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A deterministic entropic measure is derived for the time evolution of Newtonian N-particle
systems based on the volume of the instantaneously occupied phase space (IOPS). This measure
is found as a natural extension of Boltzmann’s entropy. The instantaneous arrangement of the
particles is exploited in the form of spatial correlations. The new entropy is a bridge between the
time-dependent Boltzmann entropy, formulated on the basis of densities in the one-particle phase
space, and the static Gibbs entropy which uses densities in the full phase space. We apply the
new concept in a molecular dynamics simulation (MDS) using an exactly time reversible “discrete
Newtonian equation of motion” recently derived from the fundamental principle of least action
in discretized space-time. The simulation therefore is consistent with micro-time-reversibility.
Entropy becomes an exact momentary observable in both time directions in fulfillment of a dream

of Boltzmann.

1. Introduction

In the Cartesian tradition one is willing to work on
a consistent description of the physical world. Boltz-
mann certainly did so. Nevertheless, he claimed that
it will take centuries to fully understand the micro-
macro-transition. We agree. Looking at the endless
list of controversial contributions to this field of re-
search within the century which has passed since
Boltzmann made this remark, we would like to think
that this is how everybody else feels. In contrast to
Boltzmann’s original deterministic entropy concept
(best known under the name H-function), the Gibb-
sian ensemble statistics has been fruitful only as a
static concept up till now. Microscopic applications
of Gibbs’ concept are restricted to equilibrium sit-
uations. Jaynes’ “maximum entropy formalism” is
an attempt to approximate a time-dependent entropy
by introducing the fiction of time-dependent macro
constraints, which allows one to retain the ensemble
concept for intermediate steps of the entropy evolu-
tion as “momentary equilibria” [1]. His information
theoretical approach led to the now well-established
“maximum entropy method” used for the reconstruc-
tion of incomplete or noisy time series which uses
constraints from macroscopic pre-knowledge on the
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system on hand [2]. A further drawback of the Gibbs
ensemble formalism is that it formally presupposes er-
godicity which is rarely found in realistic systems [3].

Encouraged by René Descartes we make a kind of
“tabula rasa” and look at that what we have on hand
“here and now”. Both, a prospective and a retrospec-
tive view are of a cumulative nature. They presuppose
that one knows already what happened or is going to
happen in a certain time interval which must not be
too small to be representative. Since we are today
able to check our theories by creating an artificial
universe in the computer, we can try to implement
a “here-and-now” (hic et nunc) physics: it consists
of N identical particles with a repulsive —]T—-potential
as a two-dimensional molecular dynamics simulation
(MDS). Is it possible to have an instantaneous en-
tropy?

MDS of N -particle-systems are well-suited for in-
vestigations into the entropic behavior of conservative
dynamical systems. Because of the Newtonian nature
one is able to perform “experiments” on the micro-
scopic level which allow one to make assertions about
the way micro-entities give rise to macroscopic ob-
servables. Boltzmann’s H-function, frequently com-
puted in MDS [4], is an example for a (scalar) func-
tion of the microstates. It is the velocity part of the
so-called Boltzmann entropy
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where f, is the density in the one-particle phase space
v and k Boltzmann’s constant. Intuitively, the density
f+ is constituted by the cloud of points which one
gets throught the projection of the phase space coor-
dinates onto a one-particle subspace. To compute Sy
in an MDS, one usually generates a histogram of the
positions and momenta of the N particles to get an
approximation for the density f. This could be done
at every instant of time; i.e., Sy actually is a deter-
ministic entropy. It is nevertheless not very accurate.
The Gibbs entropy

So=—k / frinfrdl, @)
I

in contrast, uses the density fr in the full phase
space I'. In " the N -particle-system is represented by
one point at every instant of time. To speak of a den-
sity makes sense only if one either waits long enough
until the trajectory fills out the phase space more or
less densely (at different locations in phase space) or
if it is interpreted using (fictitious) ensembles.

In anisolated thermodynamical system, the entropy
is according to Boltzmann and Gibbs connected to the
phase space volume {2 by

S=kln{2. 3)
Up until now, the concept of phase-space volume has
always been a (quasi) static one; i. e., (3) presupposes
equilibrium. Jaynes’ above mentioned information-
theoretical approach uses an observer-dependent ref-
erence class of macro observables. The entropy
thereby becomes “anthropomorphic”. Being anthro-
pomorphic is — according to Jaynes — a constitutive
part of the nature of entropy [5].

In the following we propose a deterministic variant
to (3). Essentially, we introduce the new concept of
the “instantaneously occupied phase space” (IOPS).
The concept of IOPS enables one to describe transient
behavior. It is a fully deterministic concept. The re-
sulting entropy becomes a symmetric function of the
microstates. Hence, if the particle momentums are
all reversed at a certain instant of time, which cor-
respondes to an allowed microstate, the entropy may
decrease for a short period of time. This troubling
fact deserves to be briefly discussed (Section 2). For
convenience and the sake of consistency, we use an
exactly time reversible MDS algorithm to integrate
the equation of motion of the particles. A brief review

of this algorithm and a description of the N -particle
system are given in Section 3. Then, we introduce
the concept of IOPS from a “local” viewpoint in Sec-
tion 4. We show that the resulting entropy converges
to Boltzmann’s entropy (1) and can in this sense
be regarded equivalent to the histogram approxima-
tion to (1). The insufficiency of this entropy formula,
when dealing with fairly low-dimensional systems, is
demonstrated. This provides the motivation to intro-
duce in Sect. 5 a derivation of a generalized “global”
entropy formula. This formula is then applied to an
MDS of a 100-particle system. It is markedly im-
proved. Finally we discuss our results in Sect. 6 and
give an outlook on further studies.

2. Time symmetric vs. time asymmetric entropies

If one assumes given the time reversible Newtonian
equations as a correct description of a microscopic
dynamics, it follows that an entropy constructed as a
symmetric scalar function of the microstates neces-
sarily decreases in time after a reversal of all momen-
tums when it was increasing in the forward direction.
This means that the increasing or decreasing behavior
of the entropy depends on the initial state of the sys-
tem. Boltzmann’s H-function, frequently computed
in MDS [4, 6], is of that type. The question is whether
such a function could be called an entropy at all.

Actually, some authors prefer to regard any en-
tropy as increasing by definition independently of the
direction of time [7,8]. In 1980 J. Hurley tried to
give a “resolution of the time-asymmetry paradox”
[9]. He looked at the phase space trajectory of a many
particle system as a solution of the corresponding
Newtonian equations, valid from the initial time %,
to infinity and also from ¢, to minus infinity. We as-
sume given an initial state such that all particles are
at rest (all momentums equal to zero) in a state of
mutual repulsion. Then we leave the system alone.
The interactions accelerate the particles in both di-
rections of time. The two half trajectories are iden-
tical in configuration space. The entropy produced
than clearly increases in both directions of time. Hur-
ley’s results can than be put into the following form:
If one now arbitrarily picks a point on the finished
trajectory and looks at a short segment lying to the
left and to the right of that point, one finds qualita-
tively the same behavior with very high probability
as it was found above for the extremal initial state of
zero momentums. That is, one is close to a “U-turn”
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with both ends showing the same entropy increase,
almost everywhere. A transient decreasing entropy
occurs only in those extremely rare cases where the
trajectorial segment in question came in from a far
away loop. This is Hurley’s principle of the “bezoar”.
Note that the lump of hair found in the stomach of
a cow (bezoar) shows virtually the same behavior if
one tries to pick a random point on it. Hence almost
always, the entropy increases in both directions of
time.

If one now tries to apply this argumentation to com-
plex systems like biological ones, the earth or even
the whole universe, one wonders how such a long
past history of continually increasing entropy could
be possible as we believe it to exist [10]. Many sci-
entists therefore prefer a time-asymmetric entropic
desription of such systems [11, 12]. They either in-
troduce non-Newtonian equations of motion on the
microscopic level or time-asymmetric entropies, or
both. The concept of broken ergodicities, for exam-
ple, formally leads to equations of motion that have
non-integer (fractional) time derivatives [13]. Such
equations are the formal implication of a treatment of
phase space flows with semigroup features. Petrosky
and Prigogine [11,12] also use semigroup features
of phase space flows. They, therefore, give up the
concept of trajectories for the description of ther-
modynamical systems. Even quantum systems are
amenable to being described in this fashion [12]. The
dependency of the sign of the entropic behavior on the
initial state can be avoided by introducing the concept
of the “absence of pre-collisional correlations” for all
initial states [7].

In spite of the time-asymmetric concepts briefly
outlined above, Lebowitz [3], as already mentioned,
as well as other authors [6, 14] are predicting a re-
naissance of classical Boltzmannian concepts. When
working on such a philosophically charged subject,
one can hardly avoid to get between the lines. As we
argued in [15] by means of a Gedankenexperiment
there is some putative evidence for a time reversible
structure of the universe. On the other hand we think
that Boltzmann’s concepts need to be improved as
we will show in the following. Nevertheless we stick
with the symmetric nature of the entropy because we
start out from the classical MDS paradigm. A second
excuse for our confidence in the new entropy formula
could be seen to lie in the fact that it is not confined
to reversible systems. It can also be applied to dis-
sipative macroscopic systems of high dimensionality

including experimental time series of different origins
(work in preparation).

Specifically a generalized H-function will be pre-
sented. It confirmes a most recent result by Vollmer
et al. which was obtained on the basis of a so-called
multibaker map [16] which is of interest also under
both time and space symmetric conditions (work in
preparation). We close the section by reiterating the
confession of Petrosky and Prigogine offered at the
end of their 1994 paper:

“In summary we believe that our approach avoids
the usual dichotomy between what is microscopic and
time reversible, and what is macroscopic and time ir-
reversible. In this sense we hope that we have con-
tributed to the elucidation of the research program
started more than one century ago by Boltzmann and
Planck.”

3. An N-Particle-System in Two Dimensions

We now prepare to set up an artificial universe
by means of a fully deterministic Newtonian MDS
using a digital computer. A first step to do this in
a consistent way has been obtained recently. Nadler
et al. [17] proposed a variant of Verlet’s algorithm
which was derived from the fundamental physical
principle of least action, applied to discretized space
and time. A precondition for an exactly time reversible
algorithm is use of an integer arithmetic. Levesque
and Verlet [6] first applied an algorithm of this type to
compute Boltzmann’s H-function in a simulation of a
many-particle Lennard-Jones gas. A computationally
generated dissipation due to round-off errors [18] was
thereby avoided. Levesque and Verlet were able to
exactly retrace the system trajectory. The same finding
was made independently in [19] where a few-particle
system was used for the demonstration.

Application of the action principle to discretized
space and time, combined with the use of integer
arithmetic, leads to a modified form of Verlet’s al-
gorithm as used by Levesque and Verlet. The force
term is replaced by a difference-quotient of the poten-
tials. This allows for an unequivocal definition of the
rounding term in the equation. Moreover and more
importantly, a criterion is provided which tells one
whether the trajectory is still physical.

Concretely, we assume as given a discretization
of time and space: ¢t = t; + kAt, and ¢ = qo + *Aq,
respectively, with k, 2 € Z. Then the discretized path,
q(t), of a Hamiltonian system is represented by an
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integer sequence {z }. Given a potential V' (¢(t)), the discrete Newtonian equation of motion reads

V(qo + (xr + )Ag) — V(go + (xx — 1)Aq)

P 5 0y, = B == ROUND(At2

) )

2A¢2

Hereby the ROUND-function, unlike the INT or TRUNC-function, represents the closest integer value to its
floating-point argument. One sees that two antecedents are used to calculate the next point. As long as each

triple (zx_1, Tk, Tr4+1) Obeys the inequality

2 V(qo + zkAq) — V(go + (zx — 1))Ag)

{I,m — 22 +Tpy + 1 +(AY)

(Ag)?
YAq) — V(qo + T Aq)

}

5)

v 'kt
: {-Tk+1 — 22X +Xp_ _1+(At)2 (qo + (zr +

the action principle, underlying the derivation of (4),
is fulfilled. Otherwise the computed trajectory ceases
to be physical because the action principle is violated
[17]. Existence and uniqueness of (4) as a variational
solution to the action principle is assured, as shown
in [17].

Next, we apply the algorithm of (4) to an N -particle
MDS with unit-mass particles. The potential is in this
case a sum of distance-dependent pair-potentials, so
that the Hamiltonian reads

N | X
= 2 (s s
H(t) = El: SP + 5 ]Zl u(rijt).  (6)
i
The Coulomb-like pair potentials u(r;;) are defined as

(Ag)? }<o,

w(r;;) = ﬁ with r;; the distance between particles
1 and j, € being a small constant (e. g., 0.005). The
motions of the particles are bounded, confined to the
square [-1, 1]x[~1, 1]. The boundary condition of
an infinite potential outside the square completes the
Hamiltonian.

We subdivide the square into equal-size cells with
side lenght Ag. To each cell, an integer is assigned.
Implementation of the algorithm of (4) is particu-
larly straightforward when the reflections at the walls
are approximated by the following scheme: The next
point, defined as (itil)(t+At), #2 +At)), is retained
if and only if it lies inside the square, otherwise its
mirror image, with respect to the wall, is chosen. In
other words, the same thing reads

Aty
#D(t + At) = 22V(t) — 2"t — At) — ROUND [;(A ))3 V] , (7a)
P
N =
ED> v
o LePo+ 1 - 2Por + @) - 2P
JF
N [~
B Z eyl (D psin @y _ D2
o LVePo -1 - £Por + @) - 2P
J
#V(t+Ab) i -t D+ AL < l,
t Aq —_— 1 — Aq
1 1 1
(1) ~(1) : ~(1)
={ ——@EVt+A)— —) if t+ AL > —, b
x; (t+At) Ay (Z;'(t + At) Aq) 1 Z,( ) > i (7b)

Aq

1 1
—— — @t +At)+ —) otherwise.
Agq
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Fig. 1. a) Time series of the potential energy of a 100-particle-MDS of a 2D gas, described by (6), that expands from the
right half of the volume into the whole volume. After about one time unit, relaxation has taken place. b) Time series of the

total energy of the 100-particle-MDS. One sees that the total energy shows no secular drift and the fluctuations are very
small.
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Fig. 2. Time series of the two components of the total momentum in the 100-particle MDS of Figure 1. Until relaxation is
completed, there is a dominantly negative x-component present. This fact mirrors the diffusion of the gas from the right

half of the volume into the whole available volume.

The corresponding equations for the second compo-
nent, xEZ), are generated analogously. This yields all
2N positional components.

We now start the simulation with a set
of equi-distributed initial positions {z(0),i =
1,..,N;j = 1,2} of the N = 100 particles in the
right half of the square. A second set of initial posi-
tions, {z)(—At),i = 1,..., N;j = 1,2}, is randomly
generated by the addition of normally distributed re-
placements. The two sets taken together yield the ini-
tial velocities, i. e. the two antecedents needs to con-
tinue with the calculation. Note that in generating the
second set, the standard normal variates (mean = 0,
variance = 1) were divided by 20,000. The time steps
and the spacings are chosen to be At = 0.00005 and
Ag =27, respectively.

Figure 1 shows a time series of the potential energy,
(a), and the total energy, (b). It can be seen that the
total energy is well conserved even though a relax-
ation takes place, as one sees from the behavior of the
potential energy. The value of the temporal mean of
the total energy was (E(t)) = 133.662. Figure 2 con-
firmes the presence of relaxation in the behavior of
one component of total momentum. For the duration
of about one time unit, the z-component is strongly
negative, which reflects the ongoing extension of the
gas from the right half of the volume into the total
available space.

To sum up, there is no secular drift in total en-
ergy and the fluctuations are minor. Therefore, the
system on hand is highly appropriate for the — next-

following — investigation of a deterministic entropy
concept. By the way, the “physicality-condition”, (5),
was computed throughout the whole simulation with-
out being violated at any time.

4. The IOPS Concept from a “Local” Viewpoint

In order to derive an approximation to Boltzmann’s
entropy (1), which uses given microstates without
introducing an artificial binning, we start with the
definition of the “free space” of a particle in the
“one-particle phase space”. We stick with our two-
dimensional MDS example, an extension to three di-
mensions is straighforward.

The distances of a given particle ¢ to a second one
Jj in position and momentum space, in the respective
coordinate directions, are given by

Az = |z — x5, Ayi; = |yi — ysl,
8)

Apz,, = |pz. _pr,|~Apr = lpy. _py1|-

The maximum distances in the position space are
given by the side length of the square to which the
motion is confined, i.e., ATmax = AYmax = 2. In
the momentum space, the distances are restricted
by the total energy of the system, which leads to
Apzpo = APy = 2v2E. in our 2-dimensional ex-
ample. Now we introduce the radius r; which defines
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the “free space” of particle i:

Az \ 2 s N2
(B
77 AT max AYmax
Dy

Ap. 2 A 241/2
+ -1 + :
(Apz,max) (Apy,max> :| }
Radius r; is a dimensionless number, due to the
normalization (division) of each component by the
respective maximum distance. Equation (9) defines
the radius of the largest possible 4-D hypersphere
which just does not contain a neighbouring particle.
To be specific, this hypersphere in 4-dimensional one-
particle phase space has the volume

1
—mird. (10)

wi=2 i

The geometric mean of all these partial volumes of
the phase space is given by

an

The total “occupied phase space volume” can there-
fore be defined as
2=Nuw, (12)
because we approximate the sum of the individual
hyperspheres by /V times the mean.
With respect to Boltzmann’s entropy, in the form
(3), we now use (2 to create an entropy formula by
taking the logarithm of (2:

— = 1 2 1 a 4
S=kunf2=k [m (§7r ) +lnN+—ﬁlZ=l:ln (ri)] :
(13)

In order to show that the derived entropy formula
(13) tends to the Boltzmann entropy also in the form
of (1), we trivially augment the terms of (13) to obtain

N

_ 1Z i . IZN
S_k<ﬁ - In (57T>+Ni_l InN
= | =
4
+ N igzl In (T,L))

(14)

We can now combine the sums to get

N
1 1
=K — — 2’\/'4.1 B
S k(N ,Ezl In [27rz r1]>

In this representation, the entropy thus turns out to be
the mean of the logarithms of the free spaces of the
particles. The reciprocal of the free space of particle
i (i.e., the argument in the logarithm of (15)) repre-
sents the local density f. in the vicinity of the state
point of the particle in question in one-particle phase
space. The logarithm thereby suffers a sign change.
If we now refer to the law of large numbers (c f. [20]
or any other statistics textbook), we finally recover
Boltzmann’s entropy in the form of (1).

The new entropy formula (13) deals with a
monomolecular system so far. It is possible, however,
to extend (13) to the more general case of several
participating species which may react according to
a given chemical reaction scheme. If J denotes the
number of species and N; represents the number of
particles of species j (with j = 1,...,J), then the
augmented form corresponding to (13) reads

(15)

J(t) N;(®)
Sty=k > lan(t)+m2_l:ln(wi) (16)

s=1

For a given chemical reaction system, the number
N of particles is a function of time, N;(?), as ex-
plicitely contained in (16). The number of participat-
ing species, J, can in principle become a function of
time as well; which is mentioned here for the sake
of future studies only. In this paper, we restrict our
attention to non-chemical MDS.

We turn to computing the entropy of (13) in a di-
mensionless manner (with &£ = 1) in the MDS which
was simulated in the previous section. The mean of
the total energy, (F) = 133.662, is used to compute
the maximum distance in the momentum space to ob-
tain the denominator in (9). The result of the ensuing
calculation accompanying the simulation is shown in
Figure 3. The fluctuations are large when compared to
the mean increase of the entropy itself. This is perhaps
not astonishing since only 100 particles are involved.

A second shortcoming of the “local” entropy, (13),
is the fact that certain global structures are not recog-
nized. For example, two well-separated particle clus-
ters lead to a similar entropy as if the clusters were
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‘local’ entropy

Fig. 3. Time series of the “local” entropy (13)
for the same gas as in Figure 1. Note the

-6 T T T T
0,0 0,5 1,0 1,5 2,0

time

not separated. The global arrangement is thus not suf-
ficiently taken into account.

Because of these two shortcomings and in view of
the fact that the IOPS concept has not yet been taken
into explicit regard, in the following an improved de-
terministic entropy concept will be presented.

5. The IOPS Concept from a Global Viewpoint

We again pay attention to the global arrangement of
the particles. On the basis of the distances described
by (8), radii of a given particle ¢ with respect to all
N — 1 other particles j are given by

ol @)
U Mmax Aymax
() +(32) ]}
+ + | ——— :
APz max APy, max

This equation differs from (9) in one important
respect. Instead of taking the minimum of all distances
in one-particle phase space, as was done in (9), we
here go into the full phase space I". To this end, we use
the distance in one-particle phase space, described by
(17), to define the “free volume” available to particle

v in I'. We first form the product over the N — 1
4-dimensional hyperspheres:

a7

LI |

I 2.4

v; = II —2—77 Tije (18)
g=1
JjF

This yields a volume in a 4(N — 1)-dimensional space.
Secondly, we return to the one-particle phase space
in the following way. The geometric mean over the

fairly large fluctuations for the rather low-
2.5 dimensional system in question.

“distances” v; of the reference particle ¢ to the N — 1
particles j is given by

(19)

Equation (19) once more corresponds to a volume in
the one-particle phase space, formed through a kind
of a projection of a volume in the (almost) total phase
space. In contrast to the “local” viewpoint adopted
previously with (10), (19) contains information about
the global arrangement of the particles as well.

In formal analogy to what we did in the local con-
text of the previous section, we again take the geo-
metric mean over all partial volumes w;:

(20)

It represents an instantaneously valid “generalized
diameter” of phase space. As before, the total occu-
pied volume in the one-particle phase space becomes

Logarithmizing, we arrive at the following new en-
tropy in analogy to (3):

N N
A N 1 § § 1 2.4
S:}\{ln:\ +A—rz : ln(iﬂ' I‘i])}. (22)
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Fig. 4. Time series of the “global” entropy (21)
for the same gas. In contrast to the “local”

3,5
‘global’ entropy
3,0 7
2,5 7]
2,0 7
1,5 T T T T
0,0 0,5 1,0 1,5 2,0

time

This is our main result. An extension to multi-
species systems, as discussed above for the “local”
entropy, Eq. (16), can be obtained in complete analogy
for (21).

Equation (21) has the formal structure of a correla-
tion function. The global arrangement of the particles
is therefore taken into full regard. One is reminded of
a so-called correlation dimension in nonlinear analy-
sis, cf. [21].

Let us apply the new formula to the above MDS.
The time series of the global entropy (21) is shown
in Figure 4. One sees that the fluctuations are much
smaller than in Figure 3. The incorporation of the
global arrangement of the particles achieved by the
global entropy (21) is apparently responsible for
the damping of the fluctuations observed. Formula
(21) does turn out to be especially useful for low-
dimensional MDS-systems.

Note, that the differences AS between the initial
value of the entropy and the final value, in both fig-
ures, Fig. 3 and Fig. 4, are about unity. This difference
appears plausible. In an ideal gas, one would expect
AS to be In2 = 0.693. This is due to the doubling
of the volume on the one hand, and to the absence
of smooth pair potentials on the other. Nevertheless,
the absolute values of the “local” and the “global”
entropy are different. This difference can easily be
explained. A first reason seems to lie in the arbitrary
choice of the geometric shape of the “free spaces”
defined by (9) and (17). Since the two tilings over-
lap differently, they generate different scaling factors
for the resulting phase space volumes. In Fig. 3, to-
tal phase space is less than unity, which explains the
negative value of the local entropy. In Fig. 4, the total
phase space volume is greater than unity. Neverthe-
less, these differences can be removed by getting rid
of the overlaps. Note that in the global entropy, the

" entropy (Fig. 3) the fluctuations are now minor.

maximum phase space volume is “overrated” by a
factor of V. This raises the logarithm by 10; the real
difference between Fig. 3 and Fig. 4 is about 7. A more
detailed discussion is in preparation.

6. Discussion

A deterministic entropy has been derived. Specif-
ically, the concept of an instantaneously occupied
phase space volume has been introduced and em-
ployed in two ways, first more approximately (“local”
entropy formula), then more rigorously (“global” en-
tropy formula). Thereby, Boltzmann’s entropy, S =
k1n 2, which is based on the phase space volume {2
could be given a new time-dependent interpretation.

The new entropy allows for a completely “system-
based” estimation of how far a given system is
momentarily away from thermal equlibrium. The
instantaneous time-dependent entropy does not re-
quire any observer-specific decisions to be made, like
those introduced by Jaynes in his more macroscopic
constraint-based “maximum entropy formalism”.

A relative drawback from a practical numerical
point of view regarding S, deserves to be men-
tioned. While other Newtonian MDS can be kept
growing with less than N? in terms of numerical
operations required as a function of [V, since inter-
actions with more distant particles can be skipped,
the present algorithm requires the calculation of all
pair distances. This reduces the maximum attainable
N in a machine-dependent manner (currently, an N
~ 10,000 would still be accessible for fast relaxing
systems).

An idea of Hoover [22] may nervertheless allow
for an effective reduction in CPU time. An “avail-
able space” can be defined for a fictitious particle to
be added [22]. That is, Hoover looks not at the “oc-
cupied phase space volume” but at its complement,
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the “unoccupied” volume. In this way, a measure of
the “work”™ required to insert another particle is de-
fined. This idea may save computation time because
“many-body-state-counting” is reduced to estimating
the probability of being allowed to with impunity in-
sert an additional particle. Thus, looking at Hoover’s
unoccupied volume during the simulation may even-
tually reduce computation time.

A second asset of Hoover’s idea is the implied link
to a measurable macro observable. The new measur-
able work — a kind of energy, (dA/dN)y 1, termed
“excess chemical potential” by Hoover — plays a sim-
ilar role as a macro observable, as entropy itself does.
So far, Hoover’s method is confined to one-particle
phase space. However, there is a chance that it can be
“globalized”, too.

We feel tempted to add another speculation. The
new entropy formula could prove useful also for the
description of the transient behavior of purely macro-
scopic systems — like a set of coupled dissipative oscil-
lators. In such “synergetic” systems with many equal
units [23], one can also hope to profit from the
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