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A deterministic entropic measure is derived for the time evolution of Newtonian N-particle 
systems based on the volume of the instantaneously occupied phase space (IOPS). This measure 
is found as a natural extension of Boltzmann's entropy. The instantaneous arrangement of the 
particles is exploited in the form of spatial correlations. The new entropy is a bridge between the 
time-dependent Boltzmann entropy, formulated on the basis of densities in the one-particle phase 
space, and the static Gibbs entropy which uses densities in the full phase space. We apply the 
new concept in a molecular dynamics simulation (MDS) using an exactly time reversible "discrete 
Newtonian equation of motion" recently derived from the fundamental principle of least action 
in discretized space-time. The simulation therefore is consistent with micro-time-reversibility. 
Entropy becomes an exact momentary observable in both time directions in fulfillment of a dream 
of Boltzmann. 

1. Introduction 

In the Cartesian tradition one is willing to work on 
a consistent description of the physical world. Boltz-
mann certainly did so. Nevertheless, he claimed that 
it will take centuries to fully understand the micro-
macro-transition. We agree. Looking at the endless 
list of controversial contributions to this field of re-
search within the century which has passed since 
Boltzmann made this remark, we would like to think 
that this is how everybody else feels. In contrast to 
Boltzmann's original deterministic entropy concept 
(best known under the name //-function), the Gibb-
sian ensemble statistics has been fruitful only as a 
static concept up till now. Microscopic applications 
of Gibbs' concept are restricted to equilibrium sit-
uations. Jaynes' "maximum entropy formalism" is 
an attempt to approximate a time-dependent entropy 
by introducing the fiction of time-dependent macro 
constraints, which allows one to retain the ensemble 
concept for intermediate steps of the entropy evolu-
tion as "momentary equilibria" [1], His information 
theoretical approach led to the now well-established 
"maximum entropy method" used for the reconstruc-
tion of incomplete or noisy time series which uses 
constraints from macroscopic pre-knowledge on the 
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system on hand [2], A further drawback of the Gibbs 
ensemble formalism is that it formally presupposes er-
godicity which is rarely found in realistic systems [3]. 

Encouraged by Rene Descartes we make a kind of 
"tabula rasa" and look at that what we have on hand 
"here and now". Both, a prospective and a retrospec-
tive view are of a cumulative nature. They presuppose 
that one knows already what happened or is going to 
happen in a certain time interval which must not be 
too small to be representative. Since we are today 
able to check our theories by creating an artificial 
universe in the computer, we can try to implement 
a "here-and-now" (hie et nunc) physics: it consists 
of N identical particles with a repulsive ^-potential 
as a two-dimensional molecular dynamics simulation 
(MDS). Is it possible to have an instantaneous en-
tropy? 

MDS of iV-particle-systems are well-suited for in-
vestigations into the entropic behavior of conservative 
dynamical systems. Because of the Newtonian nature 
one is able to perform "experiments" on the micro-
scopic level which allow one to make assertions about 
the way micro-entities give rise to macroscopic ob-
servables. Boltzmann's H-function, frequently com-
puted in MDS [4], is an example for a (scalar) func-
tion of the microstates. It is the velocity part of the 
so-called Boltzmann entropy 

SB = -k [ /7ln/7d7, (1) 
J -y 
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where / 7 is the density in the one-particle phase space 
7 and k Boltzmann's constant. Intuitively, the density 

is constituted by the cloud of points which one 
gets throught the projection of the phase space coor-
dinates onto a one-particle subspace. To compute SB 

in an MDS, one usually generates a histogram of the 
positions and momenta of the N particles to get an 
approximation for the density / . This could be done 
at every instant of time; i. e., S B actually is a deter-
ministic entropy. It is nevertheless not very accurate. 

The Gibbs entropy 

SG = -k J f r In f r d r , (2) 

in contrast, uses the density f r in the full phase 
space r . In r the ^-particle-system is represented by 
one point at every instant of time. To speak of a den-
sity makes sense only if one either waits long enough 
until the trajectory fills out the phase space more or 
less densely (at different locations in phase space) or 
if it is interpreted using (fictitious) ensembles. 

In an isolated thermodynamical system, the entropy 
is according to Boltzmann and Gibbs connected to the 
phase space volume Q by 

5 = k In Q. (3) 

Up until now, the concept of phase-space volume has 
always been a (quasi) static one; i. e., (3) presupposes 
equilibrium. Jaynes' above mentioned information-
theoretical approach uses an observer-dependent ref-
erence class of macro observables. The entropy 
thereby becomes "anthropomorphic". Being anthro-
pomorphic is - according to Jaynes - a constitutive 
part of the nature of entropy [5]. 

In the following we propose a deterministic variant 
to (3). Essentially, we introduce the new concept of 
the "instantaneously occupied phase space" (IOPS). 
The concept of IOPS enables one to describe transient 
behavior. It is a fully deterministic concept. The re-
sulting entropy becomes a symmetric function of the 
microstates. Hence, if the particle momentums are 
all reversed at a certain instant of time, which cor-
respondes to an allowed microstate, the entropy may 
decrease for a short period of time. This troubling 
fact deserves to be briefly discussed (Section 2). For 
convenience and the sake of consistency, we use an 
exactly time reversible MDS algorithm to integrate 
the equation of motion of the particles. A brief review 

of this algorithm and a description of the iV-particle 
system are given in Section 3. Then, we introduce 
the concept of IOPS from a "local" viewpoint in Sec-
tion 4. We show that the resulting entropy converges 
to Boltzmann's entropy (1) and can in this sense 
be regarded equivalent to the histogram approxima-
tion to (1). The insufficiency of this entropy formula, 
when dealing with fairly low-dimensional systems, is 
demonstrated. This provides the motivation to intro-
duce in Sect. 5 a derivation of a generalized "global" 
entropy formula. This formula is then applied to an 
MDS of a 100-particle system. It is markedly im-
proved. Finally we discuss our results in Sect. 6 and 
give an outlook on further studies. 

2. Time symmetr ic vs. t ime asymmetr i c entropies 

If one assumes given the time reversible Newtonian 
equations as a correct description of a microscopic 
dynamics, it follows that an entropy constructed as a 
symmetric scalar function of the microstates neces-
sarily decreases in time after a reversal of all momen-
tums when it was increasing in the forward direction. 
This means that the increasing or decreasing behavior 
of the entropy depends on the initial state of the sys-
tem. Boltzmann's //-function, frequently computed 
in MDS [4,6], is of that type. The question is whether 
such a function could be called an entropy at all. 

Actually, some authors prefer to regard any en-
tropy as increasing by definition independently of the 
direction of time [7,8]. In 1980 J. Hurley tried to 
give a "resolution of the time-asymmetry paradox" 
[9], He looked at the phase space trajectory of a many 
particle system as a solution of the corresponding 
Newtonian equations, valid from the initial time t0 

to infinity and also from t0 to minus infinity. We as-
sume given an initial state such that all particles are 
at rest (all momentums equal to zero) in a state of 
mutual repulsion. Then we leave the system alone. 
The interactions accelerate the particles in both di-
rections of time. The two half trajectories are iden-
tical in configuration space. The entropy produced 
than clearly increases in both directions of time. Hur-
ley's results can than be put into the following form: 
If one now arbitrarily picks a point on the finished 
trajectory and looks at a short segment lying to the 
left and to the right of that point, one finds qualita-
tively the same behavior with very high probability 
as it was found above for the extremal initial state of 
zero momentums. That is, one is close to a "U-turn" 
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with both ends showing the same entropy increase, 
almost everywhere. A transient decreasing entropy 
occurs only in those extremely rare cases where the 
trajectorial segment in question came in from a far 
away loop. This is Hurley's principle of the "bezoar". 
Note that the lump of hair found in the stomach of 
a cow (bezoar) shows virtually the same behavior if 
one tries to pick a random point on it. Hence almost 
always, the entropy increases in both directions of 
time. 

If one now tries to apply this argumentation to com-
plex systems like biological ones, the earth or even 
the whole universe, one wonders how such a long 
past history of continually increasing entropy could 
be possible as we believe it to exist [10]. Many sci-
entists therefore prefer a time-asymmetric entropic 
desription of such systems [11,12]. They either in-
troduce non-Newtonian equations of motion on the 
microscopic level or time-asymmetric entropies, or 
both. The concept of broken ergodicities, for exam-
ple, formally leads to equations of motion that have 
non-integer (fractional) time derivatives [13]. Such 
equations are the formal implication of a treatment of 
phase space flows with semigroup features. Petrosky 
and Prigogine [11,12] also use semigroup features 
of phase space flows. They, therefore, give up the 
concept of trajectories for the description of ther-
modynamical systems. Even quantum systems are 
amenable to being described in this fashion [12]. The 
dependency of the sign of the entropic behavior on the 
initial state can be avoided by introducing the concept 
of the "absence of pre-collisional correlations" for all 
initial states [7]. 

In spite of the time-asymmetric concepts briefly 
outlined above, Lebowitz [3], as already mentioned, 
as well as other authors [6,14] are predicting a re-
naissance of classical Boltzmannian concepts. When 
working on such a philosophically charged subject, 
one can hardly avoid to get between the lines. As we 
argued in [15] by means of a Gedankenexperiment 
there is some putative evidence for a time reversible 
structure of the universe. On the other hand we think 
that Boltzmann's concepts need to be improved as 
we will show in the following. Nevertheless we stick 
with the symmetric nature of the entropy because we 
start out from the classical MDS paradigm. A second 
excuse for our confidence in the new entropy formula 
could be seen to lie in the fact that it is not confined 
to reversible systems. It can also be applied to dis-
sipative macroscopic systems of high dimensionality 

including experimental time series of different origins 
(work in preparation). 

Specifically a generalized //-function will be pre-
sented. It confirmes a most recent result by Vollmer 
et al. which was obtained on the basis of a so-called 
multibaker map [16] which is of interest also under 
both time and space symmetric conditions (work in 
preparation). We close the section by reiterating the 
confession of Petrosky and Prigogine offered at the 
end of their 1994 paper: 

"In summary we believe that our approach avoids 
the usual dichotomy between what is microscopic and 
time reversible, and what is macroscopic and time ir-
reversible. In this sense we hope that we have con-
tributed to the elucidation of the research program 
started more than one century ago by Boltzmann and 
Planck." 

3. A n Af-Particle-System in Two Dimens ions 

We now prepare to set up an artificial universe 
by means of a fully deterministic Newtonian MDS 
using a digital computer. A first step to do this in 
a consistent way has been obtained recently. Nadler 
et al. [17] proposed a variant of Verlet's algorithm 
which was derived from the fundamental physical 
principle of least action, applied to discretized space 
and time. A precondition for an exactly time reversible 
algorithm is use of an integer arithmetic. Levesque 
and Verlet [6] first applied an algorithm of this type to 
compute Boltzmann's //-function in a simulation of a 
many-particle Lennard-Jones gas. A computationally 
generated dissipation due to round-off errors [18] was 
thereby avoided. Levesque and Verlet were able to 
exactly retrace the system trajectory. The same finding 
was made independently in [19] where a few-particle 
system was used for the demonstration. 

Application of the action principle to discretized 
space and time, combined with the use of integer 
arithmetic, leads to a modified form of Verlet's al-
gorithm as used by Levesque and Verlet. The force 
term is replaced by a difference-quotient of the poten-
tials. This allows for an unequivocal definition of the 
rounding term in the equation. Moreover and more 
importantly, a criterion is provided which tells one 
whether the trajectory is still physical. 

Concretely, we assume as given a discretization 
of time and space: t = tz + kAt, and q = q0 + xAq, 
respectively, with A;, a; £ Z. Then the discretized path, 
q(t), of a Hamiltonian system is represented by an 
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i n t e g e r s e q u e n c e {xk}. G i v e n a p o t e n t i a l V(q(t)), t he d i sc re t e N e w t o n i a n e q u a t i o n of m o t i o n r e a d s 

xk+l =2xk -xk-x — ROUND At 2
 V(q0 + (xk + 1 )Aq) - V(q0 + (xk - 1 )Aq) \ 

2A q2 (4) 

Hereby the ROUND-function, unlike the INT or TRUNC-function, represents the closest integer value to its 
floating-point argument. One sees that two antecedents are used to calculate the next point. As long as each 
triple ( x k _ h X k , x k + \ ) obeys the inequality 

2 V(q0 + xkAq) - V(q0 + (xk - 1))Aq) } 
(A q)2 J 

|®jfe+i - 2xk + xk_i + 1 + (AO 

f 0 ^ 1 , / a ^ 2 ^ ( 9 0 + k + l ) A g ) - V ( g o + xkAq)\ 
• jxifc+i - 2xk - 1 +(Aty ——2 1 < 0, 

(5) 

N N 

H(t) = Y,\p(t)2+l- Y , uijijt). 
i=\ I, J = I 

i i 3 

the action principle, underlying the derivation of (4), 
is fulfilled. Otherwise the computed trajectory ceases 
to be physical because the action principle is violated 
[17]. Existence and uniqueness of (4) as a variational 
solution to the action principle is assured, as shown 
in [17]. 

Next, we apply the algorithm of (4) to an iV-particle 
MDS with unit-mass particles. The potential is in this 
case a sum of distance-dependent pair-potentials, so 
that the Hamiltonian reads 

u(ra) = with Tij the distance between particles 

(6) 

The Coulomb-like pair potentials u{r l J) are defined as 

i3> ~ rij(ty lo 
i and j, s being a small constant (e. g., 0.005). The 
motions of the particles are bounded, confined to the 
square [-1, l ] x [ - l , 1]. The boundary condition of 
an infinite potential outside the square completes the 
Hamiltonian. 

We subdivide the square into equal-size cells with 
side lenght Aq. To each cell, an integer is assigned. 
Implementation of the algorithm of (4) is particu-
larly straightforward when the reflections at the walls 
are approximated by the following scheme: The next 
point, defined as (x^it + At), x f \ t + At)),is retained 
if and only if it lies inside the square, otherwise its 
mirror image, with respect to the wall, is chosen. In 
other words, the same thing reads 

x{i\t + At) = 2x{i\t) - x{i\t - At) - ROUND 
(AQ 2 

[2(Aqy 
V 

V = 
N 

E 
[ J{x?\t) + 1 - x(;\t))2 + ( x f \ t ) - xf\t))2 

¥i v 

N 

- E 

j 
j ¥ i 

j = 1 
j ¥* 

x(X\t + At) = 

y/(x?\t) - 1 - x{;\t))2 + ( x f \ t ) - xf\t))7 

x^\t + At) if - - L < 5 V \ t + A t ) < l - t A q A q 
1 - (x{i\t + At) - —) if x(-\t + At) > -!-, 

A q A q A q 

(x{X) (t + At) +—) otherwise. 
A q A q 

(7a) 

(7b) 
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a) 

t ime 

Fig. 1. a) Time series of the potential energy of a 100-particle-MDS of a 2D gas, described by (6), that expands from the 
right half of the volume into the whole volume. After about one time unit, relaxation has taken place, b) Time series of the 
total energy of the 100-particle-MDS. One sees that the total energy shows no secular drift and the fluctuations are very 
small. 
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total morrertum 

time 

Fig. 2. Time series of the two components of the total momentum in the 100-particle MDS of Figure 1. Until relaxation is 
completed, there is a dominantly negative ^-component present. This fact mirrors the diffusion of the gas f rom the right 
half of the volume into the whole available volume. 

The corresponding equations for the second compo-
nent, x f \ are generated analogously. This yields all 
2N positional components. 

We now start the simulation with a set 
of equi-distributed initial positions { x ^ O ) , i = 
1 , . . . , iV ; j = 1,2} of the N = 100 particles in the 
right half of the square. A second set of initial posi-
tions, {x^i—At), i = 1 ,...,N;j= 1,2}, is randomly 
generated by the addition of normally distributed re-
placements. The two sets taken together yield the ini-
tial velocities, i. e. the two antecedents needs to con-
tinue with the calculation. Note that in generating the 
second set, the standard normal variates (mean = 0, 
variance = 1) were divided by 20,000. The time steps 
and the spacings are chosen to be At = 0.00005 and 
Aq = 2~50, respectively. 

Figure 1 shows a time series of the potential energy, 
(a), and the total energy, (b). It can be seen that the 
total energy is well conserved even though a relax-
ation takes place, as one sees from the behavior of the 
potential energy. The value of the temporal mean of 
the total energy was (E(t)) = 133.662. Figure 2 con-
firmes the presence of relaxation in the behavior of 
one component of total momentum. For the duration 
of about one time unit, the ^-component is strongly 
negative, which reflects the ongoing extension of the 
gas from the right half of the volume into the total 
available space. 

To sum up, there is no secular drift in total en-
ergy and the fluctuations are minor. Therefore, the 
system on hand is highly appropriate for the - next-

following - investigation of a deterministic entropy 
concept. By the way, the "physicality-condition", (5), 
was computed throughout the whole simulation with-
out being violated at any time. 

4. The IOPS Concept from a "Local" Viewpoint 

In order to derive an approximation to Boltzmann's 
entropy (1), which uses given microstates without 
introducing an artificial binning, we start with the 
definition of the "free space" of a particle in the 
"one-particle phase space". We stick with our two-
dimensional MDS example, an extension to three di-
mensions is straighforward. 

The distances of a given particle i to a second one 
j in position and momentum space, in the respective 
coordinate directions, are given by 

Axij = \xi - Xj\,Ayij = \yx - y01, 
(8) 

&Pxtj = \Vxt -pXj\,Apytj = \py, ~PVj\. 

The maximum distances in the position space are 
given by the side length of the square to which the 
motion is confined, i.e., A.rm ax = Aymax = 2. In 
the momentum space, the distances are restricted 
by the total energy of the system, which leads to 
ApXmM = ApVmax = 2\[2E. in our 2-dimensional ex-
ample. Now we introduce the radius r, which defines 
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the "free space" of particle i: We can now combine the sums to get 

r j = min 
A x r 

AXr 
A Vi 

Aj/m 
(9) 

Ap X l J 

Apx ,m; 

A Py , 3 
APy,ma: 

1/2 

Radius r t is a dimensionless number, due to the 
normalization (division) of each component by the 
respective maximum distance. Equation (9) defines 
the radius of the largest possible 4-D hypersphere 
which just does not contain a neighbouring particle. 
To be specific, this hypersphere in 4-dimensional one-
particle phase space has the volume 

1 2 4 uJi (10) 

The geometric mean of all these partial volumes of 
the phase space is given by 

UJ = 

N 

n 
i=i 

Ut (11) 

The total "occupied phase space volume" can there-
fore be defined as 

Q - Nuj, (12) 

because we approximate the sum of the individual 
hyperspheres by N times the mean. 

With respect to Boltzmann's entropy, in the form 
(3), we now use Q to create an entropy formula by 
taking the logarithm of Q: 

S = A'In Q = k In ( M + l n i V + l f l n W ) 

(13) 

In order to show that the derived entropy formula 
(13) tends to the Boltzmann entropy also in the form 
of (1), we trivially augment the terms of (13) to obtain 

N 

N E In o 
i=i 

(14) 

S = k ix> 
i=\ 

7r2 iVr? (15) 

In this representation, the entropy thus turns out to be 
the mean of the logarithms of the free spaces of the 
particles. The reciprocal of the free space of particle 
i (i.e., the argument in the logarithm of (15)) repre-
sents the local density / 7 in the vicinity of the state 
point of the particle in question in one-particle phase 
space. The logarithm thereby suffers a sign change. 
If we now refer to the law of large numbers (c f. [20] 
or any other statistics textbook), we finally recover 
Boltzmann's entropy in the form of (1). 

The new entropy formula (13) deals with a 
monomolecular system so far. It is possible, however, 
to extend (13) to the more general case of several 
participating species which may react according to 
a given chemical reaction scheme. If J denotes the 
number of species and N3 represents the number of 
particles of species j (with j = 1,..., J) , then the 
augmented form corresponding to (13) reads 

S(t) = k 
J(t) 

1 
Nj(t) 

E W ^ E M - ) 
i=i 

. (16) 

For a given chemical reaction system, the number 
Nj of particles is a function of time, Nj(t), as ex-
plicitely contained in (16). The number of participat-
ing species, J , can in principle become a function of 
time as well; which is mentioned here for the sake 
of future studies only. In this paper, we restrict our 
attention to non-chemical MDS. 

We turn to computing the entropy of (13) in a di-
mensionless manner (with k = 1) in the MDS which 
was simulated in the previous section. The mean of 
the total energy, (E) = 133.662, is used to compute 
the maximum distance in the momentum space to ob-
tain the denominator in (9). The result of the ensuing 
calculation accompanying the simulation is shown in 
Figure 3. The fluctuations are large when compared to 
the mean increase of the entropy itself. This is perhaps 
not astonishing since only 100 particles are involved. 

A second shortcoming of the "local" entropy, (13), 
is the fact that certain global structures are not recog-
nized. For example, two well-separated particle clus-
ters lead to a similar entropy as if the clusters were 
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Fig. 3. Time series of the "local" entropy (13) 
for the same gas as in Figure 1. Note the 
fairly large fluctuations for the rather low-
dimensional system in question. 

time 

not separated. The global arrangement is thus not suf-
ficiently taken into account. 

Because of these two shortcomings and in view of 
the fact that the IOPS concept has not yet been taken 
into explicit regard, in the following an improved de-
terministic entropy concept will be presented. 

5. The IOPS Concept from a Global Viewpoint 

We again pay attention to the global arrangement of 
the particles. On the basis of the distances described 
by (8), radii of a given particle i with respect to all 
N — 1 other particles j are given by 

Tin 
( A J -

V Ar, A yr 
(17) 

bPxg 
Apx ,ma: 

2 - i 1/2 

This equation differs from (9) in one important 
respect. Instead of taking the minimum of all distances 
in one-particle phase space, as was done in (9), we 
here go into the full phase space r . To this end, we use 
the distance in one-particle phase space, described by 
(17), to define the "free volume" available to particle 
i in r. We first form the product over the N — 1 
4-dimensional hyperspheres: 

VR = n 
3 = i 
3 ¥i 

7 T V , 13 (IB) 

This yields a volume in a 4(Ar — 1 )-dimensional space. 
Secondly, we return to the one-particle phase space 
in the following way. The geometric mean over the 

"distances" vl of the reference particle i to the N - 1 
particles j is given by 

Ui = y/Vt = 
N 

n 
3 = 1 
j ¥ i 

1 o 4 
—7rzr •. 
2 13 (19) 

Equation (19) once more corresponds to a volume in 
the one-particle phase space, formed through a kind 
of a projection of a volume in the (almost) total phase 
space. In contrast to the "local" viewpoint adopted 
previously with (10), (19) contains information about 
the global arrangement of the particles as well. 

In formal analogy to what we did in the local con-
text of the previous section, we again take the geo-
metric mean over all partial volumes cJ :̂ 

UJ -

N 

n 
i=i 

UJ; (20) 

It represents an instantaneously valid "generalized 
diameter" of phase space. As before, the total occu-
pied volume in the one-particle phase space becomes 

f2 = Nco = N 
N 

n n <2i> 
3 = 1 
3 ¥i 

Logarithmizing, we arrive at the following new en-
tropy in analogy to (3): 

2 = 1 j = 1 
3 ¥ * 
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3,5 

59 

time 

This is our main result. An extension to multi-
species systems, as discussed above for the "local" 
entropy, Eq. (16), can be obtained in complete analogy 
for (21). 

Equation (21) has the formal structure of a correla-
tion function. The global arrangement of the particles 
is therefore taken into full regard. One is reminded of 
a so-called correlation dimension in nonlinear analy-
sis, cf. [21]. 

Let us apply the new formula to the above MDS. 
The time series of the global entropy (21) is shown 
in Figure 4. One sees that the fluctuations are much 
smaller than in Figure 3. The incorporation of the 
global arrangement of the particles achieved by the 
global entropy (21) is apparently responsible for 
the damping of the fluctuations observed. Formula 
(21) does turn out to be especially useful for low-
dimensional MDS-systems. 

Note, that the differences AS between the initial 
value of the entropy and the final value, in both fig-
ures, Fig. 3 and Fig. 4, are about unity. This difference 
appears plausible. In an ideal gas, one would expect 
AS to be In 2 « 0.693. This is due to the doubling 
of the volume on the one hand, and to the absence 
of smooth pair potentials on the other. Nevertheless, 
the absolute values of the "local" and the "global" 
entropy are different. This difference can easily be 
explained. A first reason seems to lie in the arbitrary 
choice of the geometric shape of the "free spaces" 
defined by (9) and (17). Since the two tilings over-
lap differently, they generate different scaling factors 
for the resulting phase space volumes. In Fig. 3, to-
tal phase space is less than unity, which explains the 
negative value of the local entropy. In Fig. 4, the total 
phase space volume is greater than unity. Neverthe-
less, these differences can be removed by getting rid 
of the overlaps. Note that in the global entropy, the 

Fig. 4. Time series of the "global" entropy (21) 
for the same gas. In contrast to the "local" 
entropy (Fig. 3) the fluctuations are now minor. 

maximum phase space volume is "overrated" by a 
factor of N. This raises the logarithm by 10; the real 
difference between Fig. 3 and Fig. 4 is about 7. A more 
detailed discussion is in preparation. 

6. Discussion 

A deterministic entropy has been derived. Specif-
ically, the concept of an instantaneously occupied 
phase space volume has been introduced and em-
ployed in two ways, first more approximately ("local" 
entropy formula), then more rigorously ("global" en-
tropy formula). Thereby, Boltzmann's entropy, S = 
k In f2, which is based on the phase space volume i? 
could be given a new time-dependent interpretation. 

The new entropy allows for a completely "system-
based" estimation of how far a given system is 
momentarily away from thermal equlibrium. The 
instantaneous time-dependent entropy does not re-
quire any observer-specific decisions to be made, like 
those introduced by Jaynes in his more macroscopic 
constraint-based "maximum entropy formalism". 

A relative drawback from a practical numerical 
point of view regarding Sg lob deserves to be men-
tioned. While other Newtonian MDS can be kept 
growing with less than N2 in terms of numerical 
operations required as a function of N, since inter-
actions with more distant particles can be skipped, 
the present algorithm requires the calculation of all 
pair distances. This reduces the maximum attainable 
N in a machine-dependent manner (currently, an N 
« 10,000 would still be accessible for fast relaxing 
systems). 

An idea of Hoover [22] may nervertheless allow 
for an effective reduction in CPU time. An "avail-
able space" can be defined for a fictitious particle to 
be added [22]. That is, Hoover looks not at the "oc-
cupied phase space volume" but at its complement, 
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the "unoccupied" volume. In this way, a measure of 
the "work" required to insert another particle is de-
fined. This idea may save computation time because 
"many-body-state-counting" is reduced to estimating 
the probability of being allowed to with impunity in-
sert an additional particle. Thus, looking at Hoover's 
unoccupied volume during the simulation may even-
tually reduce computation time. 

A second asset of Hoover's idea is the implied link 
to a measurable macro observable. The new measur-
able work - a kind of energy, ( d A / d N ) v , r , termed 
"excess chemical potential" by Hoover - plays a sim-
ilar role as a macro observable, as entropy itself does. 
So far, Hoover's method is confined to one-particle 
phase space. However, there is a chance that it can be 
"globalized", too. 

We feel tempted to add another speculation. The 
new entropy formula could prove useful also for the 
description of the transient behavior of purely macro-
scopic systems - like a set of coupled dissipative oscil-
lators. In such "synergetic" systems with many equal 
units [23], one can also hope to profit from the 
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