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Quantum mechanics is spectacularly successful on the technical level but the meaning of its rules
remains shrouded in mystery even more than seventy years after its inception. Quantum-mechanical
probabilities are often considered as fundamentally different from classical probabilities, in disre-
gard of the work of Cox (1946) — and of Schrodinger (1947) — on the foundations of probability
theory. One central question concerns the superposition principle, i. e. the need to work with inter-
fering wave functions, the absolute squares of which are probabilities. Other questions concern the
relationship between spin and statistics or the collapse of the wave function when new data become
available. These questions are reconsidered from the Bayesian point of view. The superposition
principle is found to be a consequence of an apparently little-known mathematical theorem for
non-negative Fourier polynomials published by Fejér in 1915 that implies wave-mechanical inter-
ference already for classical probabilities. Combined with the classical Hamiltonian equations for
free and accelerated motion, gauge invariance and particle indistinguishability, it yields all basic
quantum features — wave-particle duality, operator calculus, uncertainty relations, Schrodinger
equation, CPT invariance and even the spin-statistics relationship — which demystifies quantum
mechanics to quite some extent.
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1. Introduction

Quantum mechanics is usually introduced either
axiomatically, with states of physical systems rep-
resented by vectors in Hilbert space, or historically,
showing how crucial experiments led theoreticians
like Planck, Einstein, Bohr and Sommerfeld to a
first form of quantum theory, and how Heisenberg,
Schrodinger, Pauli, Dirac, Feynman, and others suc-
ceeded, with much trial and error, in establishing the
rather general and consistent quantum mechanics as
we know it today. In neither approach does quan-
tum theory look completely compelling from a logi-
cal point of view. There are nagging questions up to
this day, at least for some: why microphysical sys-
tems behave sometimes like particles and sometimes
like waves, about the exact meaning of the complex
wave functions, about their collapse when measure-
ments are made, about the role of the observer or his
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consciousness, about the unexpected interference and
quantisation phenomena, about the different statistics
for fermions and bosons, etc. Others insist that such
questions were either answered long ago, or that they
are meaningless, or that in view of the great practical
success of the theory any doubts are out of place. At
least there is consensus that superposition and inter-
ference of waves plays a key role, with wave inten-
sities that can be interpreted as probability densities.
Dirac, for example, wrote [1] “I believe that this con-
cept of the probability amplitude is perhaps the most
fundamental concept of quantum theory.”

In view of the debate about the interpretation of
quantum mechanics, still going on seventy years af-
ter its inception, it is quite astonishing that there is
a mathematical theorem, proved and published well
before quantum mechanics was developed, that raises
the status of the superposition principle from puz-
zling empirical discovery to a definite mathematical
property of all inherently positive distribution func-
tions such as beam intensities or probability densities.
The theorem was published in 1915 by Fejér [2] in
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Hungarian and German — languages in which many
founding fathers of quantum mechanics were fully
conversant (von Neumann and Wigner spoke both)
— yet it went unnoticed. Equally remarkable is the
fact that the discoverers of the theorem, Riesz and
Fejér, never seemed to realise its importance in sci-
ence. There is not the slightest hint of its usefulness
in electrodynamics, communication theory, and espe-
cially quantum mechanics even in a rather late edition
of the book by Riesz and Sz.-Nagy [3] containing a
proof of the “Fejér-Riesz lemma”. In the following
sections it will be argued that this theorem can be
regarded as a missing link between probability the-
ory and quantum mechanics, permitting derivation
of all the main features of quantum mechanics in a
rather inevitable logical chain of fairly simple argu-
ments. Quantum mechanics can thus be considered
as an especially powerful extension of ordinary prob-
ability theory, useful also for other than space-time
processes, as has been conjectured e. g. by C. F. von
Weizsiacker who wrote “I propose the view that gen-
eral or abstract quantum theory is a general theory of
probabilities and nothing else” [4]. Many features of
quantum mechanics may have been unexpected but
with the key provided by Riesz and Fejér they are not
inexplicable.

2. The Riesz-Fejér Theorem and Probabilities

In 1915 L. Fejér, well known for his work on
Fourier series, published a proof [2] due to F. Riesz
of the following theorem (see Appendix): Each real,
non-negative Fourier polynomial (truncated Fourier
series) of order n (maximal wave number n) can be
expressed as the absolute square of a complex Fourier
polynomial of at most the same order,

0<p(r)=

Ecze -IZa et |* = |y,

l=—n
1)

where the complex Fourier polynomial ¥(z) is com-
pletely unrestricted, in contrast to the Fourier poly-
nomial p(z) which is restricted by the requirements
of reality (c_; = ¢}') and non-negativity. Our notation
anticipates the rather obvious application to quantum-
mechanical probability densities, p, and probabil-
ity wave functions, %, without excluding applica-
tion to other inherently positive quantities such as
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intensities of classical energy-carrying waves. The co-
efficients a, are Fourier transforms of the wave func-
tion ¥ (zx). Fourier techniques are most convenient
whenever wave or particle propagation constrained
by initial or boundary conditions is to be described,
and they are especially powerful if they permit free
use of Fourier expansions, unhampered by reality and
non-negativity conditions. Constraints such as point
sources, diaphragms, slits, scatterers, etc. define, to-
gether with a wave equation for the Fourier compo-
nents, eigenvalue problems whose eigenfunctions are
all those waves which are possible under given exper-
imental circumstances.

Since the wave function ¥(z) for given p(z) is
determined only up to a phase factor, we may define
it by

Z ax eikz = einz/Zw(z) (2)

and introduce modified coefficients

Ok = \/2_7Tak+n/2~ €))

The resulting Fourier transform pair

n/2
1
() = v~ k;ﬂ or ™, )
o= —— [ dz () e (5)
*T Vo ). ’

has the especially convenient symmetric form com-
monly used in quantum mechanics. The wave func-
tions thus defined are

n=0, 1/)(.’13)-— \/—=¢ v (6)
n=1, ¥()= T(qﬁ 12€ —iz/2 +, +1/2 e+7,1/2)
n=2, Y()= (¢ ) e T 4 b0 + D1 e+iz) ,

Although p(z) has 27 periodicity and the sum in (2)
likewise, the same is true only for wave functions for
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even n. Those for odd n have 47 periodicity, so one
has

0, 2,4 .0
1535, =

)

W(@) = £(+2m) = Y(a-+4r) forn = {

The reason is, of course, the phase factor eine/2 pulled

out in (2). As will become clearer below, the plus-
minus sign appearing after one full period leads to
the spin-statistics relationship and thus to the Bose-
Einstein and Fermi-Dirac statistics of quantum me-
chanics.

Integration of the function p(z) over one period
yields

- n/2
dzlp@)P= > gl ®)
—® k=—n/2

(Parseval’s theorem). If we interpret this as a to-
tal probability we find that any continuous, periodic
probability density |1 (z)|* in z-space is related via
Fourier transformation to discrete probabilities |¢y |
in a dual k-space — periodic x entails quantised k.

In classical as well as quantum mechanics (infinite)
Fourier series occur naturally when spatial rotations
are studied with their obvious 27 periodicity. In other
cases, like spatial translation, it is customary to in-
troduce Fourier series by the familiar device of the
periodicity box. We note that

(a) infinite Fourier series can be approximated by
finite Fourier polynomials to any desired accuracy if
only the order n is chosen high enough;

(b) a smooth transition to Fourier integrals describ-
ing arbitrary nonperiodic processes is achieved if the
periodicity box is made bigger and bigger relative to
the physical system considered.

In view of these uneventful generalisations one may
consider the Riesz-Fejér theorem as equivalent to
the wave-mechanical superposition principle: Prob-
ability densities as inherently non-negative quanti-
ties can be represented as absolute squares of wave
functions that in their turn can be expressed as lin-
ear superpositions of orthogonal functions. In (1) the
orthogonal functions describe standing waves in a
(one-dimensional) periodicity box. Other possible or-
thogonal bases — spherical waves, angular momen-
tum eigenfunctions etc. — can be invoked by uni-
tary transformations. An immediate consequence is
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quantisation: periodic probability density functions
in one space are accompanied by discrete probabil-
ities in a dual space, both spaces related by Fourier
transformation of the wave functions. A further con-
sequence is the appearance of two families of eigen-
functions with 27 and 47 periodicity (for bosons and
fermions). All this is just part of Fourier theory, valid
for all periodic non-negative functions, in particu-
lar for all periodic probability densities, not only
quantum-mechanical ones.

Historically, the superposition principle had been
established first as a puzzling empirical feature of the
quantum world, before M. Born recognised that the
absolute square of the wave function can be inter-
preted as a probability density. If, on the other hand,
one starts with probabilities, the superposition prin-
ciple, far from puzzling, appears as a theorem, ap-
plicable not only in quantum mechanics but also to
nonquantal probabilities and signal intensities (cf. e.
g. Feller [5] on L? theory and especially Cohen [6] on
time-frequency analysis). The much discussed role of
the phases of the superposed functions seems to be
simple: They are needed for a faithful reproduction of
the non-negative probability density p(z) in (1). We
shall see below that they also define possible forces.

3. Free Particle With Uncertain Initial Location

Let us consider a classical particle. Its energy as a
function of its position r and (generalised) momen-
tum p is given by the Hamiltonian H = H(r,p, t); its
motion is gouverned by Hamilton’s canonical equa-
tions

_9H
or’

dr 0H dp
dt ~ dop’ dt ~ 25108
For given initial phase space coordinates, {r(0), p(0)},
one obtains the trajectory in phase space, {r(t),p(t)},
by integration of the canonical equations, for ¢ < 0
as well as for ¢ > 0. If the initial coordinates are
uncertain, lying somewhere in a phase space domain
D(0), there is a multitude of possible trajectories. At
time ¢ the possible values of r(t) and p(t) lie in a
domain D(t) that has the same size as D(0): The
canonical equations imply zero divergence in phase
space,

d %)___0

op; dt (D

. 0 dr;
Z (87'] dtJ

J=1
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(Liouville’s theorem, valid already separately for each
pair Tj, pJ)

More generally, the initial uncertainty may be de-
scribed by a continuous probability density. In ther-
modynamics one is accustomed to assign joint prob-
abilities for position and momentum of the particle
but if one considers probability distributions (“ensem-
bles”) of particle trajectories in ordinary space some
care is required. If the physically allowed trajectories
r(t) are specified, at least in principle, it is enough to
assign position probabilities at some particular time.
Those for other times can then be deduced from the
functions r(t), and the velocity or momentum distri-
butions, too.

Let us consider a time-dependent spatial probabil-
ity density p(r,t) = |¢(r,)|? in a periodicity box so
large that the Fourier polynomials of the Riesz-Fejér
theorem can be replaced by Fourier integrals. The
resulting wave function and its Fourier transform,

¥, 1) = 2y~ / Chotk, et ™, (12)

bk, 1) = 2m) > / S e *, (13)

are both normalised to unity, [ &*r[y(r,t)? = [ d*k
-|p(k,t)|* = 1. The best estimates (under quadratic
loss) of positions and wave vectors are then given by
the expectation values

(r(t)) = / &r v, t)[zr
(14)

/ Pkl 1) < ¢(k ),

(k(t)) = / &k | ok, 1)’ k

3 (15)

. / &, £) —=(r, 1)
or

since |¢|? is the probability density in k-space cor-
responding to the probability density || in the
dual r-space. We note that the factor k in k-space
is to be replaced by the operator —id/dr in r-space,
and the factor r in r-space by the operator id/dk
in k-space, since application of the operators to the

Fourier components e*¥7 produces the required in-
tegrands. (The well known proof involves Fourier
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transformation of % and ¢, integration by parts un-
der the assumption of vanishing probability densities
for k — oo and r — o0, and use of the complete-
ness relations (2m)~3 [ d®r " ®=K) = §(k — k') and
@m)=3 [ &k e* ") = §(r — r').) An immediate
consequence are the commutation relations in r or
k space, ’I‘jkjl - kerj = iSjJ-: (j,jl = 1,2,3) The
familiar (classical) wave-mechanical uncertainty re-
lations for Fourier transforms that follow from the
Cauchy-Schwarz inequality are
Arj Akj > %Sjj' s Gsd =1,2,3), (16)
where Ar; and Ak are standard (root-mean-square)
errors (see e. g. Cohen [6]).
The specific time dependence ¢(k,t) = ¢(k,0)
e~ describes a superposition of plane waves prop-
agating with phase velocities w/k in directions k/k,

¥, 1) = @)~ / &k p(l, 0) k740 (17)

Bk, 1) = (2m) /2 / Fry(r, 0 e EmD - (18)

In general, the frequencies for different wave lengths
will differ, w = w(k). The expectation value is

(w) = / drydr, B w(r t)
(19)

= [ @rotk, ok,
which shows that for averaging purposes w is equi-
valent to the operator id/dt in both representations.
From (17) and (18) one finds in k representation
the expectation values (best estimates under quadratic

loss in the language of decision theory [7]) for the
position and the wave vector

) = [ ko0 (530, 0+ 66,032 1

=0+ (55), ..t

(k(t)) = / &k (k, 0 ko(k, 0) = (k(0)) ,

(20)

@1

which obviously describes linear translation with con-
stant group velocity (dw/d k). As was to be expected,
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wave packets constructed of undistorted plane waves
can move only along straight lines, like physical free
particles not influenced by forces.

So far we used only (Fourier-Riesz-Fejér) wave
theory but now we can establish contact with Hamil-
tonian particle kinematics. We identify the motion of
the wave packet with the expected motion of the parti-
cle and compare the wave-mechanical (classical) time
derivatives

d(r) /ow
3 ~ioE)

and the expectation values that follow from Hamil-
ton’s canonical equations for a classical free particle,

d(p) _
o 20

d(k)

o -

(22, 23)

d(r) _ <8H> ’ (24, 25)

dt op

with the same weighting by the spatial probability
distribution (17) (hence for the same ensemble of pos-
sible trajectories). Evidently one can take k o< p and
w o H (disregarding a possible additive constant for
H — for p such a constant is excluded by isotropy). If
we denote the common proportionality constant by &
we get de Broglie’s particle-wave transcription,

H=hw, p=hk, (26, 27)
and from (16) Heisenberg’s quantum-mechanical un-
certainty relations,

h . o

Arj Ap]' > Eajj’v (]7.7 = 11 23 3) ) (28)
replacing Liouville’s theorem (11). The equality sign
applies if both the spatial and the momentum proba-
bility density functions are three-dimensional Gaus-
sians. A sharply peaked spatial density implying a dif-
fuse momentum density means particle-like behavior
of the wave packet. On the other hand the behavior
is wave-like if the momentum is well defined but not
the location. Whether a particle or a wave description
is more appropriate depends on the state of informa-
tion about the particle. It is not the particle but the
wave packet encoding this information that exhibits
wave-particle duality.

This is the crucial point where Planck’s quantum of
action, h, enters the scene, tying together two classi-
cal formalisms, Hamiltonian particle mechanics and
the Fourier-Riesz-Fejér wave mechanical extension
of probability theory, whereby quantum mechanics
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is ushered in. The decisive new feature is that in the
probabilistic description of a particle with uncertain
coordinates the momentum distribution is fully deter-
mined by the position distribution and vice versa, via
unitary (Fourier) transformation of the wave function.
As a consequence of this rather special entanglement
— the wave function is Fourier transformed rather
than the probability density — and of the finite value
of h, the accuracy with which the momentum can
be specified is limited by the accuracy of the loca-
tion. Empirically, % is found to be a natural constant,
not merely a formal proportionality factor that can
be made arbitrarily small. This clashes with the use
of joint probability distributions for particle positions
and momenta in statistical mechanics, and limits the
classical phase space concept to situations where
can be treated as negligibly small.

Expectation values of physical quantities that de-
pend on both r and p can be calculated from % or
¢ with the appropriate operators. For example, the
best estimate of the orbital angular momentum with
respect to the origin, r = 0, is

hd
(r xp):/d3r1/)*(r>< ;g)zp

— 3 * ia__

-/d ko' (57 x k)9
Caution is required, however. The employed opera-
tors must be Hermitean (self-conjugate) in order to
produce real expectation values as is required for
physical observables. For the orbital angular momen-
tum there is no problem but other products of non-
commuting operators are not Hermitean. For exam-
ple, if one wants to calculate the expectation value
(r - p) one must use the operator (r - p +p - r)/2 with
p = —ihd/dr = —ihV.

As mentioned already, quantisation is a conspic-
uous consequence of the introduction of probability
waves and operator calculus by means of the Riesz-
Fejér theorem. It is characterised by the existence of
eigenvalue equations with discrete eigenvalues. The
most important eigenvalue problems are, of course,
those defined by the Schrodinger equation,

(29)

H = ik, (30)

together with initial or boundary conditions. This
central equation of quantum mechanics follows from
(19) with H = hw (and the notation ¢ = dv/dt). With
H(r,p,t) in operator form (p = —hV = —ihd/dr)
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it is the wave equation determining the time evolu-
tion of ¥ (r, t) and of its Fourier transform ¢(k, t). In
this sense it is the wave-mechanical analog of Hamil-
ton’s particle equations (9) and (10). If ¢ is an eigen-
function with eigenvalue E one has (H) = E and
(AH)* = (H?) — (H)? = 0: The energy predicted
under quadratic loss is E' without uncertainty.

Similarly, if ¢ tends towards an eigenfunction of
the momentum operator —th'V with eigenvector p
the momentum uncertainty goes to zero while the po-
sition uncertainty becomes infinite. The limit, with
Y(r) o< exp(ip - r/h), is a useful idealisation for a par-
ticle in a beam, but in practice the momentum cannot
be quite sharp since the beam dimensions and thus
the position uncertainty may be huge compared to the
particle dimensions but not really infinite (which per-
haps could be taken as a hint that physical particles are
not really mathematical points, and that &, Planck’s
quantum of action, may have something to do with
their finite size). Quite generally, whenever 9 is one
of the eigenfunctions of some operator, the variance
of the corresponding physical quantity vanishes.

4. Introduction of Forces via Local
Gauge Transformation

So far we have considered superpositions of plane
waves and found that they correspond to spinless free
particles whose Hamiltonian is Hy = p*/2m in the
nonrelativistic case. We can generalise to accelerated
motion, i. . to forces. Let us assume that the spatial
probability density for accelerated motion, p = ||?,
coincides with that for free motion, po = [1)o|?, at time
t = 0. At this time the wave functions can only differ
by a phase factor. We must therefore have

o =1 exp(—ide/hc), (31)

where the phase is written in a form that is convenient
for our purposes. The real “gauge function” A cannot
be a mere constant but must depend on r and ¢ if
p is ever to differ from pg. Inserting (31) into the
nonrelativistic Schrodinger equation for free motion,

1 .
Hoyo = %(—mvm = ik, (32)

one finds for the accelerated wave packet

: e 2 L, 0 €.
(—mv-vazw4mg+EM¢.(%)

1
2m

F. H. Frohner - Riesz-Fejér Theorem Demystifies Quantum Mechanics

We conclude that the nonrelativistic Schrodinger
equation for a particle influenced by forces must have
the general form

1 . it
HY = [3—(=ihV — SAV +ed|y = ihi), (34)

where the real scalar ¢ and the real vector A are sub-
ject to modification by — A/c and V A. We recognise
them as the scalar and vector potentials of the elec-
tromagnetic force field, and e as the particle charge
that specifies how strongly the particle responds to
the field. The form of the Schrodinger equation is in-
variant under “local gauge transformations of the first
kind” of the wave function,

Y — ¢ =1 exp(ide/hc), (35)
in combination with “gauge transformations of the
second kind” of the electromagnetic potentials,

A — A =A+VA, (36)

@-»@=¢—1A. (37)
64

Neither probabilities nor observables can depend on
the arbitrary gauge function A. This means that 1),
A, and @ are merely auxiliary formal quantities, in
contrast to the given probability density p and the
measurable electric and magnetic field strengths

1

E=-Vé--A, (38)
G

B=V xA. 39)
Operators for observable quantities may, for the same
reason, contain spatial and temporal derivatives only
in the gauge invariant combinations

€ €
—iRV —ZA=p— =
i “A=p—-A, (40)

L 0
+zha—e¢—H—e¢.

(41)
Canonical quantities like p or p?/2m are observ-
ables only if no forces act, Newtonian quantities like
mv = (p—eA/c) ormv?/2+V (r) always. Time deri-
vatives of expectation values for observables can be
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calculated after the pattern

d

(0) = (BI0Iv) + (WIOl) + (¥|OlY)
(42)

-1
=(0+ E(OH — HO)),

where we employed Dirac’s bra-ket notation (O) =
(¥|O|y) = [ ¢*Oyd’r for expectation values. With
the Hamiltonian of (34) one finds readily for the most
important observables [8]

d 1
=) = () = —(p-24), 43)
d 1
a(mv) = e(E+Z(va—va)), (44)
2
LM - foE+Ew), @
d ymv? e
a_t<_§_+v> = 5(v-Ec+E, - v).  (46)

Equation (43) gives the relationship between velocity
and generalised momentum while the following equa-
tions show that any acceleration is due to the Lorentz
force, that the kinetic energy is changed by the elec-
tric but not by the magnetic field, and that the total
energy is changed only by the time-dependent part E,
of the electric field, while the static part, Eg = E —E;,
gives rise to the potential energy

r
V= —e/ dr' - Eo() . 47

(Only static forces can define a potential energy.)
We note with interest that the Schrédinger equa-
tion (34) exhibits one more invariance: Upon CPT
transformation, i. e. combined time reversal T, spatial
reflexion P, and charge conjugation C,
t - —t, r— —r, e - —e, (48)
one finds the original Schrodinger equation (34)
again, but now for ¥* instead of . This is true if
under PT not only d/dr and d/dt change sign but the
complete gauge-invariant combinations (40) and (41)
— which leaves the electromagnetic field (38), (39)
unchanged. Now C (together with i) — 1*) means
particle-antiparticle exchange, while PT implies full
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reversal of all motions, temporal as well as spatial,
as in a movie running backwards. One concludes that
backward motion of particles (in the space-time PT
sense) can also be treated formally as forward motion
of antiparticles, in the same electromagnetic field,
as recognised in the relativistic case by Stueckel-
berg [9] and further elaborated by Costa de Beau-
regard [10].

It is remarkable that the mere existence of an ar-
bitrary phase of the wave function leads unambigu-
ously to the electromagnetic interaction and thus to
the Lorentz force as the only possible influence on the
motion of a spinless charged particle. Although we
demonstrated this for nonrelativistic particles only, it
is easy to see that it must be true for relativistic parti-
cles, too: Hamilton’s equations of motion hold for rel-
ativistic as well as nonrelativistic Hamiltonians, and
the concept of position uncertainty at a given time
remains viable, with all consequences. Any Hamilto-
nian depends on the momentum by definition, there-
fore the corresponding wave equation, whether rel-
ativistic or not, must contain spatial and temporal
derivatives only in the gauge invariant combinations
(40) and (41) [11]. The Klein-Gordon and Dirac equa-
tions are examples [12]. In any case, gauge invariance
and electromagnetic fields show their basic simplic-
ity and inevitability most clearly in the relativistic
formalism. The strategy of deriving the form of an in-
teraction from phase arbitrariness is due to Weyl [13]
as well as the term gauge invariance. More recently it
has been the decisive tool for the construction of the
electro-weak theory and of quantum chromodynam-
ics (cf. e. g. [14, 15]).

5. Angular Momenta and Spinors

All spatial probability wave packets possess an-
gular periodicity, p(2m + a) = p(c), around any
fixed axis in ordinary space. This implies discrete
angular momentum eigenvalues and the possibility
to expand the wave function in terms of the corre-
sponding eigenfunctions, viz. spherical harmonics,
VI, t) = 3 Gem(r, )Y,™(£2). In order to explore
the consequences, consider a physical system whose
total angular momentum is due to the orbital motion
of a bound spinless pariicle, for instance a hydrogen-
like atom (without spin). Let R be the center-of-mass
position of the whole system and r the position of
the bound particle relative to R. If the system has ex-
pected spin 1 (in units of ), all expansion terms with
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¢ # 1 vanish and the eigenfunction expansion is

P(R,r,t) = Po(R, )x+(r) + Po(R, t)xo(r)
+Y_(R, t)x-(r)
= ug (R, H)E(r) + uy (R, 1)n(r)
+uz(R, 1)((r)

(49)

with
1

1
Ug = ﬁ(wﬁw—),uy = ﬁ«m—w_), u; =,(50)

and

x+(@) = fY 0, ¢)

_ /3 fmzxiy _{+n
Na ™ 2 T 2
Xo(r) = f(r)Y (6, ¢)

NG
—\/;TZ—C,

The vector (&, 7, €) is seen to behave like (z, y, 2) un-
der coordinate transformations, i. e. as a polar vector,
and the vector u = (u,uy,u,) likewise, since the
wave function must remain unchanged. For a beam of
randomly oriented spin-1 atoms, left and right handed
circular polarisation must be equivalent,

(51

() = (o),

and also all Cartesian coordinates of u, which implies
(u) = 0 for the mean vector and

(lual?) = (luy[*) = (jusl?) = (u?)/3

for the variances. With the linear relations (50) one
obtains equal probability densities for all three orien-
tation eigenstates,

(52)

(33)

(4 2) = (wol®) = ([w-I?) = (u?)/3.

As a consequence, a beam of randomly oriented par-
ticles is split into three equally intense components
in any field that acts differently on the three angular
momentum eigenstates, as does for example the in-
homogeneous magnetic field, B, of a Stern-Gerlach
magnet. Its force, F = V(m - B), is proportional (a) to
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the field gradient and (b) to the component of the mag-
netic moment, m, and therefore also of the orbital an-
gular momentum, r X p, along the direction of the field
gradient. For any orientation of the magnet the wave
function can be expanded in terms of three spherical
harmonics which cause the wave packet to exhibit
three discrete observable eigenvalues of the angular
momentum orientation. Contrary to common belief,
this quantisation is not restricted to quantum systems.
Simply because of the 27 periodicity of rotations in
ordinary space it must be true for all spatial proba-
bility distributions with finite extension. No matter
what experimental method one employs to measure
the angular momentum, and no matter how one ori-
ents the applied force field, the possible (probability-
weighted) internal motions always seem to conspire
in such a way that the wave packet as a whole behaves
as if the angular momentum were quantised. This is
true although we have not constrained them except
by demanding rotational periodicity and a bound sys-
tem. It is important to realise that as a consequence an
experimenter’s selective capabilities, for example to
prepare beams of particles with specified true spins,
are fundamentally limited.

The averages over the internal coordinates z,y, z
that we encounter here are more easily calculated with
3-component “spinors”. We introduce a complete ba-
sis of spinors,

1 0 0
X+=<O)7XO=<1>YX—=<O)7 (55)
0 0 1

whose orthonormality conditions (in obvious nota-
tion) are

¥ 2 / Er Yo X () (56)

- / T fmRdr / Y)Y ()02 = 8
0 4m

where the dagger denotes the Hermitean conjugate.
(We assume the radial function f(r) to be normalised
appropriately.) In spinor notation the wave function
is a three-component spinor, too,

(R, 1) = Y. (R, )x, + Yo(R, )xo + Y-(R, D)X _

V(R t) (57)
= | YRt |,
Y-(R, 1)
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normalised by

/ dPRER, 1) PR, 1) (58)

- /d3R/d3r R, r, D = 1.

In essence the spinor notation replaces the wave func-
tion (R, r,t) by three wave functions v, (R, t) that
are originally the coefficients of an eigenfunction
expansion in the space of the intrinsic coordinates.
Otherwise the intrinsic coordinates themselves are no
longer visible. In a similar way one can describe sys-
tems with expected integer spins 2, 3, ... (cf. e. g.
[16]). For all of these the wave function has 27 angular
periodicity which ensures the same for the probability
density.

We have, however, not exhausted all possibilities
yet. As we saw above, the condition p(27 + @) = p(a)
is not only fulfilled if Y27 + o) = +¥(a), with 27
periodicity, but also if Y27 + o) = —¢(), with 47
periodicity (cf. (7)). Therefore another family of pos-
sible spins (or representations of the rotation group)
exists, with half-integer eigenvalues, 1/2, 3/2, .. ., as
discovered by Cartan long before the advent of quan-
tum mechanics (see [17]). The familiar spinor formal-
ism for particles with spin 1/2, with two-component
spinors

wm(8). %= (0)
and
PR, 1) = Po(R, t)x, +V_ (R, t)x _
- (B&D) (©0)
Y_(R,1))’

is the exact analog of the three-component formalism
introduced here for systems with spin 1. We took spin
1 as an example because it allows to demonstrate
explicitly, without need to go beyond the concept of
trajectories or orbits with orbital angular momentum,
how the spinor formalism accounts for “curled-up”
internal degrees of freedom.

In more general probabilistic problems, base spinors
like those in (59) and (55) can be employed to enu-
merate alternative possibilities. Their orthonormal-
ity, x!.x", = 8mm, indicates that the alternatives
are mutually exclusive, while the completeness rela-
tion, 3", X,» X}, = 1, means that there are no other
ones. The two mutually exclusive possible outcomes
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of Bernoulli trials (success or failure, head or tail, spin
up or down, etc.) can, for example, be represented by
the two-component base spinors of (59).

6. Indistinguishable Particles: the Spin-statistics
Relationship

So far we have considered probability distributions
for single particles only. The generalisation to several
particles looks straightforward but if the particles are
indistinguishable there are nontrivial consequences.
If two equal particles collide, for instance in proton-
proton scattering, one must allow for two alterna-
tives: Any registered outgoing particle may either be
the incoming beam particle or, with equal probabil-
ity, the target particle. Let us assume that there are
two particles, labeled by 1 and 2, at center-of-mass
positions R, and R;, with intrinsic coordinates r, and
ry, respectively. Without information about correla-
tions between them the maximum entropy principle
[18, 19] directs us to assign independent probability
densities,

p(Raara’varb) = pl(Ra.vra.) PZ(RbJ'b)
= [1(Ra, 7a) Y2Ry, )|

If the particles are not distinguishable, 1; and 1), must
be the same function of the intrinsic polar coordinates
but the orientations of the intrinsic coordinate frames
may differ. Let the polar angles differ by 6 and the
azimuths by ¢, as indicated in Figure 1 (a). We can
therefore write the wave function as

(61)

W(Ra;ra,Rb,rb) = ¢(Ra’ra)¢(Rbarb)' (62)
Interchange of the particle positions but not of the
orientations results in

!p(RbaraaRaarb) =¢(Rb,"a)'l/)(Ra7"b), (63)

with mixed-up orientations as indicated in Figure 1
(b). The orientations can be restored by the rotations
indicated by arrows in Figs. 1 (b), (c), and (d): First
make the polar axes parallel by letting 6, — 6, — 0 =
6,, so that the wave function becomes, in obvious
notation,

W(Rb, ﬂa; @aaRay 19:17 Sob)
- w(va 19(17 <Pa)¢‘(Ra, 190., Sob)

(64)
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(d) (e)

Fig. 1. Probability density distributions for two indistinguishable particles (schematic): (a) initial state, (b) state after inter-
change without rotations, (c) state with parallel polar axes, (d) state with correct azimuths, (e) final state, indistinguishable

from (a).

Next rotate both wave packets about the polar axes to
get the correct azimuths. With ¢, — @y +27 — ¢ =
Yo +2mand p, — @, + ¢ = p, one finds

W(vaﬁaa(vaRavﬂaa‘pa"'z”r) (65)

= Y(Ry, ﬂaa (Pb)w(Raa 79:1’ Pa t+ 2m).

Finally rotate the polar axis of the particle at R,
through the angle ¥, which gives

W(Rb,’l?b,(pb,Ra,'ﬂa,tpa +27T) (66)

= w(Rb’ 19177 Sob)’l/)(Ray 190.7 Pa t 27!')
= :td)(Rbarb)w(Ra’ra)-

The absolute square is now again the same as initially,
(61), and the configurations shown in Figs. 1 (a) and 1
(e) are indistinguishable. Evidently exchange of two
indistinguishable particles and restoration of the ori-
entations involves a full rotation of one of the particles
around its intrinsic polar axis which changes the sign
of the wave function if the spin is half-integer ((7), see
also [20]). Adding the wave functions, or more cor-
rectly, the state vectors for the two alternatives “no
exchange” and “exchange” one obtains the total state

vector for two indistinguishable particles. In abbrevi-
ated (Dirac) notation one has, properly normalised,

_ 1

1) 7

[v,211,2) £ 9@, Dl2,1)] (67)

bosons,
for .
fermions.

The base vectors |1,2) and |2, 1) are a complete, or-
thonormal set, representing the two alternatives “no
exchange” and “exchange”, and could also be writ-
ten as two-component base spinors (cf. (59), (60)
and text following thereafter). The probability is just
what one expects, (Z|¥) = (|¢(1,2)> + |2, D|?)/2.
We have thus obtained the spin-statistics relation-
ship in its simplest form: Wave functions for systems
of indistinguishable particles with integer spin must
be symmetric in all particle coordinates, including
spin coordinates, which entails Bose-Einstein statis-
tics, whereas wave functions for particles with half-
integer spin must be antisymmetric, which entails
Fermi-Dirac statistics. The spin-statistics relationship
is widely believed to be inexplicable without relativity
and quantum field theory. Here it appears, however,
as a nonrelativistic consequence of the two angular
periodicities allowed by the Riesz-Fejér theorem for
wave functions in ordinary space.
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7. EPR Entanglement and Bell Inequalities

In the spin version of the famous Einstein-Podol-
sky-Rosen thought experiment [21] one considers a
particle with spin zero that decays into two equal par-
ticles flying apart in opposite directions, each with
spin 1/2. Because angular momentum is conserved,
the spins of the two particles must be antiparallel,
o, = —o;. If one of the spin components of par-
ticle 1 is measured with a Stern-Gerlach magnet as
pointing up, the same spin component of particle 2 is
immediately known to be pointing down (which can
be confirmed experimentally). This is a logical infer-
ence and has nothing to do with spooky superluminal
action at a distance. More generally, one finds that the
covariance of arbitrary spin coordinates (a - ;) and
(b - o) is given by

(@-o1)o2-b))=—a-b =—cos(a,b), (68)
where a and b are unit vectors along two arbitrary
analyzer directions. This result is obtained quantum-
mechanically with the singlet state (total spin zero)
described by the antisymmetric fermion wave func-
tion for the two discrete possibilities “spin up” and
“spin down” of the two particles,

#=7(), (1), (), (6).):

and the spin coordinates by Pauli matrices (see [12]),

(69)

G=12 (70)

0; = {0z2j,0y5,0:5}

{2 5.0 70 2

The subscripts 1 and 2 refer to particles 1 and 2, and
the subscripted matrix operators act only on column
vectors (spinors) with the same subscript. The de-
scription is the same for any orientation of the coor-
dinate frame. Expectation values are to be calculated
as (...) = @' . & which yields

(a-o1)=0, (71)
(@-o)?) =1, (72)
(02)) = (02)) = (o)) = (0])/3 =1 (73)
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(similarly for & and o;). So the spin projection on
any unit vector a has expectation value zero with unit
variance, while the expectation value of the squared
spin angular momentumis (o')(3)? = (3 +1)h* The
covariance of the two spin projections considered is
found to be given by (68) as stated above.

It is often claimed that the covariance (68) cannot
be obtained classically, or at least not together with
spin quantisation. Its confirmation by experiment is
then taken as evidence that the spin coordinates cannot
exist simultaneously before a measurement reveals
one of them, in accordance with N. Bohr’s episte-
mological (Copenhagen) interpretation [22] of quan-
tum mechanics but at variance with the ontological
view of Einstein, Podolsky and Rosen [21]. Since,
however, the quantum-mechanical result (68) does
not contain Planck’s constant one expects a classical
derivation to be feasible. Let us therefore consider the
spin o} = —o, as an ordinary vector for which all
orientations are equally probable. Expectation values
are then to be calculated classically as

N *L d(cos8) [*" d¢
(...):/0 d0'1p(<71)/_1 7 /0 E(_/;)

where p(o) is the probability density of the length
o1 = |o1| of both spin vectors and 6, ¢ are polar angle
and azimuth of ;. Without any difficulty one finds

(o)
(@ o0)(@2:b) = (@ 01)(o1-b)) = =@ b)
(75)

which, with (o3)/3 = 1 (cf. (73)), is equal to the
quantum-mechanical result. Hence the correlation
measurements alone do not rule out the ontological
viewpoint, i. e. reality of unobserved spin compo-
nents. This conclusion is not changed if we also take
spin quantisation into account. It, too, follows already
classically from the 27 periodicity of rotations as we
have seen. Therefore the reality of unobserved spin
coordinates need not be questioned. A temptation to
introduce hidden variables exists only if one tries to
treat the spin eigenvalues, +1/2 or —1/2, measured
alonga and b, as if they were true particle spins rather
than global properties of the wave packet encoding
incomplete information about them, and if one con-
siders oy = —o, as true not for each particle pair
but only on average. The inequalities derived by Bell
[23] from these premises are, in fact, contradicted by



648

experiment. Hidden variables are not needed for an
understanding of the correlations if one distinguishes
clearly between the particles themselves and informa-
tion about them — the natural variables of the problem,
spin coordinates, are enough.

The common misunderstanding to interpret mea-
surable expectation values as true values is fostered
mainly by the unfortunate and misleading use of the
word “state” in quantum mechanics for what is actu-
ally “information about the state” of a physical sys-
tem, in particular about its preparation, and also by
futile attempts to endow probability amplitudes with
physical properties while paying lip service to Born’s
probability interpretation. The ingenious and elabo-
rate experimental checks on increasingly complicated
correlations between particle spins or photon polari-
sations (cf. e. g. [24]) look often more like attempts
to check the Riesz-Fejér theorem than like investiga-
tions of the physics. One is reminded of experiments
proposed earlier in this century to check other mathe-
matical consequences of Fourier theory, for example
the existence of side bands in amplitude-modulated
beams of optical or radio waves (see [25]). For fur-
ther clarification let us see how the basic probabilistic
concepts apply in quantum mechanics.

8. The Basic Rules of Probability Theory
and Quantum Mechanics

Quantum mechanical “operator-valued” probabili-
ties are often said to differ fundamentally from “or-
dinary” ones, in disregard of the work of Cox [26]
who proved that any scheme of inductive inference,
i. e. of reasoning in the face of uncertainty, must be
either equivalent to ordinary probability theory or in-
consistent, with probabilities understood as encod-
ing incomplete information on a numerical scale of
plausibility or rational expectation, in the tradition
of Bernoulli and Laplace (and Heisenberg [27]). Cox
proved this by demonstrating that for any formal sys-
tem of inference obeying the rules of ordinary Aris-
totelian logic the most general consistency conditions
can be cast in the form of two functional equations
whose solutions are the basic sum and product rules

P(A|C) + P(A|C) =1, (76)

P(AB|C) = P(A|BC)P(B|C),
= P(B|AC)P(A|C),

(7"
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from which probability theory unfolds. (A and B rep-
resent propositions such as “the coin shows head” or
“the neutrino rest energy is between 0 and 25eV”, AB
means “both A and B are true”, A means “A is false”,
and P(A|C) denotes the probability of A given C. Our
notation indicates that all probability assignments are
conditional, based either on empirical or theoretical
information or on assumptions C. The two forms of
the product rule reflect the symmetry AB = BA.) It
is interesting that Schrodinger [28] arrived indepen-
dently at similar conclusions. Criticism that Cox had
assumed differentiability of his probability functions
was met by Rényi [29] who gave a proof without this
assumption. It appears that any claim of an essential
difference between ordinary and quantum probabili-
ties must overcome the obstacle of Cox’s proof.

An immediate consequence of the two forms of the
product rule (77) is Bayes’ theorem in its simplest
form,

P(B|AC)P(A|C)
P(B|C) '

This theorem is fundamental to scientific reasoning.
It provides nothing less than a formal model for up-
dating of information with new evidence, or learn-
ing from observations. Suppose we are interested in
some hypothesis A (for instance about the value of
a half-life) to which one can assign an initial prob-
ability (“prior”) P(A|C) (from nuclear systematics
or previous half-life measurements, with C' specify-
ing isotope and decay type). Suppose further that we
receive new data B (counts), and that we also have
a theoretical model of the experiment (involving the
exponential decay law, counting statistics, and experi-
mental details such as geometry, source specifications
and counter efficiency) from which we can calculate,
for arbitrary half-life A, the “likelihood” P(B|AC) of
observing the data B. The updated probability (“pos-
terior”) is essentially proportional to the product of
likelihood and prior, P(B|AC)P(A|C), the denom-
inator in (78) acting merely as a normalisation con-
stant. Updating can be repeated whenever new data
become available, the old posterior becoming the new
prior in each step. It should be understood that the
historical terms “prior” and “posterior” have a logi-
cal rather than a temporal meaning. They simply mean
“without” and “with” the new data taken into account.
It should also be understood that probabilities are not
relative frequencies although frequency estimates can
be derived from them (see e. g. [7, 18]).

P(A|BC) = (78)
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In order to see how these rules apply in quantum
mechanics, let us look at a system described by spatial
wave amplitudes 1), or, alternatively, by momentum
wave amplitudes ¢, so that the state vector is (in
Dirac notation)

=S wdn) =Y aulk),
r k

where |r) and |k) are base vectors in position and
momentum space, representing possible alternatives
that are mutually exclusive ((r|r’) = &, (k|k') =
&) and complete (3, |r)(r| = 1). The sum over all
probabilities,

42 Z | [? = Z |oal? = 1,

is consistent with the sum rule (76) as long as we
work either with the r or the k description. Intercala-
tion of the completeness relations, >, |r)(r| = 1 and
>« |k) (k| = 1, produces a mixed form of the normal-
isation condition,

Zj:wpﬂkuw

(79

(80)

Z Z Re(v; (r|k) o«
—szPOH%-I

1)

The real summand P(r, k|¥) looks like the joint prob-
ability distribution of r and k given ¥ in so far as
it readily yields the correct marginal distributions
P(r|®) = |3,|* and P(k|¥) = |¢x|? if summed over k
or r, and also correct expectation values for observ-
ables. It is not a true probability distribution, however,
as it can assume negative values (Margenau and Hill
[30]), like other expressions that have been proposed
as joint distributions (e. g. by Wigner [31]).

In fact, there is no room for a joint distribution.
The wave functions 1), and ¢ can be considered as
coordinates of the same unit vector |¥) in two coor-
dinate frames that differ by a “rotation” described by
a unitary matrix having elements (r|k),

b= (r|®) = > (rlk) b, (82)
k
& = (k|&) = > (klr)¥, (83)

r
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(These are, of course, the Fourier transforms (12) and
(13) in Dirac notation). The wave amplitudes for k are
therefore completely determined by those for r, given
the elements (r|k) of the unitary matrix of Fourier
transformations. Taking the absolute square of the
spatial probability amplitude (82) one finds with (83)

[rl? = (k) (klr) (rlk’) (k' | @) (84)
k&'
= Z |(rlk) Pl xl* +2Re >~ >~ o (klr) (rlk’) e

k K<k

Summation over all alternatives r produces y_, |1,|* =
>k |¢k/?, the cross terms with k # k' cancelling each
other. These interference terms are commonly con-
sidered as a hallmark of quantum mechanics, not
present in classical probability theory. Our equations
are, however, purely classical as k has not been re-
placed yet by p = hik. Furthermore, (84) is completely
analogous to the expression x''x’ = x'0'0x that is
valid for a real vector and a rotation described by an
orthogonal matrix O, and contains analogous cross
terms.

The paradigmatic example for interfering proba-
bility waves is the particle version of Young’s famous
double slit experiment, with a parallel beam of mo-
noenergetic particles which can be described by a state
vector |¥) = |k) or the corresponding wave function
in r-representation

Yy = (rlk) o e*” (85)
Consider a plane S normal to the beam. The proba-
bility for a beam particle to reach a final position 7/
from any one of the many possible positions r in the
plane assumes the form

|l |* = | S (klr) rlr') |

res

(86)

if we intercalate the completeness relation for the r.
One recognises (86) as a formal expression of Huy-
gens’ principle: Each point on a wave front can be con-
sidered as the centre of an outgoing spherical wave,
with

etklr' —r|

rlr') oc P 87
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Fig. 2. Young double-slit interference experiment: Single- and double-slit wave functions (schematical).

as the transition amplitude for the transfer from r to
r’, and all these elementary waves are superposed.
Next let us assume that the mathematical plane S
is the place of an absorbing screen with slits at r;
and r,, so that there are only two possibilities for
particles to pass the screen, either through slit 1 or
slit 2. These two mutually exclusive alternatives are
formally represented by a complete set of orthonormal
base kets |r;) and |r;). Instead of (86) one has then

2
Zk"'s rslr )
s=1

with elementary waves emerging only at r; and ry,
and interfering in the overlap zone (see Figure 2).
We stress again that there is no question of particles
passing both slits simultaneously. We are definitely
dealing with mutually exclusive possibilities but in
the framework of the Fourier-Riesz-Fejér theory of
probability wave amplitudes.

If only the slit at r; is open the sum in (86) reduces
to a single term and we get the expected result, without
interference,

k|r (88)

|y |* = |kl PGl 2, (89)

and analogously if the other slit is open instead.

There could be yet another state of information:
It might be known that only one slit is open but not
which one. According to the Principle of Insufficient
Reason one must then assign equal probabilities of
1/2 to both alternatives and average the two one-slit
probabilities accordingly,

2
(k)2 = %Z \(klra) P o) - (90)
s=1

This result, a so-called statistical mixture, is also valid
if one knows that the two slits are opened and closed
alternately, either periodically or at random (as in so-
called delayed-choice experiments) but in such a way
that the total opening times of both are equal.

Although it should be no surprise that different
states of knowledge lead to different probability as-
signments, as always in probability theory, long dis-
cussions have evolved about the presence of interfer-
ence if both slits are open, and their absence if one of
them is closed, or about the fact that, if both slits are
open, one must sum over probability amplitudes after
the pattern

wac = Z wabwbm
b

whereas in the case of one unknown slit one must sum
over their absolute squares, i. e. probabilities,

Pac=ZPabec~
b

The differences were related to the mysterious “col-
lapse of the wave function” or “reduction of the wave
packet” that seems to occur whenever a measurement
reveals which of several possibilities is the true one.
The one-slit situation was considered as a kind of
measurement furnishing “which-way” information,
in contrast to the two-slit situation. Bayes’ theorem
is rarely mentioned in these discussions, although its
importance can hardly be overstated. With proper un-
derstanding of Bayesian updating there is nothing
strange about a change of the wave function when
additional data or new information are included in the
formal process of logical inference. Their incorpora-
tion by means of Bayes’ theorem inevitably changes
all prior probabilities to posterior ones, as common

€29

92)
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sense and probability theory demand. As soon as we
learn, for instance, that in the spin version of the
EPR experiment one spin is observed as pointing up,
we can have no doubt any more that the other spin
is pointing down. Similarly with Young’s double-slit
experiment: As soon as we learn that only one slit
is open, the (interfering) double-slit wave function
must be replaced by the appropriate (noninterfering)
one-slit function or, if it is not known which slit is
open, by a “statistical mixture” of the two possible
one-slit wave functions. Since this is not a physical
but a logical change, questions about its sudden (su-
perluminal) occurrence throughout physical space do
not arise. It was Heisenberg [32] himself who wrote
that the reduction of the wave packet is caused not
by “a physical, but rather, so to say, a mathematical
process. With the sudden change of our knowledge
also the mathematical presentation of our knowledge
undergoes of course a sudden change.” It is quite pos-
sible to reason even backwards in time if the new
evidence is relevant to the past. From this standpoint
there does not seem to be much need for a special
measurement theory as expounded for instance by
Omnes [33].

We conclude that there is no fundamental dif-
ference between classical and quantum-mechanical
probabilities. Therefore the basic rules of classical
probability theory are valid also for probability waves
and thus for quantum mechanics. The sum rule (76)
assumes the form

P(A|C) + P(A|C) = [(A|C)|A) + %(A|C)| )|

=1, 93)

where |A) and | A) constitute a complete orthonormal
state vector base representing the facts that A and A
are mutually exclusive alternatives and that they are
the only ones. Whether one sums probabilities or state
vectors, the final result is the same. This justifies what
we did when we added state vectors for the alterna-
tives “no exchange” and “exchange” of two indistin-
guishable particles to find the total wave function (67).
Although superposition of A and A —of Schrédinger’s
cat [34] simultaneously alive and dead — does occur
at the level of the auxiliary probability wave ampli-
tudes (Fourier components) introduced by way of the
Riesz-Fejér theorem, the final result contains only the
wave intensities, i. e. conventional probabilities.
What about the product rule? Suppose we open
the box enclosing the cat and Schrodinger’s deadly
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contraption, measure the cat’s heart beat and find
it normal. Knowing the conditional probabilities
P(B|A) = 1 and P(B|A) = 0, where A stands
for “alive” and B for “beat noticeable”, we can
apply Bayes’ theorem and infer that the cat is
alive: P(A|BC) o« P(B|A)P(A|C) = 0, hence
P(A|BC) =1 (where C stands for “contraption”).
Bayes’ theorem and thus the basic multiplication rules
(77) are found to work in quantum mechanics as
well, with

P(AB|C)

P(B|AC)P(A|C)

94
w@EAo@eR. )

The special case of independent propositions A and
B, where P(A|BC) = P(A|C) and ¥(A|BC) =
P(A|C), was already utilised when we dealt with in-
dependent internal and centre-of-mass coordinates in
(49), or with independent coordinates of two particles
in (62). Often P(A|C) is a conventional prior while
P(B|AC) is a wave-mechanical transition probabil-
ity, as in “statistical mixtures” (see (90)).

The final conclusion is

(1) traditional probability theory can be extended
by means of the Riesz-Fejér superposition theorem,
without change of the basic sum and product rules
from which it unfolds, hence without violation of
Cox’s consistency conditions;

(2) the resulting probability wave theory turns out
to be essentially the formalism of quantum mechan-
ics inferred by physicists with great effort from the
observation of atomic phenomena.

From the Bayesian point of view the nature and in-
terpretation of probabilities in traditional probability
theory, probability wave theory and quantum mechan-
ics need not be considered as different. The mathemat-
ics of probability waves is more powerful, however,
comprising superposition and interference with all al-
gebraic consequences, in particular operator calculus
and eigenvalue equations.

9. Summary

The formalism of quantum mechanics, in the tra-
ditional axiomatic or historical presentation, looks
mysterious. It emerges rather naturally, however, if
one treats position and momentum uncertainties for
classical point particles wave-mechanically, by means
of the Riesz-Fejér superposition theorem, which by
the way dispels any doubts about the linearity of
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the theory. The theorem permits unrestricted use of
Fourier series — the proper tool for dealing with tem-
poral and spatial constraints —in a way that guarantees
non-negativity of all probabilities. All the basic fea-
tures of quantum mechanics are obtained readily —
wave-particle duality, operator calculus and commu-
tation rules, uncertainty relations, Schrodinger equa-
tion, periodicity-related quantisation of angular mo-
menta and other physical quantities, etc. Moreover,
elementary requirements for possible forms of the
arbitrary phases of probability amplitudes lead un-
equivocally to the correct form of the electromag-
netic interaction. The spin-statistics relationship for
indistinguishable particles is a logical consequence
of the natural periodicity of spatial rotations. Planck’s
quantum of action appears automatically, as a “blur-
ring" parameter, as soon as the kinematics of proba-
bility wave packets is equated with Hamiltonian par-
ticle kinematics. Nonlocality (instantaneous collapse
of the wave function throughout physical space if
new information is taken into account) follows from
strict adherence to Born’s interpretation of |¢|? as a
probability density in combination with the Bayesian
scheme for the updating of knowledge. There is no
reason to doubt that physical quantities, such as the
spin coordinates in the spin version of the Einstein-
Podolsky-Rosen experiment, have a reality indepen-
dent of the observer, in obvious contrast to eigenfunc-
tion expansions and eigenvalues that reflect his choice
of measurement and thus of his preferred reference
frame. From this viewpoint quantum mechanics looks
much like an error propagation (or rather informa-
tion transmittal) formalism for uncertainty-afflicted
physical systems that obey the classical equations of
motion. Difficulties already present in Hamiltonian
mechanics, for instance with the infinite electromag-
netic self-energy of charged point particles, must then
also be expected in quantum theory.

The formalism is holistic, taking into account all
probability waves fitting into a given experimental
setup, and thereby the ensemble of all possible tra-
jectories, as becomes especially clear in R. Feyn-
man’s path integral formulation [35]. For a given
path, r = r(t), the momentum p is not independent
of r but related by differentiation along the path, in
contrast to statistical mechanics where joint distribu-
tions are postulated for r and p without questioning
mutual compatibility, and then extrapolated in time
by integration. The two interfering cylindrical waves
emerging with equal phases from the two slits in the
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particle version of Young's double-slit experiment do
not indicate that the electron can pass both slits simul-
taneously but only that two slits are open for it and we
do not know through which one it will go. Compar-
ison with experiment requires that observables such
as relative frequencies are estimated from probabili-
ties [7, 18]. The statistical samples, for instance the
number of registered particles, are so large in typical
diffraction experiments that relative frequencies and
probabilities hardly differ numerically. In this sense
an observed Young diffraction pattern shows the prob-
abilities rather directly (see the results of Mollenstedt
and Jonsson [36] for an early realisation). In other
cases, especially in high-energy physics, the number
of observed events may be quite small (as small as
one) but probability theory and thus quantum me-
chanics remain applicable, the only difference being
that estimated root-mean-square errors become larger,
hence predictions less certain. Quantum mechanics
can thus be understood as a powerful extension of
ordinary probability theory, particularly well suited
for dealing with ensembles of particle trajectories or
chains of space-time events fitting into given experi-
mental configurations.

Quantum mechanics treats positions and momenta
in symmetric fashion. Our exposition emphasised
probabilities for particles and deduced wave-like be-
havior for spatially extended wave packets (states of
information). One could, it seems, equally well con-
sider light waves and deduce the particle-like behavior
of photons. The formal symmetry may be misleading,
however. The location aspect appears to be more nat-
ural for massive particles for which the generalised
momentum (wave length) is not gauge invariant as we
saw. For the massless photons it is just the particle as-
pect (well defined position) that is problematic while
for radio waves or radar pulses the wave aspect seems
natural. A related question is whether it is necessary
to quantise also the electromagnetic field. The electro-
magnetic field intensities are positive definite quanti-
ties like the probability densities for electrons, so the
Riesz-Fejér theorem is applicable. Actually, Fourier
techniques and the superposition principle were ap-
plied routinely to electromagnetic field strengths and
potentials long before quantum mechanics appeared
on the scene. Such problems belong to quantum elec-
trodynamics and will not be further discussed here.
As far as ordinary quantum mechanics is concerned
it should have become clear that it can be demystified
to quite some extent with the Riesz-Fejér theorem.
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The question seems not so much “ How can it be like
that?” but rather “Could it be otherwise?”

What remains mysterious is the irreducible uncer-
tainty and lack of control caused by the empirical
finite and universal value of Planck’s quantum of ac-
tion. That its value is the same for electrons, nucle-
ons, photons etc. is not surprising since their mutual
interactions must conserve energy and momentum.
In fact, Jaynes [37] found that action is conserved,
too, as a consequence of probability conservation,
i. e. that there is an integral of motion which can
be identified with £, if a spinless hydrogen-like atom
is coupled to a (classical) electromagnetic field in a
cavity. The role of i as a limit to the attainable in-
formation and control in microphysics has been clear
ever since Heisenberg [27] discussed his uncertainty
relations: Particle trajectories and orbits are always
affected by a non-removable minimum blur. As fi-
nite particle size would produce a similar blur, one is
tempted to ask if quantum mechanics can perhaps be
viewed as a kind of minimum information (maximum
entropy) generalisation of probabilistic Hamiltonian
mechanics from mass points to particles with finite
extension (spatial distribution) and internal motion
(momentum distribution, spin). How this conjecture
fits in with others, such as solitons, zitterbewegung,
or superstrings, remains to be seen.

Appendix: Proof of the Riesz-Fejér Theorem

The proof presented by Fejér [2] as due to Riesz,
and also contained in the book by Riesz and Sz.-
Nagy [3], is given here in slightly different notation.
Consider the real Fourier polynomial

p@) =p) =Y ae’, (a=c). (Al)
l=—n
Defining the polynomial g(z) as
g2 =ch+...+c2" L+ coz™
(A2)
+e 2 +. .+ 62,

one can write p(z) = e~ ™% g(e'®) or, as the polyno-
mial p(z) is non-negative,

p(z) = |g(e*)|.

The polynomial g(z) is of degree 2n if ¢, # 0, so that
g(0) #0. If z is a solution of g(z) =

=0,

(A3)

(A4)

g(zp)=cr+...+ cnz,c
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then 1/z; is another solution,

g(zl—*) =[(ch+...+ a2tz 1" =0. (AS)
k

One concludes that each root z; inside the unit circle
is accompanied by another root 1/z; outside, with
equal multiplicities of the roots inside and the accom-
panying ones outside. (Remember that z; = 0 can
be excluded.) Equation (A3) shows that there are no
solutions on the unit circle if the polynomial is defi-
nitely positive — which we may assume without loss
of generality, as we can always add a small positive
quantity € and let it vanish eventually. Thus one has

n

1
9(z) = cn H(z = zK)(z — z—*)

k=1 k

(A6)

(where not all the z are different if there are multiple
roots). For z = e’ one obtains

(@) = |o(e)] = |y T] =t | (A7)
k=1

which is the absolute square of a Fourier polynomial
of the same order as p(z), so that one can write

p@) =Y e’ = |y@)|*, —m <z <7, (AB)
l=—n
Y(z) =€ — — z)
k= 1 (A9)
= e'® Z ay e'*® (a arbitrary).
k=0

This completes the (constructive) proof that each non-
negative real Fourier polynomial can be written as the
absolute square of a complex one of (at most) the
same order (same highest harmonic). The complex
Fourier polynomial is mathematically more conve-
nient and more flexible because it is not subject to the
non-negativity requirement and contains an arbitrary
phase.
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