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We theoretically investigate the Giiemez-Matias method for controlling chaotic behaviour. We obtain 
an algorithm to determine the value of the control parameter y. 

Numerical simulations confirme our theoretical approach. 

In the last couple of years several methods have been 
developed to control chaotic dynamical systems. It is 
interesting that most of these techniques make use of the 
sensitive dependence of chaotic dynamical systems on 
the initial conditions. A review of some of the techniques, 
with emphasis on work which demonstrates that the sen-
sitivity to tiny perturbations can make chaotic problems 
ideally suited for control, is given in [1]. 

The existing methods of chaos control can be divided 
into two categories: feedback and non-feedback meth-
ods. 

Feedback methods [2, 3] stabilize orbits already exist-
ing in the system. 

Nonfeedback methods [4, 5] apply a small driving 
force or small modulation to some system parameters or 
variables. 

These methods modify the dynamical system in such 
a way that stable orbits or fixed points appear. 

One of the most well-known feedback methods of con-
trolling chaos is the Ott-Grebogi-Yorke (OGY) method 
[6]. This procedure takes advantage of the fact that un-
stable periodic states in chaotic systems typically have a 
stable direction (stable manifold) which can be put to use. 
This method has the advantage that it requires no a pri-
ori analytical model, but the serious drawback that it of-
ten takes a long time before reaching the neighbourhood 
of one of the points on the path leading to the target. A 
considerable improvement can be achieved by combin-
ing the targeting approach and the OGY method. 

In this paper we analyse a nonfeedback method of 
chaos control invented by Güemez and Matias [7, 8]. 

In the G-M method, a periodic orbit is stabilized by 
performing rather nonspecific changes in the system var-

iables. Periodic proportional perturbations in the form of 
pulses are applied to a chaotic system. The perturbation 
is directly applied to the system variables. No knowledge 
of the system behaviour is required. 

In this paper we consider one-dimensional maps, al-
though our results can easily be extended to more gener-
al systems. 

Let the dynamics of our system be given by a diffe-
rentiable map of the form 

xn+i=T(xn); xneR], n= 1 , 2 , . . . . 

In the G-M method one performs changes in the system 
variables in the form of instantaneous pulses spaced in 
time, i.e. 

*„+i = T(xn)(\ + Y8n,p); y e / ? 1 , 

where Sn p= 1 if n is a multiple of p e N. (N is the set of 
natural numbers) and zero otherwise. 

Thus every p time steps the variable JC is modified by 
means of a proportional feedback of strength ye Rl. As 
G-M showed, using the method with suitable y one can 
stabilize periodic orbits of a periodicity equal to a mul-
tiple of p. 

Let us assume that for some value of the parameter y 
there exists for the perturbed dynamical system an 
asymptotically stable orbit of period k. If we denote the 
initial point of the orbit by JC*, x* should be a solution of 
the equation 

(1 + y)T\x)=x, 

and the condition of asymptotic stability reads 

(1 + y ) ± T k ( x ) 
d.v 

< 1 

(1) 

(2) 
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Now let us apply the G-M method to a special class of 
dynamics given by the Chebyshev polynomials. 
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Consider the family of functions 

Tp(x) = cos(pG), (3) 

where p is a nonnegative integer, JC = COS0 and 0 <Q<n. 
The function TP(X) is defined by (3) in the interval 

- 1 <*<1, which we also denote by I. TP{X) is a single-
valued function and may be written 

T ( x ) = c o s p ( a r c COSJC) , 

where 

0 < arc cos X < N. 

One can easily see that Tp(x) is a polynomial of degree 
p. Tp(x) is called the Chebyshev polynomial of degree p. 

The first few Chebyshev polynomials are 

T0(x) = 1 , r,(jc) = ;c, T2(X) = 2x2 - 1 , 
T3(x) = 4x3 -3x , T4(x) = Sx4-Sx2+\ . 

The Chebyshev polynomials Tp(x) define mappings 
x—>TJx) of I onto I for each p = 0, 1,2, ... . If i,j are 
nonnegative integers, then Ti(Tj(x)) = Ti.j(x). 

Definition 

Let (X, B,p) be a separable finite measure space, and 
let T be a mapping of X onto itself that is measurable, i.e. 
such that B e ß implies r _ 1 ( B ) e ß . T is said to be meas-
ure preserving if 

p(z~lB)=p(B), BeB, 

and if r is measure preserving, it is called strongly mix-
ing if 

p(X) 

for all A, B e B. 
Every strongly mixing transformation is ergodic; i.e. 

if 
T'\A)=A 

for some A e B, then either p (A) = 0 or p (A) -p (X). 

Theorem [9] 

Each Tp with p> 1 is strongly mixing, hence ergodic. 
Let us consider a dynamics given by the iterations 

xn+\ = Tp(xn), where Tp is the p-th Chebyshev polynomi-
al, and the initial conditions are 

-1 < x() = cos 60 < 1 . 

Then one can write 

xn+\ = cos(pOn), where xn = cos6n , 

and the iterates of x are chaotic and given analytically by 

= cos (p" 0O) . 

One can easily show that the conditions (1) and (2), ap-
plied to the dynamics given by the Chebyshev polyno-
mial TP, read 

(1 + 7) c o s ( p k 60 ) = cos0q , 

cos(0„ + 1 ) = cos(pOn ), 

j-j psmjpOj) 
/=o sin(0,-) 

1 

1 + 7 

We invented a simple Fortran program which for a 
given k (period) and p (number of the Chebyshev poly-
nomial) finds the y for which there exist asymptotically 
stable ^-periodic orbits. Table 1 gives some results. We 
numerically checked the results obtained by the program, 
and very good agreement was obtained. 

k P r 

2 2 -0 .2757 
2 4 -0 .2889 
3 2 -0 .07658 
2 4 -0 .4439 
5 2 0.07605 
4 2 -0.12641 

Table 1. p - number of the 
Chebyshev polynomial; 
k - period of stabilized orbit. 

Remarks 

1. The precision of a computational procedure signif-
icantly influences for instance the period of the orbit (ob-
tained as a result of the control). 

2. Frequently an application of a program A that is 
less precise than a program B will result in an orbit of a 
smaller period than would be obtained by applying pro-
gram B. This is because a controlled orbit sometimes 
passes nearby a point xQ and returns to its neighbouring 
point JC0+S. If S is a number that is smaller than the small-
est recognizable number, then the less precise program 
A identifies the points jc0 and ,x0+<5. Lesser precision re-
sults in loss of part of the information. In some extreme 
cases a non-periodical orbit is computed as periodical be-
cause of a lesser precision. No method exists that would 
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allow to predict the relationship between precision and 
the computed orbit's parameters. Therefore all computa-
tions associated with controlling chaos should be con-
ducted with the maximum precision. 
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