Topological Properties of Circumcoronenes
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The regular-hexagon-shaped benzenoid hydrocarbons: B, =benzene (Cg¢Hg), B, = coronene
(Cy4H)5), B3 = circumcoronene (Cs4H, ), B4 = circumcircumcoronene (C;soHs), etc. possess unique
topological properties. General expressions for the most important of such properties (number of fun-
damental structural invariants, number of Kekulé and Clar structures, number of aromatic sextets, Wie-
ner and Szeged indices, spectral moments) are given, including a number of results that are communi-
cated here for the first time. Cyclic conjugation in circumcoronenes is analyzed by means of its ener-
gy-effect, and found to agree with the predictions of Clar’s aromatic sextet theory only in the case of

B, and B,.
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Introduction

Recent progress [1]—[5] in the synthesis and isolation
of very large benzenoid hydrocarbons (with 20 and more
hexagons) renewed interest in their topological proper-
ties. Molecular-topology-based theories of benzenoid
and other polycyclic conjugated molecules were elab-
orated in numerous papers and monographs (see [6]-[9]
and the references cited therein). Yet, with a few excep-
tions, they were (tacitly) restricted to moderate-sized
systems. Here we focus our attention to a distinguished
series of benzenoids, whose members rapidly become
enormously large.

In this paper we report general expressions for a va-
riety of topological properties of the regular-hexagon-
shaped benzenoid hydrocarbons By, k=1, 2, ..., pos-
sessing a D¢, symmetry, the first members of which are
benzene (k=1), coronene (k=2), circumcoronene
(k = 3), circumcircumcoronene (k = 4), see Figure 1.

The benzene-coronene-circumcoronene series is a dis-
tinguished class of benzenoid systems [6]—[9]. Results
concerning the topological properties of these molecules
have been communicated on many different places [6],
[71, [10]-[21]. The aim of this paper is to collect all these
results and to complete them by those which have not yet
been reported.

The (k + 1)-th member of the benzene-coronene-cir-
cumcoronene series is formally obtained by circumscrib-
ing hexagons around the k-th member. The general case
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Fig. 1. The first members of the benzene-coronene-circumcor-
onene series: B; = benzene, B, = coronene, B3 = circumcoro-
nene, B, = circumcircomcoronene.

of such a circumscribing procedure has been outlined
elsewhere [15], [17]. Further general formulations ca be
found in [16].

Number of Fundamental Structural Invariants

In accordance with the notation used in the book [7],
a benzenoid system has n vertices, h hexagons, m edges,
n; internal vertices, n, vertices of degreee two, ns vertic-
es of degree three, and the size of its perimeter is n,,. For
the benzenoid system B, we have

n=6k, 1)
h=3K-3k+1, )
m=9k*-3k, 3)
ni=6(k-1y, )
n,=6k, 5
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ny=6k(k-1), 6)
n,=6Q2k-1). @)

The relations (1)—(7) hold for all values of k, k> 1.
Equivalents of (2) and (3) were given in [14].

In order to deduce (1), notice that the vertices of B, lie
on k pairs of horizontal (zig-zag) lines, containing 2 i + 1
vertices, i=k, k+1, ..., 2k—1. Then (1) follows
from

2k-1
2y (2i+1)=6k>.
i=k

Equation (4) is an immediate consequence of (1) be-
cause the internal vertices of B, form a system B,_;. For-
mula (7) is then obtained from n; + n, = n.

Equation (2) follows from (1) and (4) in view of the
relation [7]n=4h+2 —n,.

Equation (3) follows from (1) and (2) in view of the
relation [7lm=n+h-1.

Formula (6) is obtained from (2) and the relation [7]
n3=2(h - 1) and then (5) results from n, + ny =n.

According to the expression (1) and (5) the benzen-
oid hydrocarbon corresponding to B, has the formula
[14] Cg2Hgy or C,H ¢ . More general chemical for-
mulas for circumscribed benzenoids are given in
[15]-[17].

The circumcoronenes B, belong to extremal benzen-
oid systems [22] because they possess minimal numbers
of edges for a given number of hexagons [11]. In addi-
tion to this, circumcoronenes possess the maximal num-
ber of Kekulé structures among all benzenoid systems of
the same size [23].

Number of Kekulé Structures

The Kekulé structure count of B, is given by the beau-
tiful combinatorial expression

2k+1
k-1 k
KB;)= g _W—’ ()]
k
which holds for k£ > 1. This formula was first communi-
cated by Gordon and Davison [10], but it was discovered
prior to 1952 by Everett. Its first proof was published on-
ly in 1988 [13]. (For further details on (8) and its gener-
alizations see p. 104 of [6].)
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For the series By, k = 1,2, ..., the K-values may be cal-
culated recursively by means of the hitherto not report-
ed formula

KBy.1) = KBy,
where
o = Bk +2)1k1 %] Qk+1+)(2k +2+i)
Qk+D1? (k+1+i)?

With increasing k the value of K(B;) increases very
rapidly. Thus we have

KB =2,

K(B,) =2%-5=20,

K(B3)=2%-5-7%*=980,

KBy =2*-3%.72.11=1232, 848,

K(Bs)=2%-3%-11* . 132 =267, 227, 532,

KBg) =2*-11*-13°-17=1, 478, 619, 421, 136
~1.4786 10'2,

KB;)=2°-5-11-13°-17*.19% = 3.9406 10'°,

K(Bg)=2%-5-132-177-19° - 23 = 5.0552 10%,

K(Bg)=2°-52-17"- 19% - 23* = 3.1203 107,

KB =2*-3.5.7%.17*.19%.237 .29

=9.2650 10*.
It has been shown [12] that for large enough k

3. 27 V.9
InK(By)=| =In= |k~. 9
(By) ( T ) ©)
The quality of this estimate can be judged from the ratio
of InK (B,) and the right-hand side of (9). For k = 3, 4,
..., 10 this ratio is equal to 0.975, 0.984, 0.989, 0.9917,
0.9936, 0.9949, 0.9958 and 0.9965, respectively.

Number of Clar Structures

According to a theory put forward by Clar [24], the
dominant modes of cyclic conjugation in a benzenoid hy-
drocarbon are respresented by so-called Clar structural
formulas [7], [25]. For odd values of k the system B, pos-
sesses a unique Clar formula. For even values of k, B,
has two symmetry-equivalent Clar formulas. These are
illustrated in Fig. 2 for the cases k =4 and k = 5.

In order to count the aromatic sextets in the Clar for-
mulas of B, notice that they are arranged in parallel ver-
tical rows. If k is odd, then these rows contain (k + 1)/2,
...k=1,k,k-1,..., (k- 1)/2 aromatic sextets. The sum
of these terms is equal to

k-1
2 Y i+k

_3k%+1
i=(k+1)/2 4
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Fig. 2. Examples illustrating the rule that if k is even, then B,
has two Clar structural formulas whereas if k is odd then B, has
a unique Clar formula.

In an analogous manner, for even k the number of aro-
matic sextets is found to be equal to 3k*/4.

In summary, the number of aromatic sextets in a Clar
formula of B, is equal to

5

3k2+1

if k=1,3,3;.:.,

2
3k ifk=2,4.6.....
4

Wiener and Szeged Indices

Although the Wiener index W of benzenoid molecules
has been extensively studied in the last two decades, the
calculation of the W-values of B, proved to be a rather
difficult task and has for a long time resisted solution.
Quite recently Shiu and Lam [21], by means of a special-
ly designed method, established that

W(Bk)=%(164k5—30k3+k). (10)

Eventually, one of the present authors and Klavzar [19]
elaborated a novel method for calculation of Wiener in-
dices of benzenoid molecules, by means of wich (10)
could be deduced relatively easily. A similar approach
[18], applied to the Szeged index of B,, yields

Sz(Bk)=%(36k6—k“+k2).

Note that, whereas the Wiener index of B, increases
as the fifth power of k, the Szeged index increases as the
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Table 1. Wiener and Szeged indices of the first few members
of the benzene-coronene-circumcoronene family.

k W(B,) Sz(By)
1 27 54
2 1,002 3,438
3 13,015 39,258
4 33,204 220,824
5 101,751 842,859
6 253,758 2,517,534
7 549,213 6,349,518
8 1,071,720 14,149,728
9 1,932,435 28,688,094

10 3,274,002 53,985,150

sixth power. This difference in the asymptotic behavior
of W(B,) and Sz(B,) was found to be of a certain impor-
tance in the theory of benzenoid hydrocarbons [20]. The
first few values of W(B,) and Sz(B,) are given in Table 1.

Total m-electron Energy and Spectral Moments

Denote the eigenvalues [26] of B, by x;(By), i=1, 2,
..., 6 k%, and assume that they are ordered in a non-de-
creasing manner. Then the total 7-electron energy and
the p-th spectral moment of B, are given by [26]

3k? 6k
E=E(B;)=2Y x;(Bx)= |x; (By)]

i=1 i=1
and

6k?
M,=M,(B;)=Y [x;(By)]",

i=1

respectively.

No analytical expression is known either for the eigen-
values of B, or for the respective total z-electron ener-
gy. The finding of these expressions remains a challeng-
ing task for the future.

InTable 2 are given the total 7-electron energies of B,
k < 8 together with the corresponding energy-per-elec-
tron values E/n. It is noteworthy that with increasing k
the ratio E/n only very slowly converges to its limit val-
ue (contrary to the previously studied case of linear poly-
acenes [27]). This implies that the 7-electron properties
of the circumcoronenes differ significantly from the anal-
ogous properties of the infinite graphite lattice. There-
fore, even for relatively large values of k, it seems not
justified to use B, as a model for graphite.

The spectral moments of benzenoid hydrocarbons at-
tracted a lot of attention, and their dependence on molec-
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Table 2. Total 7-electron energies (E) of the first few members
of the benzene-corone-circumcoronene family; n = number of
vertices, cf. (1).

k E Eln

1 8.0000 1.3333
2 34.5718 1.4405
3 79.8560 1.4788
4 143.9166 1.4991
5 226.7940 1.5120
6 328.5150 1.5209
7 449.0972 1.5275
8 588.5524 1.5327

ular structure was studied in due detail (see, for instance,
[28], [29] and the references cited therein). Because of
the pairing theorem [26], the p-th spectral moment of any
benzenoid system is zero whenever p is odd. For even
values of p, each spectral moment of the circumcoronene
By is fully determined by the parameter k. Furthermore,
we found that M, (B,) is a quadratic polynomial in the
variable k. In particular,

My(By) = 6 k2, (11)
M,(By) =18k*-6k, (12)
M,(B,) =90 k* - 54 k, (13)
Mg(B,) = 558 k* — 474 k + 48, (14)
Mg (B,) = 3834 k> — 4086 k + 720, (15)
M,o(By) = 27918 k* — 35106 k + 8280, (16)

M,,(By) = 211050 k* — 302310 k + 86976, (17)
12

M, 4(B,) = 1638018 k* — 2613078 k + 875448.
(18)

Formulas (11)—(14) hold for all k > 1, whereas formulas
(15)—(18) apply for k > 2.

On Cyclic Conjugation and its Energy-effects

Cyclic conjugation has a crucial significance for the
m-electron properties of polycyclic conjugation mole-
cules, and benzenoid hydrocarbons in particular. Sever-
al quantitative and semiquantitative approaches have
been proposed for determining the effect of an individu-
al cycle on the overall pattern of conjugation of a poly-
cyclic molecule. Of them, the method based on the par-
titioning of the total m-electron energy [30] is free of any
assumption concerning Kekulé or Clar structures and can
thus be used for testing the applicability of the Kekulé
and/or Clar picture (for details see [31], [32]).
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Table 3. Energy-effects of the symmetry-nonequivalent six-
membered rings of the first few members of the benzene-coro-
nene-circumcoronene family; the rings are labeled as shown in
Fig. 3; according to the Clar model, a six-membered ring may
be “full” (F), possessing an aromatic sextet in all Clar formu-
las, may be “empty” (E), devoid of aromatic sextets in all Clar
formulas, or may be full in some and empty in other Clar for-
mulas (FE).

Ring k=1 k=2 k=3 k=4 k=5 k=6 k=7
1,1 0.2726 0.0298 0.0440 0.0352 0.0386 0.0365 0.0375
F E F E F E F
2;1 0.0703 0.0354 0.0392 0.0366 0.0375 0.0369
EF E EF E EF E

3,1 0.0516 0.0390 0.0371 0.0375 0.0370
E EF E EF E

3.2 0.0572 0.0350 0.0391 0.0365 0.0375
F E F E F

4,1 0,0476 0.0399 0.0368 0.0376
E F E F

4,2 0.0492 0.0365 0.0379 0.0369
EF E EF E

51 0.0473 0.0393 0.0370
E EF E

52 0.0456 0.0374 0.0373
F E F

5,3 0.0459 0.0369 0.0377
F E F

6,1 0.0476 0.0386
E E

6,2 0.0445 0.0377
EF F

6,3 0.0437 0.0374
EF E

Tsl 0.0479
E

7.2 0.0445
E

3 0.0429
E

7,4 0.0426
F

In Table 3 are given the energy-effects of all the sym-
metry-nonequivalent six-membered rings pertaining to
By, k<7. As usual [30]-[32], these energies are ex-
pressed in B-units and, therefore, the greater is their
value, the greater is the stabilizing effect of the respec-
tive ring, and the greater is the extent of cyclic conjuga-
tion in this ring. The way in which the symmetry-
nonequivalent hexagons of B, are labeled is shown in
Figure 3.

The main conclusion that can be drawn from the data
given in Table 3 are the following:

1. The differences between the energy-effects of the
hexagons of B, rapidly attenuate with increasing k, and
assume a value near 0.04 S3.

2. Peripheral hexagons (i.e., those incident to the
boundary of B;) have somewhat greater energy-effects
than the central hexagons.
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Fig. 3. Labeling of the symmetry-nonequivalent hexagons of
k.

3. Except for the first few values of k, the energy-ef-
fect is only slightly sensitive on the finer details of mo-
lecular topology. In particular, in the sense of the Clar
model [24], a six-membered ring may be “full” (F), “emp-
ty” (E) or “half-empty” (EF), but this has hardly any in-
fluence on the magnitude of the respective energy-effect.

An inspection of Table 3 reveals that already at k =3
the Clar picture is violated: the extent of cyclic conjuga-
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