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Using the extended Painlevé analysis, we obtained some higher dimensional integrable models
with the Painlevé property from the (1+1)-dimensional Schwarz KdV equation.

The lower-dimensional soliton phenomena have
widely been studied both by theory [1] and experi-
ment [2, 3]. However, there are many difficulties in
the study of the higher dimensional soliton theory. Re-
cently, one of the present authors pointed out that, if
one wants to find some higher dimensional integrable
models, equations with conformal invariance (invari-
ance under the Mdbius transformation) [4] may be the
most suitable candidates [S]. Some types of general
higher dimensional Schwarz equations are proved to
be integrable in the sence that they can be changed to
some forms with the Painlevé property (PP) [6]. Now,
one of the important problems is whatkind of Schwarz
equations can be obtained from the known physical
equations. In [7] it is also shown that higher dimen-
sional integrable models may also be obtained from
lower dimensional ones. In [8], one of the present
authors has extended Conte’s invariant Painlevé anal-
ysis [9] to a noninvariant (under the Mobious trans-
formation) but more generalized form in the same
dimensions to get some exact solutions of various
nonlinear equations by means of a nonstandard trun-
cation approach. In this paper we extend Conte’s
Painlevé analysis to a different but still invariant form
in higher dimensions such that we can find many
higher dimensional integrable models from a known
lower dimensional integrable model, say, the Schwarz
KdV (SKdV) equation
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which is a variant form of the usual KdV equation.
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In order to show the PP of (1), we take the trans-
formations

¢=CXPP, Pz =U, Pt =g 2)

at first. The final equations for  and g read

1 3
Wlgy — —u® — Zu? + gu+ Mu? =0, u; — g, =0.(3)
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Equation (3) comes from the consistence condition of
the transformation (2). The PP of (3) is obvious be-
cause of the KdV equation possesses the PP. However,
in order to get more information from the Painlevé
analysis, we assume that u and g are not only the func-
tions of the explicit space-time variables {z,¢} but
also the functions of the inner space variables {y, z}.
Itisknown that, if a partial differential equation (PDE)
possesses the PP, then the singular manifold ¢ in the
usual Painlevé expansion is arbitrary. Because of the
arbitrariness of the singular manifold, one can take
some different types of forms, say, Conte changes the
expansion function (singular manifold ¢) as
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such that all the coefficients in the new Painlevé ex-
pansion possess the Mobius transformation invariance
[10]. In order to include the inner parameters in our
further results, we can take

-1
(3-8)

as a new expansion function. Differentiating (4) with

respect to = and ¢, respectively, we can obtain two
identities:
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are all conformal invariant, invariant under the
Mobius transformation:
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With help of the leading order analysis of (3), we

know that the functions {u, g} should be expanded
as

¢
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with
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Substituting (8) into (3) and using (5) and (6), we have

(J+l)(]_1)u0u] = f(uiv i 1 S ]_17 Do, plas)u(lo)

(11

where f is a complicated function of {u;, g;, i <
j—1, po, p1, s} and its derivatives. From (10) and
(11), it is not difficult to see that the resonances are
located at

( — D(gjuo — u;90) = Uj—1,t — Gj—1,c)

j=-1,1, 1. (12)

The resonance at j = —1 corresponds to the arbitrari-
ness of the singularity manifold £ (and then ¢). At
two resonances, j = 1, there are two compatibility
conditions

—u(z)plz + UgUoLP1 — 2u(3)u1 + 2u1uopf =0, (13)

P1t — PoP1y — Poz + P1Poy =0 (14)

which must be satisfied. After substituting (9) and
(7) into (13) and (14) one can see that (13) and (14)
are satisfied identically. In the standard approach, in
order to obtain the Bécklund transformation of (3),
one takes
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uj(uiagiaiSj_ lapOaplas)'_'Oa
i & : (15)
gj(’u'i:g'iv2 S] = l,pO,P1,3)=0, J Z 2.

Because (15) is conformal invariant for all j > 2 and
the original Schwarz KdV equation (1) is integrable,
we believe that every one of (15) is integrable. Even
if this idea is not true for all j, it is still possible to
get some higher dimensional integrable models from
(15) by checking their PP for small j. Here we check
the PP only for u, = 0 which has the concrete form

¢t . ¢z¢xy¢yy ¢i 32/ ¢z¢z
¢—I+{¢, T}+A+3 & -3 4¢2y—3 2¢§yy
+3F, —3F*+3F (%ﬁ”—y = %) =0, (16)
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where F(= u;) is an arbitrary function. From (16),
we see that the (2+1)-dimensional model will be re-
duced back to the original (1+1)-dimensional SKdV
equation (1) when we drop the y-dependent terms or
take y ~ z. Using the transformations

p=expp, pz=u, py=v, pr=g9, (17)
(16) becomes
1 3 3 3
Zu“v“ - 2"4”121 — iv“ui +uvtug, — §u3v2uyy

+ 3Futv* + AuPo® — 3F%u20t + guv4 (18)
+ 3ulvuy v, + 3u’ Fo*o, — 3Fuvtu, =0,

19)

Ut = gz,

Ve = Gy- (20

It is easy to prove the PP of (18) - (20) by taking the
traditional WTC (Weiss-Tabor-Carnevale) approach
[10]. However, in order to get (3+1)-dimensional
models with conformal invariance and the PP, we in-
troduce

_ (8 _ 8\
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as a new expansion function. Differentiating (21) with
respect to z,y and ¢, respectively, we can obtain the
three identities

@1



L.-1. Chen and S.-y. Lou - Higher Dimensional Integrable Models with Painlevé Property

1
Ne =P — Pyn+ E(PIS + Py n%, (22)
1
ny =Py = Pyn+(P,S+ Py n%, (23)
1
me = Po — Poyn+ 5(PoS + Poy, ), (24)
where
=% p=% p=% 5=(42 @5

=9 6. 1T 6.

By means of the leading order analysis of (18) - (20),
we know that the functions {u,v, g} should be ex-
panded as

u=> ujp’”! v—ZvJW lg= Zg, ¢! (26)
7=0

with
R=P ug=P 2 vw=P 27

) Py '

Substituting (26) into (18) - (20) and using (22) - (24),
we have

G+ DG — D(uou; +vov;) (28)
= f(ui, 9,0 < j — 1, Po, P, P, 5),

(G — D(gjuo — ujgo) = uj—1,t — gj—1,2, (29)

(G — 1)(gjvo — vig0) = Vj—1,t — gj-1,9- (30)

From (28) - (30) it is not difficult to see that the

resonances are located at
j=_la 17 1’ 1. (31)

The three compatibility conditions at the resonances,
j =1, now read
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~ugud Py, +ugvavy + 3Fulvd Py

—3udu i P? + 2

+ 2v3v1ud PE — 3ugvov; P? — 3Fugug P, (32)

3
- Eu‘(‘,voyvon +uguivg =0,

uoPo; — goz +uot — goP1- =0, (33)

voPo; — goy + Vot — go P2, =0, 34)

and these equations are satisfied identically because
of (25) and (27). So the (2+1)-dimensional system
(18) - (20) (and then its Schwarz form (16)) is inte-
grable under the meaning that it possesses the PP. In
the same way, if we take

Uj =uJ’(P0,P1,P2,S,U1,'Ul,gl)=O,

’U]‘=’Uj(P0,P1,P2,S,'U,1,'U],g])=0, (35)

9; = 9;(Po, P1, P, S,u1,v1,91) =0, (j > 2)

we can get the Backlund transformation for the system
(18) - (20). Furthermore, it is interesting that every one
of the equations (35) for a fixed j may be integrable
because all these equations are conformal invariant
and are derived from the integrable equation (16).
The simplest one of them is given by up =0, i.e.,
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where the arbitrary function G is related to other ar-
bitrary functions F,u;,v; and g; by

bz 3 ¢2 3 ¢ be 3 42 3 2
G= (_6u1+6EU1)F+3ulx_3ul+§$f —§Eu1t+3¢ wv; +§¢t¢y t—§¢t¢yg1y
¢a: Dz ?:0.. 3¢ 0 3¢:9.-
% ¢> 2¢2v vy = 35% 1—3¢3¢y +57¢t—glz+3 q%”v tg (37
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If we drop y and z related terms or if fixed y and z are proportional to z, we reobtain the (1+1)-dimensional
SKdV equation (1) from the (3+1)-dimensional equation (36).

We have proved the PP of (36) by using the Painlevé analysis and that some (4+1)-dimensional integrable
models with the PP can be obtained when we introduce a further inner parameter into the procedure of proving
the PP of the (3+1)-dimensional model (36). One of the simplest models obtained in this way reads

b, 30200y  90:0::0m: O Gobur: . Pebeyyy | 30%0L 9 $20uinPuc
o TTIATTTET TG T e T e T8 e 2 aug,
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Equation (38) is a (4+1)-dimensional generalization
of the SKdV (1). If we use some reductions on (38),
say, T4 = 2z, T4 = Y, ..., we can get some further
(3+1)-dimensional SKdV equations.

Using the above procedure step by step, we can get
various integrable models with the PP in any dimen-
sions.

In summary, after introducing some inner pa-
rameters explicitly in the expansion variables, we
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