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We theoretically investigate the Gii€émez-Matias method for controlling chaotic behaviour. We obtain
an algorithm to determine the value of the control parameter .
Numerical simulations confirme our theoretical approach.

In the last couple of years several methods have been
developed to control chaotic dynamical systems. It is
interesting that most of these techniques make use of the
sensitive dependence of chaotic dynamical systems on
the initial conditions. Areview of some of the techniques,
with emphasis on work which demonstrates that the sen-
sitivity to tiny perturbations can make chaotic problems
ideally suited for control, is given in [1].

The existing methods of chaos control can be divided
into two categories: feedback and non-feedback meth-
ods. '

Feedback methods [2, 3] stabilize orbits already exist-
ing in the system.

Nonfeedback methods [4, 5] apply a small driving
force or small modulation to some system parameters or
variables.

These methods modify the dynamical system in such
a way that stable orbits or fixed points appear.

One of the most well-known feedback methods of con-
trolling chaos is the Ott-Grebogi-Yorke (OGY) method
[6]. This procedure takes advantage of the fact that un-
stable periodic states in chaotic systems typically have a
stable direction (stable manifold) which can be put to use.
This method has the advantage that it requires no a pri-
ori analytical model, but the serious drawback that it of-
ten takes a long time before reaching the neighbourhood
of one of the points on the path leading to the target. A
considerable improvement can be achieved by combin-
ing the targeting approach and the OGY method.

In this paper we analyse a nonfeedback method of
chaos control invented by Giiémez and Matias [7, 8].

In the G-M method, a periodic orbit is stabilized by
performing rather nonspecific changes in the system var-
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iables. Periodic proportional perturbations in the form of
pulses are applied to a chaotic system. The perturbation
is directly applied to the system variables. No knowledge
of the system behaviour is required.

In this paper we consider one-dimensional maps, al-
though our results can easily be extended to more gener-
al systems.

Let the dynamics of our system be given by a diffe-
rentiable map of the form

%ei=T): x,eR', n=12...

In the G-M method one performs changes in the system
variables in the form of instantaneous pulses spaced in
time, i.e.

X1 =T(x,) (1+78,,): yeR',

where 6, ,=1 if n is a multiple of pe N. (N is the set of
natural numbers) and zero otherwise.

Thus every p time steps the variable x is modified by
means of a proportional feedback of strength ye R'. As
G-M showed, using the method with suitable y one can
stabilize periodic orbits of a periodicity equal to a mul-
tiple of p.

Let us assume that for some value of the parameter y
there exists for the perturbed dynamical system an
asymptotically stable orbit of period k. If we denote the
initial point of the orbit by x*, x* should be a solution of
the equation

1+ T W) =x, (1
and the condition of asymptotic stability reads

A+ S 1| <. 2)
dx

x=x*

Now let us apply the G-M method to a special class of
dynamics given by the Chebyshev polynomials.
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Consider the family of functions
T,(x)=cos(p0), 3)

where p is a nonnegative integer, x=cos6 and 0<0 <.

The function T),(x) is defined by (3) in the interval
—1<x<1, which we also denote by 1. T,,(x) is a single-
valued function and may be written

T,(x) = cos p (arccosx) ,
where
O0<arccosx<m.

One can easily see that 7},(x) is a polynomial of degree
p- T,(x) is called the Chebyshev polynomial of degree p.
The first few Chebyshev polynomials are

To=1, Ti)=x, T,(x)=2x%-1,
T3(x)=4x3—3x, T4(x)=8x4—8x2+ 1.

The Chebyshev polynomials 7),(x) define mappings
x—T,(x) of I onto [ for each p=0, 1,2, ... . If i, j are
nonnegative integers, then T;(T;(x))=T;.;(x).

Definition

Let (X, B, i) be a separable finite measure space, and
let 7 be a mapping of X onto itself that is measurable, i.e.
such that B € B implies 77'(B) € B. 7 is said to be meas-
ure preserving if

u(t'By=u(B), BeB,

and if 7 is measure preserving, it is called strongly mix-
ing if
1 (A) u(B)

lim u(t*AnB)=
“ LX)

k—> o0
for all A, Be B.
Every strongly mixing transformation is ergodic; i.e.
if
' (A)=A

for some A € B, then either £ (A)=0 or u(A)=u(X).

Theorem [9]

Each T, with p>1 is strongly mixing, hence ergodic.

Let us consider a dynamics given by the iterations
Xn+1=T,(x,), where T, is the p-th Chebyshev polynomi-
al, and the initial conditions are

—1<xp=cosfy<1.

Then one can write

Xp1 =c0s(pB,), where x,=cos6,,

and the iterates of x are chaotic and given analytically by
x,=cos(p"6) .

One can easily show that the conditions (1) and (2), ap-
plied to the dynamics given by the Chebyshev polyno-
mial y 45 read

(1+7y)cos(p* 6y)=cosby,
cos(B,41)=cos(pb,),

T Psin(p6:)

i—o  sin(6;)

1
< ’
I+y

We invented a simple Fortran program which for a
given k (period) and p (number of the Chebyshev poly-
nomial) finds the y for which there exist asymptotically
stable k-periodic orbits. Table 1 gives some results. We
numerically checked the results obtained by the program,
and very good agreement was obtained.

Table 1. p — number of the

k p Y Chebyshev polynomial;
k — period of stabilized orbit.
2 2 -0.2757
2 4 —-0.2889
3 2 -0.07658
2 4 -0.4439
5 2 0.07605
4 2 -0.12641
Remarks

1. The precision of a computational procedure signif-
icantly influences for instance the period of the orbit (ob-
tained as a result of the control).

2. Frequently an application of a program A that is
less precise than a program B will result in an orbit of a
smaller period than would be obtained by applying pro-
gram B. This is because a controlled orbit sometimes
passes nearby a point x, and returns to its neighbouring
point xo+ 6. If & is a number that is smaller than the small-
est recognizable number, then the less precise program
A identifies the points x, and xo+ 8. Lesser precision re-
sults in loss of part of the information. In some extreme
cases a non-periodical orbit is computed as periodical be-
cause of a lesser precision. No method exists that would
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allow to predict the relationship between precision and
the computed orbit’s parameters. Therefore all computa-
tions associated with controlling chaos should be con-
ducted with the maximum precision.
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