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Using the extended Painleve analysis, we obtained some higher dimensional integrable models 
with the Painleve property from the (l+l)-dimensional Schwarz KdV equation. 

The lower-dimensional soliton phenomena have 
widely been studied both by theory [1] and experi-
ment [2, 3]. However, there are many difficulties in 
the study of the higher dimensional soliton theory. Re-
cently, one of the present authors pointed out that, if 
one wants to find some higher dimensional integrable 
models, equations with conformal invariance (invari-
ance under the Möbius transformation) [4] may be the 
most suitable candidates [5]. Some types of general 
higher dimensional Schwarz equations are proved to 
be integrable in the sence that they can be changed to 
some forms with the Painleve property (PP) [6]. Now, 
one of the important problems is what kind of Schwarz 
equations can be obtained from the known physical 
equations. In [7] it is also shown that higher dimen-
sional integrable models may also be obtained from 
lower dimensional ones. In [8], one of the present 
authors has extended Conte's invariant Painleve anal-
ysis [9] to a noninvariant (under the Möbious trans-
formation) but more generalized form in the same 
dimensions to get some exact solutions of various 
nonlinear equations by means of a nonstandard trun-
cation approach. In this paper we extend Conte's 
Painleve analysis to a different but still invariant form 
in higher dimensions such that we can find many 
higher dimensional integrable models from a known 
lower dimensional integrable model, say, the Schwarz 
KdV (SKdV) equation 

{0; = 0, ({</>; = (1) 

which is a variant form of the usual KdV equation. 
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In order to show the PP of (1), we take the trans-
formations 

4> = exp p, px = u, pt = g (2) 

at first. The final equations for u and g read 

tin, 
1 3 

- -u4 - -u2
x +gu + Au2 = 0, ut-gx= 0.(3) 

Equation (3) comes from the consistence condition of 
the transformation (2). The PP of (3) is obvious be-
cause of the KdV equation possesses the PP. However, 
in order to get more information from the Painleve 
analysis, we assume that u and g are not only the func-
tions of the explicit space-time variables {£,<} but 
also the functions of the inner space variables {y, z}. 
It is known that, if a partial differential equation (PDE) 
possesses the PP, then the singular manifold (fi in the 
usual Painleve expansion is arbitrary. Because of the 
arbitrariness of the singular manifold, one can take 
some different types of forms, say, Conte changes the 
expansion function (singular manifold 4>) as 

_ {(fix (fixX \ 
X ~ \ < f i 2 4>x) 

-1 

such that all the coefficients in the new Painleve ex-
pansion possess the Möbius transformation invariance 
[10]. In order to include the inner parameters in our 
further results, we can take 

(fiyy 

2 <t>y 

- 1 
(4) 

as a new expansion function. Differentiating (4) with 
respect to x and t, respectively, we can obtain two 
identities: 
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£x =P\ ~P\yt+ ^(P\S+V\yy)t , (5) 

^ = PO ~ POyi + ^(POS + POyyX , (6) 

where 

P O EE PI = = { 0 ; y} = % - ( 7 ) 
_ <t>X n _ 

< P y ~ <t>y <Py 2 02 

are all conformal invariant, invariant under the 
Möbius transformation: 

0 
acf) + b 
c(p + d 

With help of the leading order analysis of (3), we 
know that the functions {u, g} should be expanded 
as 

with 

u = ^2uj<t>j \ g = ^2gj<P J 

3=0 j=0 

(8) 

9o=Po> uo = goPi/Po- (9) 

Substituting (8) into (3) and using (5) and (6), we have 

0 ' + l ) 0 ' - l ) W j = / ( U t , i < j-1, po, pi,s),(10) 

0' - lXPjUo - Wjpo) = Mj-l,t - <?j-l,x, (11) 

where / is a complicated function of {u;, gi, i < 
j — 1, po, Pi, -s} and its derivatives. From (10) and 
(11), it is not difficult to see that the resonances are 
located at 

j = ~ 1, 1, 1. (12) 
The resonance at j = — 1 corresponds to the arbitrari-
ness of the singularity manifold £ (and then 0). At 
two resonances, j = 1, there are two compatibility 
conditions 

-UoPix + u0u0xpi - 2ulu\ + 2uiUop\ = 0, (13) 

P\t - PoP\y - POx + P\P0y = 0 (14) 

which must be satisfied. After substituting (9) and 
(7) into (13) and (14) one can see that (13) and (14) 
are satisfied identically. In the standard approach, in 
order to obtain the Bäcklund transformation of (3), 
one takes 

Uj(Ui,gi,i < j — l,po,p\,s) =0, 

9j(uii 9ii i <j~ =0, j > 2 . 
(15) 

Because (15) is conformal invariant for all j > 2 and 
the original Schwarz KdV equation (1) is integrable, 
we believe that every one of (15) is integrable. Even 
if this idea is not true for all j , it is still possible to 
get some higher dimensional integrable models from 
(15) by checking their PP for small j . Here we check 
the PP only for u2 = 0 which has the concrete form 

^ + {0; x}+\ + 3 
4>x<t>xy<i>yy ^l^yy 

TL 
- 3 -

404, 
- 3 0X0 xyy 

202 

+ 3Fr - 3F + 3F 0 x 0 y y _ 0x 

0y 0a 
= 0, (16) 

where F(= u\) is an arbitrary function. From (16), 
we see that the (2+l)-dimensional model will be re-
duced back to the original (1+l)-dimensional SKdV 
equation (1) when we drop the y-dependent terms or 
take y ~ x. Using the transformations 

0 = exp p, px = u, py = v, pt = g, (17) 

(16) becomes 

3 I 4 4 ^ 4 2 ->4 2 4 J 3 2 
-u v - -u V - -V UZ. +UV uxx — -u V u 
4 4 Y 2 2 

yy 

+ 3Fxu2v4 + Xu2v4 - 3F2u2v4 + guv4 (18) 

+ 3 u3vuyvy + 3 uiFv2vy — 3Fuv4ux = 0, 

u t = g x , (19) 

vt = 9y (20) 

It is easy to prove the PP of (18) - (20) by taking the 
traditional WTC (Weiss-Tabor-Carnevale) approach 
[10]. However, in order to get (3+l)-dimensional 
models with conformal invariance and the PP, we in-
troduce 

(<t±_ t u 
V 0 20, 

- 1 

(21) 

as a new expansion function. Differentiating (21) with 
respect to x,y and t, respectively, we can obtain the 
three identities 
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rix = Pi- PiyTj + -(Pi 5 + PlyyW, (22) —3UQU\VQPI + ^ufäPjy + u j ^ i + 3 F u ^ P , 

riy = p2 - PiyV + i (P 2 S + P2yy)r>2, (23) + " 3 ^ P 2
2 - 3 F ^ P 2 (32) 

3 
1 - ~UoVoyVoP2 + UIU\VQ = 0, 

ijt = P 0 - PoyV + ~(P0S + PoyyW, (24) 2 

where uoPoz ~ gox + Uot - 9qP\z = o , ( 3 3 ) 

PO = * , PL = P2 = 5 EE {0; *}. (25) ^ ~ + ^ " 9oP2> = (34) 
<f>Z <t>z <f> and these equations are satisfied identically because 

By means of the leading order analysis of (18) - (20), of (25) and (27). So the (2+l)-dimensional system 
we know that the functions {u, v, g} should be ex- (18) - (20) (and then its Schwarz form (16)) is inte-
panded as grable under the meaning that it possesses the PP. In 

the same way, if we take oo oo oo J 

U = Y , U j f i - ^ v = Y , v j ( f > j - \ g = Y^ 93(26) Uj = Uj(P0, Pi, P2 ,S, uu vu 9i) = 0, 
j=0 j=0 j=0 

with vj=vj(P0,Pi,P2,S,ul,vi,gl) = 0, (35) 

gl = P l w0 = P i ^ , vo = PiyQ- (27) ; = ^(P0 , Pu P2,5, ui,i>i,<?i) = 0, ( j > 2) 

Substituting (26) into (18) - (20) and using (22) - (24), J™8» " k l u n d transformation for the system 
we have (18)-(20). Furthermore, it is interesting that every one 

of the equations (35) for a fixed j may be integrable 
0 + 0 0 — 1 )(uoUj +vqVj) (28) because all these equations are conformal invariant 

and are derived from the integrable equation (16). 
= f(ui, Qi,i <j - 1, Po, Pi, P2, S), The simplest one of them is given by u2 = 0, i. e., 

0' - lXfctio - u3g0) = U i _ i l t - 9j-i,x, (29) h . + { 0 ; + a + 9 M l ^ I l _ 
0x 2 0^ 4 (pl 

(J-mjvo-vjgo) = v j - h t - g j - l , y . (30) 
, 3 0X0Z Z t ^(Px<Pyzz IpxVxyy , Q 0x0xy0yy 

From (28) - (30) it is not difficult to see that the + g ^ 2~02 03 
resonances are located at y v y 

j = -1,1,1,1. (31) _9 0 f ^ £ i _ 6 0 2 0 = 
4 03 0 

The three compatibility conditions at the resonances, 
j = 1, now read where the arbitrary function G is related to other ar-

bitrary functions F, u\,v\ and g\ by 
\ „ . - o 2 , 3 </>2

 2
 3 ~(t>x , 3 02 3 0: 

G = ( _ 6 u i + + 3 u i , - 3uJ + - | t ) f - + 3 % , + -
\ o„ 1 2 0f. 2 0t <b,. 2 (j)y / 2 02 2 0t 0 y 2 0 t 0 y 2 0 t 0 y 

o^z 3 I2I2 Q̂XX A\4>zz , 3 0x -0x0x1/ 3 0X0ZZ - 3—wly - -rx<t>yViy - 3 — Ui - 3-2—Vi + - — Six+ 3 — Ö — + ( 3 7 ) 
(f)y y 2 y 0X 020 y 2 q>t fry 2 (pi 

+ 2 ^ ^ v 02 0 x r u-
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If we drop y and z related terms or if fixed y and 2 are proportional to x, we reobtain the (l+l)-dimensional 
SKdV equation (1) from the (3+l)-dimensional equation (36). 

We have proved the PP of (36) by using the Painleve analysis and that some (4+l)-dimensional integrable 
models with the PP can be obtained when we introduce a further inner parameter into the procedure of proving 
the PP of the (3+l)-dimensional model (36). One of the simplest models obtained in this way reads 

4>t , f , , , x 3 4>l<f>ly , 9 (f)x(f)zz(j)xz 9 (f)x(f)xzz 0X0XJ/03/V ^4>2x4>2zz 9 (p2
x(f)XAXA(f)yXA + 1 0 ; X f + A — 1- — -Z 7 -r + J -r + — —. — -=—; 

0x ^ ' 4 r y 2 03 4 02 0^ 8 04 2 0 i 4 0y 

02Z 3 0^0 X4X4 Q 0X0XX 4 0 X4X4 ^ fix 2̂:4X4 0ZX4 ^ 0X 2̂X4X4 /10\ 

, Ax<\>yzz 3 0 X 0 X X 4 X 4 3 0 x 

2 0x 4 2 02 " * 

Equation (38) is a (4+l)-dimensional generalization 
of the SKdV (1). If we use some reductions on (38), 
say, £4 = z, £4 = 2/, ..., we can get some further 
(3+l)-dimensional SKdV equations. 

Using the above procedure step by step, we can get 
various integrable models with the PP in any dimen-
sions. 

In summary, after introducing some inner pa-
rameters explicitly in the expansion variables, we 

can get many higher dimensional integrable models 
from lower dimensional ones. Some concrete SKdV 
equations with the PP in (2+1)-, (3+1)- and (4+1)-
dimensions are listed here for further investigations. 
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