 (zrj), as r—>1. Ob-
viously, the characteristic function (14) satisfies this con-
dition, since 

<£(£, Z / r ) 1 as r —»Z. (15) 
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If the basic probability density takes the form of a 
gamma density 

1 f ( x ) = 
r(t) 

ß' x' (16) 

and the corresponding characteristic function [10] is 

(17) 

then from (14) we obtain 

(18) 

The probability density for zrj can be calculated by the 
Fourier inversion formula 

p(z, l/r) = — J <*>(£, l/r) d£ 
2 n 

(19) 

Substituting (18) into (19), and using exponential expan-
sion, we can obtain 

p(z, l/r) = e x p [ - c In (l/r) -ßz] 

£ cn (\n(l/r))n
 ßnt 

n=0 n\ r(nt) 
(20) 

If the basic probability density takes the form of a delta 
function 

f(x)=8(x-a), (21) 

then the corresponding characteristic function can be 
written as 

<j0(O = e x p ( i a O , 

and from (14) we get 

c[exp(i'a£)-l ] 

(22) 

(23) 

3. Scaling Exponents 

In fully developed turbulence, the p-th order velocity 
structure function follows a power law in the inertial 
range 

Sp(r) = ([u(x + r) -u(x)V) - r«<">, (24) 

where u is the velocity component parallel to r, r the 
separation. The /?-th order moment of locally averaged 
energy dissipation density over a scale r has a similar re-
lation 

(.£P) oc r«p). (25) 
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The Kolmogorov refined similarity hypothesis [4] states 
that 

Z(p)=p/3 + T(p/3). (26) 

Let I equal the integral scale L, eL be a constant, and 
the breakdown coefficient er L be proportional to e r . 
From (4) we obtain 

and r (p) = - p ( p ) . (27) 

If the basic probability density takes the form of a gam-
ma density (16), from (12) and (18) we get 

p(p)=p + c[\/(\+p/ßy-\]. (28) 

The scaling exponents for the velocity difference mo-
ments are 

$(p) = c{\-\l[\+pl(3ß)]t) . (29) 

The parameter c is determined by the exact relation 
£(3) = 1, and (29) can be rewritten as 

4 (p) = {1 -1/[1 +p/(3ß)}'}/[ 1 -1 / (1 + 1/0)'] . (30) 

The parameter ß can be determined by £ (6). ^ (6) = 2 - p , 
where p is the universal exponent defined by the spec-
trum of dissipation fluctuations. If we choose p-2/9, 
in agreement with most experiments [12], then £(6) = 
1.7778. 

The prediction of the formula (30) for t=l, 2, 3, and 
comparison with experiments [13] and the She-Leveque 
model [7] are listed in Table 1. Evidently the prediction 
of formula (30) is consistent with the experiments [13] 

Table 1. Scal ing exponents . 

P Experi - SL Formula (30) 
ment model 
[13] [7] t= 1 t = 2 t = 3 

1 0.37 0.363 0 .364 0.363 0 .363 
2 0 .70 0.695 0 .696 0 .695 0 .695 
3 1.00 1.000 1.000 1.000 1.000 
4 1.28 1.279 1.280 1.280 1.281 
5 1.54 1.538 1.539 1.539 1.539 
6 1.78 1.778 1.778 1.778 1.778 
7 2.00 2.001 2 .000 1.999 1.998 
8 2.23 2.210 2 .207 2.204 2.203 
9 2.407 2 .400 2.395 2 .392 

10 2.593 2.581 2 .572 2.568 
12 2.938 2 .909 2.892 2.883 
14 3.254 3 .200 3.172 3 .157 
16 3.548 3 .460 3.418 3 .396 
18 3.824 3 .693 3.636 3 .606 
20 4.088 3 .903 3.830 3.791 
oo oo 8.001 6 .248 5.664 

and the She-Levegue model [7] up to measurable orders 
p < 10. The suitable choice of the parameter t may be de-
termined by comparison of the measured probability den-
sity of zrj and the theoretical formula (20). 

The interesting prediction of (30) is the saturation of 
the exponents for the velocity difference moments as 

§ ( ~ ) = 1 / [ 1 - 1 / ( 1 + 1 /ß)']- (31) 

If the basic probability density takes the form of the 
delta function (21), then from (23) and (12) we get 

p(p)=p + c[exp(-ocp)-\]. (32) 

From (26), the scaling exponents for the velocity differ-
ence moments are 

S(p) = c[l-exp(-ap/3)]. (33) 

Setting /i = l - e x p ( - a ) and using £(3) = 1, (33) can be 
rewritten as 

S(p) = ]-[\-(\-p)pn], (34) 

where p = 2/9. This is just Chen-Cao's formula [14], 
which corresponds to the log-Poisson distribution model. 

4. Physical Background 

It is conjectured that in three-dimensional space the 
curl of velocity may become infinite in some small sets 
of the domain occupied by turbulence. In fact Leray [15] 
in 1932 proposed the possible appearance of singular-
ities as an explanation for turbulence. In 1949, Batche-
lor and Townsend [16] observed a fairly definite alterna-
tion between periods of quiescence, during which the 
magnitude of the derivative of the velocity is small, and pe-
riods of activity during which the derivative fluctuates in 
an apparently random fashion and the vorticity tends to 
concentration in isolated regions. The burst phenomenon 
was first observed in wall turbulence [17], At the wall a 
horseshoe-shaped vortex is beginning to be formed, and 
this vortex is deformed by the flow into a more and more 
enlongated U-shaped loop in streamwise direction. Due 
to self-induction, the top of the loop drifts away from the 
wall thereby coming into regions of ever-increasing ve-
locity. Consequently the vorticity increases because of 
stretching processes. The local inflexional instability and 
breakdown of the top of the vortex produces a turbulence 
burst. The pressure waves associated with the turbulence 
burst are propagating through the whole boundary layer. 
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It is natural to suppose that the burst phenomena also oc-
cur in other turbulent flows such as in grid-generated tur-
bulence, in turbulent wake-flows, etc. In the fully turbu-
lent region the burst phenomena are obscured by the gen-
eral background turbulence, and consequently not direct-
ly noticeable. However, by filtering out this background 
turbulence using a narrow bandwidth wave analyzer, Rao 
et al. [18] found that the "bursts" clearly show up in the 
filtered traces. The burst region is associated with high 
vorticity and large dissipation, while the dissipations in 
the unburst regions are very small and can be neglected. 
By a direct simulation of the Navier-Stokes equations 
Siggia [19] showed that the dissipation is concentrated 
in a tiny region of the space. We now have a general viv-
id picture of turbulence: here and there the vortices are 
formed sometimes, and due to stretching and inflexion-
al instability they ultimately breakdown (bursts). The 
bursts are locally limited in space and time, but their in-
fluences are not local. The pressure waves and velocity 
waves associated with bursts are propagated through the 
whole region. The bursts are random variables with var-
ious intensities. Therefore, the pressure waves and ve-
locity waves have various intensities and various fre-
quencies and wave numbers, the superposition effect of 
which gives very complicated flow fluctuations. The 
bursts of the vortices are the cause of internal intermit-
tency in turbulence. 

Assuming that the turbulence is homogeneous, we 
consider the random occurance of bursts in a certain 
region of scale r (the location is not relevant to the 
question). We denote the random number of bursts in 
this region at time T, assuming a zero count at T=0, by 
N( r): 

W ( T ) = X H(T-T{), t> 0 , (35) 
i= 1 

where H (T) is the Heaviside step function, and r, the time 
of the t'-th burst. In order to obtain the probability distri-
bution of N(r): /J„(r) = Prob {N(z) = n}, the following 
basic assumptions are proposed [20]: 

1. The probability that a burst will occur during the time 
interval (T, T+A) is AA + 0(A), where A is a constant 
and 0(A) tends to zero faster than A; 

2. The probability that more than one burst will occur in 
(T, T+A) is 0(A). Therefore the probability of no 
change in (r, t + A ) is 1 - A A - 0 ( A ) ; 

3. The random number of bursts that occur in some time 
interval is independent of the random number of bursts 
that occur in any non-overlapping interval. 

The probability of the occurrence of n bursts during 
the interval (0, T+A) can be realized in three mutually 
exclusive ways: (i) all n bursts will occur in (0, T) and 
non in (T, T + A ) with probabil i ty Pn(z) [ l - A A - O ( A ) ] ; 
(ii) exactly n - 1 bursts will occur in (0, T) and one 
burst in (T, T+A) with probability Pn_,(T) [AA + 0(A)]\ 
(iii) exactly n-k bursts will occur in (0, T) and k bursts 
in (T, T+A), where 2 < k < n , with probability 0(A). 
Taking all these possibilities together, we have for n > 1 

Pn(r+A) = Pn(x) [1 - AA] + Pn_x (T) AA + 0(A), 
. f n (36) 

and for n = 0 

P0(T+A) = Pq(T) [ 1 — AA] + O(A). (37) 

For A —> O we obtain from (36) the differential equa-
tions 

- F - / J
N ( T ) = - A P N ( T ) + A / ' „ _ 1 ( T ) , N > 1 (38) 

dT 

and - f - P0(T) = - I P 0 ( T ) . (39) 
dT 

The initial conditions are 

P0(O) = 0, Pn(0) = 0 . (40) 

From (37)-(40) it is easy to get the solutions 

Po(0)(t) = e~Xt, Pn(t) = e-Xtat)n/n\. (41) 

This is the Poisson distribution, and [A(T), T>0} is 
called the Poisson counting process. 

If we denote the energy dissipation associated with the 
/-th burst of the vortex in the region of scale r by Dh as-
suming that D, are independent and have identical distri-
butions, and {N(T)} is independent of [£>, ], then the to-
tal energy dissipation in the time intervall (0, T) is 

N(T) 
E ( T ) = J J D 1 . (42) 

(=i 

{E(T), T>0] is a compound-Poisson process. Here we 
neglect the energy dissipation in the time interval when 
there is no burst of the vortex. If T is a large enough time 
interval, then the energy dissipation in unit time is ap-
proximately 

rer = LeLqr L = E(T)/T, (43) 

where L is the integral scale. From (43), we obtain 

ZR,L = - In qR,L = - In E(T) + ln (TLEL) . (44) 

The second term on the right hand side of (44) is a con-
stant. Therefore, the random variable zr,L has a log-com-
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pound Poisson distribution. The basic probability den-
sity function/(mentioned in Sect. 2) is just the probabil-
ity density of the energy dissipation associated with a 
burst of the vortex. If/(jc) = 5 (x -a ) , then the intensity of 
every burst of the vortex is a constant. This is a simpli-
fied situation. 

Recently, some numerical and experimental works 
[21-23] have revealed that transverse velocity incre-
ments are more intermittent than longitudinal ones. Chen 
et al. [24, 25] proposed that transverse velocity incre-
ments bear the same relation to locally averaged enstro-
phy (squared vorticity) as longitudinal velocity incre-

ments bear in the refined similarity hypothesis to local-
ly averaged dissipation. Our paper only concerns the en-
ergy dissipation cascade and the scaling of longitudinal 
velocity increments. The present work may be general-
ized from dissipation to enstrophy to fit into the above 
new finding. 
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