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Quantum mechanics is spectacularly successful on the technical level but the meaning of its rules 
remains shrouded in mystery even more than seventy years after its inception. Quantum-mechanical 
probabilities are often considered as fundamentally different from classical probabilities, in disre-
gard of the work of Cox (1946) - and of Schrödinger (1947) - on the foundations of probability 
theory. One central question concerns the superposition principle, i. e. the need to work with inter-
fering wave functions, the absolute squares of which are probabilities. Other questions concern the 
relationship between spin and statistics or the collapse of the wave function when new data become 
available. These questions are reconsidered from the Bayesian point of view. The superposition 
principle is found to be a consequence of an apparently little-loiown mathematical theorem for 
non-negative Fourier polynomials published by Fejer in 1915 that implies wave-mechanical inter-
ference already for classical probabilities. Combined with the classical Hamiltonian equations for 
free and accelerated motion, gauge invariance and particle indistinguishability, it yields all basic 
quantum features - wave-particle duality, operator calculus, uncertainty relations, Schrödinger 
equation, CPT invariance and even the spin-statistics relationship - which demystifies quantum 
mechanics to quite some extent. 
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1. Introduction 

Quantum mechanics is usually introduced either 
axiomatically, with states of physical systems rep-
resented by vectors in Hilbert space, or historically, 
showing how crucial experiments led theoreticians 
like Planck, Einstein, Bohr and Sommerfeld to a 
first form of quantum theory, and how Heisenberg, 
Schrödinger, Pauli, Dirac, Feynman, and others suc-
ceeded, with much trial and error, in establishing the 
rather general and consistent quantum mechanics as 
we know it today. In neither approach does quan-
tum theory look completely compelling from a logi-
cal point of view. There are nagging questions up to 
this day, at least for some: why microphysical sys-
tems behave sometimes like particles and sometimes 
like waves, about the exact meaning of the complex 
wave functions, about their collapse when measure-
ments are made, about the role of the observer or his 
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consciousness, about the unexpected interference and 
quantisation phenomena, about the different statistics 
for fermions and bosons, etc. Others insist that such 
questions were either answered long ago, or that they 
are meaningless, or that in view of the great practical 
success of the theory any doubts are out of place. At 
least there is consensus that superposition and inter-
ference of waves plays a key role, with wave inten-
sities that can be interpreted as probability densities. 
Dirac, for example, wrote [1] "I believe that this con-
cept of the probability amplitude is perhaps the most 
fundamental concept of quantum theory." 

In view of the debate about the interpretation of 
quantum mechanics, still going on seventy years af-
ter its inception, it is quite astonishing that there is 
a mathematical theorem, proved and published well 
before quantum mechanics was developed, that raises 
the status of the superposition principle from puz-
zling empirical discovery to a definite mathematical 
property of all inherently positive distribution func-
tions such as beam intensities or probability densities. 
The theorem was published in 1915 by Fejer [2] in 
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Hungarian and German - languages in which many 
founding fathers of quantum mechanics were fully 
conversant (von Neumann and Wigner spoke both) 
- yet it went unnoticed. Equally remarkable is the 
fact that the discoverers of the theorem, Riesz and 
Fejer, never seemed to realise its importance in sci-
ence. There is not the slightest hint of its usefulness 
in electrodynamics, communication theory, and espe-
cially quantum mechanics even in a rather late edition 
of the book by Riesz and Sz.-Nagy [3] containing a 
proof of the "Fejer-Riesz lemma". In the following 
sections it will be argued that this theorem can be 
regarded as a missing link between probability the-
ory and quantum mechanics, permitting derivation 
of all the main features of quantum mechanics in a 
rather inevitable logical chain of fairly simple argu-
ments. Quantum mechanics can thus be considered 
as an especially powerful extension of ordinary prob-
ability theory, useful also for other than space-time 
processes, as has been conjectured e. g. by C. F. von 
Weizsäcker who wrote "I propose the view that gen-
eral or abstract quantum theory is a general theory of 
probabilities and nothing else" [4]. Many features of 
quantum mechanics may have been unexpected but 
with the key provided by Riesz and Fejer they are not 
inexplicable. 

2. The Riesz-Fejer Theorem and Probabilities 

In 1915 L. Fejer, well known for his work on 
Fourier series, published a proof [2] due to F. Riesz 
of the following theorem (see Appendix): Each real, 
non-negative Fourier polynomial (truncated Fourier 
series) of order n (maximal wave number n) can be 
expressed as the absolute square of a complex Fourier 
polynomial of at most the same order, 

0 < p(x) eilx = | eikx\Z = |W*)f > 

(1) 

L=—n k=0 

where the complex Fourier polynomial ip(x) is com-
pletely unrestricted, in contrast to the Fourier poly-
nomial p(x) which is restricted by the requirements 
of reality (c-i = c*) and non-negativity. Our notation 
anticipates the rather obvious application to quantum-
mechanical probability densities, p, and probabil-
ity wave functions, tp, without excluding applica-
tion to other inherently positive quantities such as 

intensities of classical energy-carrying waves. The co-
efficients dk are Fourier transforms of the wave func-
tion ip(x). Fourier techniques are most convenient 
whenever wave or particle propagation constrained 
by initial or boundary conditions is to be described, 
and they are especially powerful if they permit free 
use of Fourier expansions, unhampered by reality and 
non-negativity conditions. Constraints such as point 
sources, diaphragms, slits, scatterers, etc. define, to-
gether with a wave equation for the Fourier compo-
nents, eigenvalue problems whose eigenfunctions are 
all those waves which are possible under given exper-
imental circumstances. 

Since the wave function ip(x) for given p(x) is 
determined only up to a phase factor, we may define 
it by 

J2 ak elkx = einx/2^(x) 
k=o 

and introduce modified coefficients 

0 f c = Vlnak+n/2. 

The resulting Fourier transform pair 

i /2 

c 
fc=—n/2 

(2) 

(3) 

i/>(x) 
n/2 

= 7 L £ <j>k eih*, 
V2tr 

4>k = 
1 

yfbr J -
dx ip(x) e — ikx 

(4) 

(5) 

has the especially convenient symmetric form com-
monly used in quantum mechanics. The wave func-
tions thus defined are 

n = 0, il>(x) = - ^ = 4 > o , 
V2n 

(6) 

71 

71 

= 1, tP(x)= — (<J>_l/2e-ix'2 + <f>+l/2e+ix'2) , 

= 2, ^ ) = ^ ( 0 - i e - t a ; + 0 o + 0 + i e + l x ) , 

Although p(x) has 27r periodicity and the sum in (2) 
likewise, the same is true only for wave functions for 
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even n. Those for odd n have 4tt periodicity, so one 
has 

ip(x) = ±i/j(x+2tt) = ip(x+4n) for n = 
0 , 2 , 4 , . . . 
1 , 3 , 5 , . . . 

(7) 

The reason is, of course, the phase factor e m x / 2 pulled 
out in (2). As will become clearer below, the plus-
minus sign appearing after one full period leads to 
the spin-statistics relationship and thus to the Bose-
Einstein and Fermi-Dirac statistics of quantum me-
chanics. 

Integration of the function p{x) over one period 
yields 

r 
nil 

dx\^(x)\2 = Y . 
fc=—n/2 

(8) 

(Parseval's theorem). If we interpret this as a to-
tal probability we find that any continuous, periodic 
probability density \ip(x)\2 in ar-space is related via 
Fourier transformation to discrete probabilities \4>k\2 

in a dual fc-space - periodic x entails quantised k. 
In classical as well as quantum mechanics (infinite) 

Fourier series occur naturally when spatial rotations 
are studied with their obvious 27t periodicity. In other 
cases, like spatial translation, it is customary to in-
troduce Fourier series by the familiar device of the 
periodicity box. We note that 

(a) infinite Fourier series can be approximated by 
finite Fourier polynomials to any desired accuracy if 
only the order n is chosen high enough; 

(b) a smooth transition to Fourier integrals describ-
ing arbitrary nonperiodic processes is achieved if the 
periodicity box is made bigger and bigger relative to 
the physical system considered. 

In view of these uneventful generalisations one may 
consider the Riesz-Fejer theorem as equivalent to 
the wave-mechanical superposition principle: Prob-
ability densities as inherently non-negative quanti-
ties can be represented as absolute squares of wave 
functions that in their turn can be expressed as lin-
ear superpositions of orthogonal functions. In (1) the 
orthogonal functions describe standing waves in a 
(one-dimensional) periodicity box. Other possible or-
thogonal bases - spherical waves, angular momen-
tum eigenfunctions etc. - can be invoked by uni-
tary transformations. An immediate consequence is 

quantisation: periodic probability density functions 
in one space are accompanied by discrete probabil-
ities in a dual space, both spaces related by Fourier 
transformation of the wave functions. A further con-
sequence is the appearance of two families of eigen-
functions with 27t and 4ir periodicity (for bosons and 
fermions). All this is just part of Fourier theory, valid 
for all periodic non-negative functions, in particu-
lar for all periodic probability densities, not only 
quantum-mechanical ones. 

Historically, the superposition principle had been 
established first as a puzzling empirical feature of the 
quantum world, before M. Born recognised that the 
absolute square of the wave function can be inter-
preted as a probability density. If, on the other hand, 
one starts with probabilities, the superposition prin-
ciple, far from puzzling, appears as a theorem, ap-
plicable not only in quantum mechanics but also to 
nonquantal probabilities and signal intensities (cf. e. 
g. Feller [5] on L2 theory and especially Cohen [6] on 
time-frequency analysis). The much discussed role of 
the phases of the superposed functions seems to be 
simple: They are needed for a faithful reproduction of 
the non-negative probability density p(x) in (1). We 
shall see below that they also define possible forces. 

3. Free Particle With Uncertain Initial Location 

Let us consider a classical particle. Its energy as a 
function of its position r and (generalised) momen-
tum p is given by the Hamiltonian H = H(r,p, t); its 
motion is gouverned by Hamilton's canonical equa-
tions 

d r 

dt dp' 
dp 
dt dr 

(9, 10) 

For given initial phase space coordinates, {r(0),/?(0)}, 
one obtains the trajectory in phase space, ( r ( t ) , p ( t ) j , 
by integration of the canonical equations, for t < 0 
as well as for t > 0. If the initial coordinates are 
uncertain, lying somewhere in a phase space domain 
D(0), there is a multitude of possible trajectories. At 
time t the possible values of r(t) and p(t) lie in a 
domain D(t) that has the same size as D(0): The 
canonical equations imply zero divergence in phase 
space, 

\dr< dt dv, dt J (11) 
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(Liouville's theorem, valid already separately for each 
pair r.,, p j ) . 

More generally, the initial uncertainty may be de-
scribed by a continuous probability density. In ther-
modynamics one is accustomed to assign joint prob-
abilities for position and momentum of the particle 
but if one considers probability distributions ("ensem-
bles") of particle trajectories in ordinary space some 
care is required. If the physically allowed trajectories 
r(t) are specified, at least in principle, it is enough to 
assign position probabilities at some particular time. 
Those for other times can then be deduced from the 
functions r(t), and the velocity or momentum distri-
butions, too. 

Let us consider a time-dependent spatial probabil-
ity density p(r, t) = |ip(r, t)\2 in a periodicity box so 
large that the Fourier polynomials of the Riesz-Fejer 
theorem can be replaced by Fourier integrals. The 
resulting wave function and its Fourier transform, 

^(r, 0 = (27t)"3/2 y d3k<t>(k,t)e+lk r , (12) 

0 = (2 t t ) - 3 / 2 d \ * / j ( r , t ) e - l k r , (13) 

are both normalised to unity, / d3r\i(>(r, t)\2 = f d3k 
•\(f>(k, t)\2 = 1. The best estimates (under quadratic 
loss) of positions and wave vectors are then given by 
the expectation values 

(r(t))= f d 3 r \ip(r, t)\~ r 

r id ( 1 4 ) 

= J d 3 f c 0 ( M ) * ^ 0 ( M ) , 

(k(t)) = J d3k \<J)(k,t)\2k 

= J d3riP(r,ty—iP(r,t) 

since \<j>\2 is the probability density in A:-space cor-
responding to the probability density \ip\2 in the 
dual r-space. We note that the factor k in A;-space 
is to be replaced by the operator —id/dr in r-space, 
and the factor r in r-space by the operator id/dk 
in Ar-space, since application of the operators to the 
Fourier components e ± j ^ r produces the required in-
tegrands. (The well known proof involves Fourier 

transformation of ^ and <f>, integration by parts un-
der the assumption of vanishing probability densities 
for k —> oo and r —• oo, and use of the complete-
ness relations (2ix)~3 f d 3 r e

ir{k~k,) = b(k - k') and 
(2TT)-3 f d3k elk (r-r>) = 5(r - r ' ) .) An immediate 
consequence are the commutation relations in r or 
k space, r jkj> - k j>r j = i§j3> ( j , j ' = 1 ,2 ,3) . The 
familiar (classical) wave-mechanical uncertainty re-
lations for Fourier transforms that follow from the 
Cauchy-Schwarz inequality are 

A t j Akj ' > ^Sjj / , 0 ' , / = 1 , 2 , 3 ) , (16) 

where Ar3 and Aky are standard (root-mean-square) 
errors (see e. g. Cohen [6]). 

The specific time dependence 4>(k, t) = <fi(k,0) 
•e~lu,t describes a superposition of plane waves prop-
agating with phase velocities co/k in directions k/k, 

ip(r, t) = (lit)-3'2 J d 3 k ^ 0 ) e
+i(kr~wt), ( 1 7 ) 

<f>(k, t) = (2TT)-3/2 J d 3 r ip(r, 0) e - l { k r + w t ) . (18) 

In general, the frequencies for different wave lengths 
will differ, u> = io{k). The expectation value is 

( w ) = I d 3 r ^ r , < ) * ^ ( M ) 

= j d / (19) 

which shows that for averaging purposes uj is equi-
valent to the operator id/dt in both representations. 

From (17) and (18) one finds in k representation 
the expectation values (best estimates under quadratic 
loss in the language of decision theory [7]) for the 
position and the wave vector 

/

• - * 

d 3 k (j)(k, or 0 ) + (p(k, 0 ) ^ t ) 

(k(t)) = j d3k <f>ik, o Y H i k , 0 ) = ( m ) , ( 21 ) 

which obviously describes linear translation with con-
stant group velocity (du j /dk) . As was to be expected, 
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wave packets constructed of undistorted plane waves 
can move only along straight lines, like physical free 
particles not influenced by forces. 

So far we used only (Fourier-Riesz-Fejer) wave 
theory but now we can establish contact with Hamil-
tonian particle kinematics. We identify the motion of 
the wave packet with the expected motion of the parti-
cle and compare the wave-mechanical (classical) time 
derivatives 

and the expectation values that follow from Hamil-
ton's canonical equations for a classical free particle, 

with the same weighting by the spatial probability 
distribution (17) (hence for the same ensemble of pos-
sible trajectories). Evidently one can take k cx p and 
oo cx H (disregarding a possible additive constant for 
H -for p such a constant is excluded by isotropy). If 
we denote the common proportionality constant by h 
we get de Broglie's particle-wave transcription, 

H = h u , p = h k , (26,27) 

and from (16) Heisenberg's quantum-mechanical un-
certainty relations, 

Ar3Apf > ~ S J J ' , 0 ' , / = 1 , 2 , 3 ) , (28 ) 

replacing Liouville's theorem (11). The equality sign 
applies if both the spatial and the momentum proba-
bility density functions are three-dimensional Gaus-
sians. A sharply peaked spatial density implying a dif-
fuse momentum density means particle-like behavior 
of the wave packet. On the other hand the behavior 
is wave-like if the momentum is well defined but not 
the location. Whether a particle or a wave description 
is more appropriate depends on the state of informa-
tion about the particle. It is not the particle but the 
wave packet encoding this information that exhibits 
wave-particle duality. 

This is the crucial point where Planck's quantum of 
action, h, enters the scene, tying together two classi-
cal formalisms, Hamiltonian particle mechanics and 
the Fourier-Riesz-Fejer wave mechanical extension 
of probability theory, whereby quantum mechanics 

is ushered in. The decisive new feature is that in the 
probabilistic description of a particle with uncertain 
coordinates the momentum distribution is fully deter-
mined by the position distribution and vice versa, via 
unitary (Fourier) transformation of the wave function. 
As a consequence of this rather special entanglement 
- the wave function is Fourier transformed rather 
than the probability density - and of the finite value 
of h, the accuracy with which the momentum can 
be specified is limited by the accuracy of the loca-
tion. Empirically, h is found to be a natural constant, 
not merely a formal proportionality factor that can 
be made arbitrarily small. This clashes with the use 
of joint probability distributions for particle positions 
and momenta in statistical mechanics, and limits the 
classical phase space concept to situations where h 
can be treated as negligibly small. 

Expectation values of physical quantities that de-
pend on both r and p can be calculated from ip or 
(j) with the appropriate operators. For example, the 
best estimate of the orbital angular momentum with 
respect to the origin, r = 0, is 

(r x p) = [ d3rip*(r x -^-)ip 
j . a r ( 2 9 ) 

Caution is required, however. The employed opera-
tors must be Hermitean (self-conjugate) in order to 
produce real expectation values as is required for 
physical observables. For the orbital angular momen-
tum there is no problem but other products of non-
commuting operators are not Hermitean. For exam-
ple, if one wants to calculate the expectation value 
(r • p) one must use the operator (r • p +p • r)/2 with 
p = —ihd/dr = —ihV. 

As mentioned already, quantisation is a conspic-
uous consequence of the introduction of probability 
waves and operator calculus by means of the Riesz-
Fejer theorem. It is characterised by the existence of 
eigenvalue equations with discrete eigenvalues. The 
most important eigenvalue problems are, of course, 
those defined by the Schrödinger equation, 

Hip = ihip, (30) 

together with initial or boundary conditions. This 
central equation of quantum mechanics follows from 
(19) with H = heu (and the notation ip = dip/dt). With 
H(r,p,t) in operator form (p = —ihV = —ihd/dr) 
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it is the wave equation determining the time evolu-
tion of ip(r, t) and of its Fourier transform <f>(k, t). In 
this sense it is the wave-mechanical analog of Hamil-
ton's particle equations (9) and (10). If ip is an eigen-
function with eigenvalue E one has ( H ) = E and 
(AH)2 = {H2) - ( H ) 2 = 0: The energy predicted 
under quadratic loss is E without uncertainty. 

Similarly, if ip tends towards an eigenfunction of 
the momentum operator —ihV with eigenvector p 
the momentum uncertainty goes to zero while the po-
sition uncertainty becomes infinite. The limit, with 
ip(r) oc exp (ip • r/h), is a useful idealisation for a par-
ticle in a beam, but in practice the momentum cannot 
be quite sharp since the beam dimensions and thus 
the position uncertainty may be huge compared to the 
particle dimensions but not really infinite (which per-
haps could be taken as a hint that physical particles are 
not really mathematical points, and that h, Planck's 
quantum of action, may have something to do with 
their finite size). Quite generally, whenever ip is one 
of the eigenfunctions of some operator, the variance 
of the corresponding physical quantity vanishes. 

4. Introduction of Forces via Local 
Gauge Transformation 

So far we have considered superpositions of plane 
waves and found that they correspond to spinless free 
particles whose Hamiltonian is Ho = p2/2m in the 
nonrelativistic case. We can generalise to accelerated 
motion, i. e. to forces. Let us assume that the spatial 
probability density for accelerated motion, p = \ip\2, 
coincides with that for free motion, po = |^o | 2 , a t t ime 
t = 0. At this time the wave functions can only differ 
by a phase factor. We must therefore have 

We conclude that the nonrelativistic Schrödinger 
equation for a particle influenced by forces must have 
the general form 

Hip = [ — ( - i f i V - -A)2 + e<2> 
L2m c 

ip = ihip, (34) 

where the real scalar and the real vector A are sub-
ject to modification by — A / c and V A . We recognise 
them as the scalar and vector potentials of the elec-
tromagnetic force field, and e as the particle charge 
that specifies how strongly the particle responds to 
the field. The form of the Schrödinger equation is in-
variant under "local gauge transformations of the first 
kind" of the wave function, 

xp —• ip' = ip exp(iAe/hc), (35) 

in combination with "gauge transformations of the 
second kind" of the electromagnetic potentials, 

A' =A + V A 

$ = <£ _ 1^4 
c 

(36) 

(37) 

Neither probabilities nor observables can depend on 
the arbitrary gauge function A. This means that ip, 
A, and $ are merely auxiliary formal quantities, in 
contrast to the given probability density p and the 
measurable electric and magnetic field strengths 

E = -V<P - -A , 

B = V x A . 

(38) 

(39) 

ipo = ip exp(—iAe/hc), ( 3 1 ) 

where the phase is written in a form that is convenient 
for our purposes. The real "gauge function" A cannot 
be a mere constant but must depend on r and t if 
p is ever to differ from po- Inserting (31) into the 
nonrelativistic Schrödinger equation for free motion, 

1 2 
H0ip0 = - ( - i h V ) ipo = iTiipo, 

2m 
one finds for the accelerated wave packet 

(32) 

Operators for observable quantities may, for the same 
reason, contain spatial and temporal derivatives only 
in the gauge invariant combinations 

e e 
—ih V A = p A , 

c c 

+ih- e<E = H — e4> . 
ot 

(40) 

(41) 

Canonical quantities like p or p2/2m are observ-
ables only if no forces act, Newtonian quantities like 
mv = (p — eA/c) or mv2/2+V(r) always. Time deri-
vatives of expectation values for observables can be 
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calculated after the pattern 

^(0) = (1>\0\1>) + (iJ>\Ö\1>) + {il>\0\1>) 

= {Ö + ±r(PH-HO)), 

(42) 

where we employed Dirac's bra-ket notation (O) = 
(ip\0\ip) = J ip*Oipd3r for expectation values. With 
the Hamiltonian of (34) one finds readily for the most 
important observables [8] 

(43) 

= e ( E + ^ ( v x B - B x v ) ) , ( 44 ) 

d /mv2 \ e . „ „ . 
- ( — ) = - J v E + E - v ) , (45) 

mv 

dt\ 2 + v ) = | < t ; . £ t + E t . t ; ) . (46) 

Equation (43) gives the relationship between velocity 
and generalised momentum while the following equa-
tions show that any acceleration is due to the Lorentz 
force, that the kinetic energy is changed by the elec-
tric but not by the magnetic field, and that the total 
energy is changed only by the time-dependent part Et 

of the electric field, while the static part, Eq = E—E t , 
gives rise to the potential energy 

V = - e f 
J o o 

dr'E0(r'). (47) 

(Only static forces can define a potential energy.) 
We note with interest that the Schrödinger equa-

tion (34) exhibits one more invariance: Upon CPT 
transformation, i. e. combined time reversal T, spatial 
reflexion P, and charge conjugation C, 

t -t, r —r. - e , (48) 

one finds the original Schrödinger equation (34) 
again, but now for ip* instead of ip. This is true if 
under PT not only d/dr and d/dt change sign but the 
complete gauge-invariant combinations (40) and (41) 
- which leaves the electromagnetic field (38), (39) 
unchanged. Now C (together with ip —• ip*) means 
particle-antiparticle exchange, while PT implies full 

reversal of all motions, temporal as well as spatial, 
as in a movie running backwards. One concludes that 
backward motion of particles (in the space-time PT 
sense) can also be treated formally as forward motion 
of antiparticles, in the same electromagnetic field, 
as recognised in the relativistic case by Stueckel-
berg [9] and further elaborated by Costa de Beau-
regard [10]. 

It is remarkable that the mere existence of an ar-
bitrary phase o f t he w a v e f u n c t i o n leads unambigu-
ously to the electromagnetic interaction a n d t h u s to 
the Lorentz force as the only possible influence on the 
motion of a spinless charged particle. Although we 
demonstrated this for nonrelativistic particles only, it 
is easy to see that it must be true for relativistic parti-
cles, too: Hamilton's equations of motion hold for rel-
ativistic as well as nonrelativistic Hamiltonians, and 
the concept of position uncertainty at a given time 
remains viable, with all consequences. Any Hamilto-
nian depends on the momentum by definition, there-
fore the corresponding wave equation, whether rel-
ativistic or not, must contain spatial and temporal 
derivatives only in the gauge invariant combinations 
(40) and (41) [ 11 ]. The Klein-Gordon and Dirac equa-
tions are examples [12]. In any case, gauge invariance 
and electromagnetic fields show their basic simplic-
ity and inevitability most clearly in the relativistic 
formalism. The strategy of deriving the form of an in-
teraction from phase arbitrariness is due to Weyl [13] 
as well as the term gauge invariance. More recently it 
has been the decisive tool for the construction of the 
electro-weak theory and of quantum chromodynam-
ics (cf. e. g. [14, 15]). 

5. Angular Momenta and Spinors 

All spatial probability wave packets possess an-
gular periodicity, p(2n + o:) = p(a), around any 
fixed axis in ordinary space. This implies discrete 
angular momentum eigenvalues and the possibility 
to expand the wave function in terms of the corre-
sponding eigenfunctions, viz. spherical harmonics, 
ip(r, t ) = J2e,m aim(r, t)Y™(l?). In o r d e r to e x p l o r e 
the consequences, consider a physical system whose 
total angular momentum is due to the orbital motion 
of a bound spinless particle, for instance a hydrogen-
like atom (without spin). Let R be the center-of-mass 
position of the whole system and r the position of 
the bound particle relative to R. If the system has ex-
pected spin 1 (in units of h), all expansion terms with 
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(49) 

£ ^ 1 vanish and the eigenfunction expansion is 

r , t) = t)x+(r) + ipo (Ä, <)Xo(r) 

+ iP_(R,t)x-(r) 

= ux(R,tX(r) + uy(R,t)r1(r) 

+ uz(R,tK(r) 

with 

1 i 
ux = -j=('ip++ip-),uy = = ^o,(50) 

and 

x±(r) = / ( ^ ' ( M ) 
3 / ( r ) x ± zy _ f ± zr/ 

47t r v / 2 

Xo (r) = f(r)Yl
0(e,<f>) 

V2 
(51) 

The vector (£, 77, Q is seen to behave like (x, y, 2) un-
der coordinate transformations, i. e. as a polar vector, 
and the vector u = ( u x , u y , u z ) likewise, since the 
wave function must remain unchanged. For a beam of 
randomly oriented spin-1 atoms, left and right handed 
circular polarisation must be equivalent, 

( h M 2 ) = ( h M (52) 

and also all Cartesian coordinates of u, which implies 
(u) = 0 for the mean vector and 

the field gradient and (b) to the component of the mag-
netic moment, m, and therefore also of the orbital an-
gular momentum, rxp, along the direction of the field 
gradient. For any orientation of the magnet the wave 
function can be expanded in terms of three spherical 
harmonics which cause the wave packet to exhibit 
three discrete observable eigenvalues of the angular 
momentum orientation. Contrary to common belief, 
this quantisation is not restricted to quantum systems. 
Simply because of the 27t periodicity of rotations in 
ordinary space it must be true for all spatial proba-
bility distributions with finite extension. No matter 
what experimental method one employs to measure 
the angular momentum, and no matter how one ori-
ents the applied force field, the possible (probability-
weighted) internal motions always seem to conspire 
in such a way that the wave packet as a whole behaves 
as if the angular momentum were quantised. This is 
true although we have not constrained them except 
by demanding rotational periodicity and a bound sys-
tem. It is important to realise that as a consequence an 
experimenter's selective capabilities, for example to 
prepare beams of particles with specified true spins, 
are fundamentally limited. 

The averages over the internal coordinates x, y, z 
that we encounter here are more easily calculated with 
3-component "spinors". We introduce a complete ba-
sis of spinors, 

* - ( ? ) • * - ( ! ) • * - - ( ? ) • ( 5 5 ) 

whose orthonormality conditions (in obvious nota-
tion) are 

\ux\2) = ( K | 2 ) = ( K I 2 ) = iu2)/3 (53) xlnXm' = j Xm(rTxm'( r ) (56) 

for the variances. With the linear relations (50) one 
obtains equal probability densities for all three orien-
tation eigenstates, 

( l ^ | 2 ) = ( l ^o | 2 ) = ( K | 2 ) = ( " 2 ) / 3 . (54) 

As a consequence, a beam of randomly oriented par-
ticles is split into three equally intense components 
in any field that acts differently on the three angular 
momentum eigenstates, as does for example the in-
homogeneous magnetic field, B, of a Stern-Gerlach 
magnet. Its force, F = V ( m • B), is proportional (a) to 

= r l / ( r ) | 2 d r / Y r W y Y r \ W n = S T n m , , 
Jo JAtt 

where the dagger denotes the Hermitean conjugate. 
(We assume the radial function f ( r ) to be normalised 
appropriately.) In spinor notation the wave function 
is a three-component spinor, too, 

*(/?, t) = ip+(R, t)x+ + MR, t)x 0 + VU*, t)x-

f if>+(R, t) \ ( 5 7 ) 

= V>o (R,t) , 
\ip-(R,t)J 
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normalised by 

(58) 

= J d 3 ü j d3r \V(R,r,t)\2 = 1. 

In essence the spinor notation replaces the wave func-
tion t) by three wave functions ipm(.R, t) that 
are originally the coefficients of an eigenfunction 
expansion in the space of the intrinsic coordinates. 
Otherwise the intrinsic coordinates themselves are no 
longer visible. In a similar way one can describe sys-
tems with expected integer spins 2, 3, . . . (cf. e. g. 
[16]). For all of these the wave function has 2tt angular 
periodicity which ensures the same for the probability 
density. 

We have, however, not exhausted all possibilities 
yet. As we saw above, the condition p(2tt + a ) = p(a) 
is not only fulfilled if ip(2n + a) = +ip(a), with 2n 
periodicity, but also if ^(27r + a ) = —ip(a), with 47r 
periodicity (cf. (7)). Therefore another family of pos-
sible spins (or representations of the rotation group) 
exists, with half-integer eigenvalues, 1/2, 3/2, . . . , as 
discovered by Cartan long before the advent of quan-
tum mechanics (see [ 17]). The familiar spinor formal-
ism for particles with spin 1/2, with two-component 
spinors 

X.-(J). * - - ( ? ) . ( 5 9 ) 

and 

t) = iP+(R, t)X+ + TM*, t)X-
= frP+(R,t)\ ( 6 ° ) 

W - ( * , * ) / ' 

is the exact analog of the three-component formalism 
introduced here for systems with spin 1. We took spin 
1 as an example because it allows to demonstrate 
explicitly, without need to go beyond the concept of 
trajectories or orbits with orbital angular momentum, 
how the spinor formalism accounts for "curled-up" 
internal degrees of freedom. 

In more general probabilistic problems, base spinors 
like those in (59) and (55) can be employed to enu-
merate alternative possibilities. Their orthonormal-
ity, xlnX'm = 5mm ; , indicates that the alternatives 
are mutually exclusive, while the completeness rela-
tion, J2m XmXln = 1 ' m e a n s that there are no other 
ones. The two mutually exclusive possible outcomes 

of Bernoulli trials (success or failure, head or tail, spin 
up or down, etc.) can, for example, be represented by 
the two-component base spinors of (59). 

6. Indistinguishable Particles: the Spin-statistics 
Relationship 

So far we have considered probability distributions 
for single particles only. The generalisation to several 
particles looks straightforward but if the particles are 
indistinguishable there are nontrivial consequences. 
If two equal particles collide, for instance in proton-
proton scattering, one must allow for two alterna-
tives: Any registered outgoing particle may either be 
the incoming beam particle or, with equal probabil-
ity, the target particle. Let us assume that there are 
two particles, labeled by 1 and 2, at center-of-mass 
positions Ra and/? 6 , with intrinsic coordinates ra and 
rb, respectively. Without information about correla-
tions between them the maximum entropy principle 
[18,19] directs us to assign independent probability 
densities, 

p(/?a,ra,/?6,r6) = pi(Ra,ra) p2(Rb,rb) 
, (61) 

= \MRa,ra)ip2(Rb,rb)\2. 

If the particles are not distinguishable, ipi and ip2 must 
be the same function of the intrinsic polar coordinates 
but the orientations of the intrinsic coordinate frames 
may differ. Let the polar angles differ by 6 and the 
azimuths by </>, as indicated in Figure 1 (a). We can 
therefore write the wave function as 

nRa,ra,Rb,rb) = il>(Ra,ra)TP(Rb,rb). (62) 

Interchange of the particle positions but not of the 
orientations results in 

V(Rb,ra,Ra,rb) = iP(Rb, raW(Ra, rb), (63) 

with mixed-up orientations as indicated in Figure 1 
(b). The orientations can be restored by the rotations 
indicated by arrows in Figs. 1 (b), (c), and (d): First 
make the polar axes parallel by letting 9b —• 6b — 6 = 
6 a , so that the wave function becomes, in obvious 
notation, 

m b , 4 a , < P a , R a , 4 a , < P b ) (64) 

= ip(Rb, (pa)ip(Ra, tpb). 
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a) (b) c ) e ) 

Fig. 1. Probability density distributions for two indistinguishable particles (schematic): (a) initial state, (b) state after inter-
change without rotations, (c) state with parallel polar axes, (d) state with correct azimuths, (e) final state, indistinguishable 
from (a). 

Next rotate both wave packets about the polar axes to 
get the correct azimuths. With pb —• ipb + 2-n — p = 
tpa + 27t and pa —• ipa + p = pb one finds 

tia,<Pb , R a , V a , V a + 2tt) (65) 

ai w ai pa + 27T). 

Finally rotate the polar axis of the particle at Rb 

through the angle d, which gives 

$(RbJb,pb,RaJa,pa+ 2 t t ) (66 ) 

ai " ai pa + 27r) 

= ±mb,rbMRa,ra). 

The absolute square is now again the same as initially, 
(61), and the configurations shown in Figs. 1 (a) and 1 
(e) are indistinguishable. Evidently exchange of two 
indistinguishable particles and restoration of the ori-
entations involves a full rotation of one of the particles 
around its intrinsic polar axis which changes the sign 
of the wave function if the spin is half-integer ((7), see 
also [20]). Adding the wave functions, or more cor-
rectly, the state vectors for the two alternatives "no 
exchange" and "exchange" one obtains the total state 

vector for two indistinguishable particles. In abbrevi-
ated (Dirac) notation one has, properly normalised, 

| ^ ) = - ^ [ V d , 2 ) | l , 2 ) ± ^ ( 2 , 1 ) 1 2 , 1 ) 

f bosons, 
I fermions. 

(67) 

The base vectors |1,2) and |2,1) are a complete, or-
thonormal set, representing the two alternatives "no 
exchange" and "exchange", and could also be writ-
ten as two-component base spinors (cf. (59), (60) 
and text following thereafter). The probability is just 
what one expects, = (\ip(\,2)|2 +|</>(2, l ) | 2 ) /2 . 
We have thus obtained the spin-statistics relation-
ship in its simplest form: Wave functions for systems 
of indistinguishable particles with integer spin must 
be symmetric in all particle coordinates, including 
spin coordinates, which entails Bose-Einstein statis-
tics, whereas wave functions for particles with half-
integer spin must be antisymmetric, which entails 
Fermi-Dirac statistics. The spin-statistics relationship 
is widely believed to be inexplicable without relativity 
and quantum field theory. Here it appears, however, 
as a nonrelativistic consequence of the two angular 
periodicities allowed by the Riesz-Fejer theorem for 
wave functions in ordinary space. 
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7. EPR Entanglement and Bell Inequalities 

In the spin version of the famous Einstein-Podol-
sky-Rosen thought experiment [21] one considers a 
particle with spin zero that decays into two equal par-
ticles flying apart in opposite directions, each with 
spin 1/2. Because angular momentum is conserved, 
the spins of the two particles must be antiparallel, 
a i = — cr2. If one of the spin components of par-
ticle 1 is measured with a Stern-Gerlach magnet as 
pointing up, the same spin component of particle 2 is 
immediately known to be pointing down (which can 
be confirmed experimentally). This is a logical infer-
ence and has nothing to do with spooky superluminal 
action at a distance. More generally, one finds that the 
covariance of arbitrary spin coordinates (a • crO and 
(b • cr2) is given by 

({a • cti)(<t2 b)) = —a b = - c o s ( a , £ ) , (68) 

where a and b are unit vectors along two arbitrary 
analyzer directions. This result is obtained quantum-
mechanically with the singlet state (total spin zero) 
described by the antisymmetric fermion wave func-
tion for the two discrete possibilities "spin up" and 
"spin down" of the two particles, 

and the spin coordinates by Pauli matrices (see [12]), 

<Tj = {(Jxj, (Tyj, crZJ} 0' = 1 , 2 ) (70) 

- { ( ? * ) , . ( ! o ) , C 

The subscripts 1 and 2 refer to particles 1 and 2, and 
the subscripted matrix operators act only on column 
vectors (spinors) with the same subscript. The de-
scription is the same for any orientation of the coor-
dinate frame. Expectation values are to be calculated 
as ( . . . ) = . . . which yields 

(a • <t\) = 0 , (71) 

( (a -<r , ) 2 ) = l , (72) 

= = = = l (73) 

(similarly for b and cr2). So the spin projection on 
any unit vector a has expectation value zero with unit 
variance, while the expectation value of the squared 
spin angular momentum is ( c r 2 ) ( | ) 2 = + . The 
covariance of the two spin projections considered is 
found to be given by (68) as stated above. 

It is often claimed that the covariance (68) cannot 
be obtained classically, or at least not together with 
spin quantisation. Its confirmation by experiment is 
then taken as evidence that the spin coordinates cannot 
exist simultaneously before a measurement reveals 
one of them, in accordance with N. Bohr's episte-
mological (Copenhagen) interpretation [22] of quan-
tum mechanics but at variance with the ontological 
view of Einstein, Podolsky and Rosen [21]. Since, 
however, the quantum-mechanical result (68) does 
not contain Planck's constant one expects a classical 
derivation to be feasible. Let us therefore consider the 
spin a i = —<72 as an ordinary vector for which all 
orientations are equally probable. Expectation values 
are then to be calculated classically as 

_ f+l d(cos 6) ^ d(f> 

(74) 

where p(a 1) is the probability density of the length 
oi = \ a i I of both spin vectors and 6, <f> are polar angle 
and azimuth of cri. Without any difficulty one finds 

((a • <70(0-2 • b)) = - ((a • <r ,X*i •*)) = •*) 

(75) 

which, with (<72)/3 = 1 (cf. (73)), is equal to the 
quantum-mechanical result. Hence the correlation 
measurements alone do not rule out the ontological 
viewpoint, i. e. reality of unobserved spin compo-
nents. This conclusion is not changed if we also take 
spin quantisation into account. It, too, follows already 
classically from the 27r periodicity of rotations as we 
have seen. Therefore the reality of unobserved spin 
coordinates need not be questioned. A temptation to 
introduce hidden variables exists only if one tries to 
treat the spin eigenvalues, + 1 / 2 or —1/2, measured 
along a and b, as if they were true particle spins rather 
than global properties of the wave packet encoding 
incomplete information about them, and if one con-
siders <7i = — <72 as true not for each particle pair 
but only on average. The inequalities derived by Bell 
[23] from these premises are, in fact, contradicted by 
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experiment. Hidden variables are not needed for an 
understanding of the correlations if one distinguishes 
clearly between the particles themselves and informa-
tion about them - the natural variables of the problem, 
spin coordinates, are enough. 

The common misunderstanding to interpret mea-
surable expectation values as true values is fostered 
mainly by the unfortunate and misleading use of the 
word "state" in quantum mechanics for what is actu-
ally "information about the state" of a physical sys-
tem, in particular about its preparation, and also by 
futile attempts to endow probability amplitudes with 
physical properties while paying lip service to Born's 
probability interpretation. The ingenious and elabo-
rate experimental checks on increasingly complicated 
correlations between particle spins or photon polari-
sations (cf. e. g. [24]) look often more like attempts 
to check the Riesz-Fejer theorem than like investiga-
tions of the physics. One is reminded of experiments 
proposed earlier in this century to check other mathe-
matical consequences of Fourier theory, for example 
the existence of side bands in amplitude-modulated 
beams of optical or radio waves (see [25]). For fur-
ther clarification let us see how the basic probabilistic 
concepts apply in quantum mechanics. 

8. The Basic Rules of Probability Theory 
and Quantum Mechanics 

Quantum mechanical "operator-valued" probabili-
ties are often said to differ fundamentally from "or-
dinary" ones, in disregard of the work of Cox [26] 
who proved that any scheme of inductive inference, 
i. e. of reasoning in the face of uncertainty, must be 
either equivalent to ordinary probability theory or in-
consistent, with probabilities understood as encod-
ing incomplete information on a numerical scale of 
plausibility or rational expectation, in the tradition 
of Bernoulli and Laplace (and Heisenberg [27]). Cox 
proved this by demonstrating that for any formal sys-
tem of inference obeying the rules of ordinary Aris-
totelian logic the most general consistency conditions 
can be cast in the form of two functional equations 
whose solutions are the basic sum and product rules 

P(A\C) + P(Ä\C)=\, (76) 

P(AB\C) = P(A\BC)P(B\C), (77) 

= P(B\AC)P(A\C), 

from which probability theory unfolds. ( A and B rep-
resent propositions such as "the coin shows head" or 
"the neutrino rest energy is between 0 and 25 eV", AB 
means "both A and B are true", A means " A is false", 
and P(A\C) denotes the probability of A given C. Our 
notation indicates that all probability assignments are 
conditional, based either on empirical or theoretical 
information or on assumptions C . The two forms of 
the product rule reflect the symmetry AB = BA.) It 
is interesting that Schrödinger [28] arrived indepen-
dently at similar conclusions. Criticism that Cox had 
assumed differentiability of his probability functions 
was met by Renyi [29] who gave a proof without this 
assumption. It appears that any claim of an essential 
difference between ordinary and quantum probabili-
ties must overcome the obstacle of Cox's proof. 

An immediate consequence of the two forms of the 
product rule (77) is Bayes' theorem in its simplest 
form, 

This theorem is fundamental to scientific reasoning. 
It provides nothing less than a formal model for up-
dating of information with new evidence, or learn-
ing from observations. Suppose we are interested in 
some hypothesis A (for instance about the value of 
a half-life) to which one can assign an initial prob-
ability ("prior") P(A\C) (from nuclear systematics 
or previous half-life measurements, with C specify-
ing isotope and decay type). Suppose further that we 
receive new data B (counts), and that we also have 
a theoretical model of the experiment (involving the 
exponential decay law, counting statistics, and experi-
mental details such as geometry, source specifications 
and counter efficiency) from which we can calculate, 
for arbitrary half-life A, the "likelihood" P(B\AC) of 
observing the data B. The updated probability ("pos-
terior") is essentially proportional to the product of 
likelihood and prior, P(B\AC)P(A\C), the denom-
inator in (78) acting merely as a normalisation con-
stant. Updating can be repeated whenever new data 
become available, the old posterior becoming the new 
prior in each step. It should be understood that the 
historical terms "prior" and "posterior" have a logi-
cal rather than a temporal meaning. They simply mean 
"without" and "with" the new data taken into account. 
It should also be understood that probabilities are not 
relative frequencies although frequency estimates can 
be derived from them (see e. g. [7, 18]). 
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In order to see how these rules apply in quantum 
mechanics, let us look at a system described by spatial 
wave amplitudes ipr or, alternatively, by momentum 
wave amplitudes 0*, so that the state vector is (in 
Dirac notation) 

l*> = £ ^ l r > = X > i * > ' (79) 

where |r) and are base vectors in position and 
momentum space, representing possible alternatives 
that are mutually exclusive ((rlr7) = 5„-', {k\k') = 
8**') and complete (]T r |r)(r| = I) . The sum over all 
probabilities, 

< W = £ K I 2 = £ W 2 = I, (80) 

is consistent with the sum rule (76) as long as we 
work either with the r or the k description. Intercala-
tion of the completeness relations, Yhr I7") (rl = * anc* 
Ysk 1 )̂ (^1 = 1' produces a mixed form of the normal-
isation condition, 

r k r k (81) 

The real summand P(r, k\$) looks like the joint prob-
ability distribution of r and k given $ in so far as 
it readily yields the correct marginal distributions 
P(r\&) = |Vv|2 and P(k\V) = \<t>k\2 if summed over A: 
or r, and also correct expectation values for observ-
ables. It is not a true probability distribution, however, 
as it can assume negative values (Margenau and Hill 
[30]), like other expressions that have been proposed 
as joint distributions (e. g. by Wigner [31]). 

In fact, there is no room for a joint distribution. 
The wave functions ipr and can be considered as 
coordinates of the same unit vector in two coor-
dinate frames that differ by a "rotation" described by 
a unitary matrix having elements <r|A:), 

A = (r\*) = $>!*)&, 
k 

fa = {k\\P) = 5>|r)Vy. 

(82) 

(83) 

(These are, of course, the Fourier transforms (12) and 
(13) in Dirac notation). The wave amplitudes forfc are 
therefore completely determined by those for r, given 
the elements (r\k) of the unitary matrix of Fourier 
transformations. Taking the absolute square of the 
spatial probability amplitude (82) one finds with (83) 

\ipr\2 = J2(*\k)(k\r)(r\k')(k'\V) (84) 
k,k' 

= £ i w i W + 2 R e £ £ TIMW 
k k k'<k 

Summation overall alternatives /-produces \ipr\2 = 
Y k̂ 1 | 2 , the cross terms with k ^ k' cancelling each 
other. These interference terms are commonly con-
sidered as a hallmark of quantum mechanics, not 
present in classical probability theory. Our equations 
are, however, purely classical as k has not been re-
placed yet by p = hk. Furthermore, (84) is completely 
analogous to the expression x ' V = x^O^Ox that is 
valid for a real vector and a rotation described by an 
orthogonal matrix O, and contains analogous cross 
terms. 

The paradigmatic example for interfering proba-
bility waves is the particle version of Young's famous 
double slit experiment, with a parallel beam of mo-
noenergetic particles which can be described by a state 
vector = or the corresponding wave function 
in r-representation 

ipr = (r\k) oc e ikr (85) 

Consider a plane 5 normal to the beam. The proba-
bility for a beam particle to reach a final position r1 

from any one of the many possible positions r in the 
plane assumes the form 

| (^ l r ' ) | 2 = I £ ( ^ l / " ) ( r l r ' ) f 
res 

(86) 

if we intercalate the completeness relation for the r. 
One recognises (86) as a formal expression of Huy-
gens' principle: Each point on a wave front can be con-
sidered as the centre of an outgoing spherical wave, 
with 

<r|r') oc 
Ak\r' —r\ 

\r'-r\ (87) 
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<r,|r'> <«2i«"> <nlr'>+<r2|r'> 

Fig. 2. Young double-slit interference experiment: Single- and double-slit wave functions (schematical). 

as the transition amplitude for the transfer from r to 
r', and all these elementary waves are superposed. 

Next let us assume that the mathematical plane S 
is the place of an absorbing screen with slits at r\ 
and /*2, so that there are only two possibilities for 
particles to pass the screen, either through slit 1 or 
slit 2. These two mutually exclusive alternatives are 
formally represented by a complete set of orthonormal 
base kets |ri) and \r2). Instead of (86) one has then 

|(A:|r')|2 = | £ ( ^ | r s ) ( r s | r ' ) | : (88) 
s = 1 

with elementary waves emerging only at r\ and r2, 
and interfering in the overlap zone (see Figure 2). 
We stress again that there is no question of particles 
passing both slits simultaneously. We are definitely 
dealing with mutually exclusive possibilities but in 
the framework of the Fourier-Riesz-Fejer theory of 
probability wave amplitudes. 

If only the slit at r\ is open the sum in (86) reduces 
to a single term and we get the expected result, without 
interference, 

(89) 

and analogously if the other slit is open instead. 
There could be yet another state of information: 

It might be known that only one slit is open but not 
which one. According to the Principle of Insufficient 
Reason one must then assign equal probabilities of 
1/2 to both alternatives and average the two one-slit 
probabilities accordingly, 

\ m \ 2 = o i 2 - (90) 

This result, a so-called statistical mixture, is also valid 
if one knows that the two slits are opened and closed 
alternately, either periodically or at random (as in so-
called delayed-choice experiments) but in such a way 
that the total opening times of both are equal. 

Although it should be no surprise that different 
states of knowledge lead to different probability as-
signments, as always in probability theory, long dis-
cussions have evolved about the presence of interfer-
ence if both slits are open, and their absence if one of 
them is closed, or about the fact that, if both slits are 
open, one must sum over probability amplitudes after 
the pattern 

Ipac = ( 9 1 ) 

whereas in the case of one unknown slit one must sum 
over their absolute squares, i. e. probabilities, 

Pac ~ ^ ^ PabPbc • (92) 

s=l 

The differences were related to the mysterious "col-
lapse of the wave function" or "reduction of the wave 
packet" that seems to occur whenever a measurement 
reveals which of several possibilities is the true one. 
The one-slit situation was considered as a kind of 
measurement furnishing "which-way" information, 
in contrast to the two-slit situation. Bayes' theorem 
is rarely mentioned in these discussions, although its 
importance can hardly be overstated. With proper un-
derstanding of Bayesian updating there is nothing 
strange about a change of the wave function when 
additional data or new information are included in the 
formal process of logical inference. Their incorpora-
tion by means of Bayes' theorem inevitably changes 
all prior probabilities to posterior ones, as common 
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sense and probability theory demand. As soon as we 
learn, for instance, that in the spin version of the 
EPR experiment one spin is observed as pointing up, 
we can have no doubt any more that the other spin 
is pointing down. Similarly with Young's double-slit 
experiment: As soon as we learn that only one slit 
is open, the (interfering) double-slit wave function 
must be replaced by the appropriate (noninterfering) 
one-slit function or, if it is not known which slit is 
open, by a "statistical mixture" of the two possible 
one-slit wave functions. Since this is not a physical 
but a logical change, questions about its sudden (su-
perluminal) occurrence throughout physical space do 
not arise. It was Heisenberg [32] himself who wrote 
that the reduction of the wave packet is caused not 
by "a physical, but rather, so to say, a mathematical 
process. With the sudden change of our knowledge 
also the mathematical presentation of our knowledge 
undergoes of course a sudden change." It is quite pos-
sible to reason even backwards in time if the new 
evidence is relevant to the past. From this standpoint 
there does not seem to be much need for a special 
measurement theory as expounded for instance by 
Omnes [33]. 

We conclude that there is no fundamental dif-
ference between classical and quantum-mechanical 
probabilities. Therefore the basic rules of classical 
probability theory are valid also for probability waves 
and thus for quantum mechanics. The sum rule (76) 
assumes the form 

P(A\C) + P{A\C) = \IKA\0\A) + ^ ( Ä | C ) | Ä ) | 2 

= 1, (93) 

where |A) and |Ä) constitute a complete orthonormal 
state vector base representing the facts that A and A 
are mutually exclusive alternatives and that they are 
the only ones. Whether one sums probabilities or state 
vectors, the final result is the same. This justifies what 
we did when we added state vectors for the alterna-
tives "no exchange" and "exchange" of two indistin-
guishable particles to find the total wave function (67). 
Although superposition of A and Ä - o f Schrödinger's 
cat [34] simultaneously alive and dead - does occur 
at the level of the auxiliary probability wave ampli-
tudes (Fourier components) introduced by way of the 
Riesz-Fejer theorem, the final result contains only the 
wave intensities, i. e. conventional probabilities. 

What about the product rule? Suppose we open 
the box enclosing the cat and Schrödinger's deadly 

contraption, measure the cat's heart beat and find 
it normal. Knowing the conditional probabilities 
P ( £ | A) = 1 and P(B\Ä) = 0, where A stands 
for "alive" and B for "beat noticeable", we can 
apply Bayes' theorem and infer that the cat is 
alive: P(Ä\BC) oc P(B\Ä)P(Ä\C) = 0, hence 
P(A\BC) = 1 (where C stands for "contraption"). 
Bayes' theorem and thus the basic multiplication rules 
(77) are found to work in quantum mechanics as 
well, with 

P(AB\C) = P(B\AC)P(A\C) 
(94) 

= W(B\AC)X(A\C)\2. 

The special case of independent propositions A and 
B, where P{A\BC) = P(A\C) and IP(A\BC) = 
ip(A | C), was already utilised when we dealt with in-
dependent internal and centre-of-mass coordinates in 
(49), or with independent coordinates of two particles 
in (62). Often P(A\C) is a conventional prior while 
P(B\AC) is a wave-mechanical transition probabil-
ity, as in "statistical mixtures" (see (90)). 

The final conclusion is 
(1) traditional probability theory can be extended 

by means of the Riesz-Fejer superposition theorem, 
without change of the basic sum and product rules 
from which it unfolds, hence without violation of 
Cox's consistency conditions; 

(2) the resulting probability wave theory turns out 
to be essentially the formalism of quantum mechan-
ics inferred by physicists with great effort f rom the 
observation of atomic phenomena. 

From the Bayesian point of view the nature and in-
terpretation of probabilities in traditional probability 
theory, probability wave theory and quantum mechan-
ics need not be considered as different. The mathemat-
ics of probability waves is more powerful, however, 
comprising superposition and interference with all al-
gebraic consequences, in particular operator calculus 
and eigenvalue equations. 

9. Summary 

The formalism of quantum mechanics, in the tra-
ditional axiomatic or historical presentation, looks 
mysterious. It emerges rather naturally, however, if 
one treats position and momentum uncertainties for 
classical point particles wave-mechanically, by means 
of the Riesz-Fejer superposition theorem, which by 
the way dispels any doubts about the linearity of 
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the theory. The theorem permits unrestricted use of 
Fourier series - the proper tool for dealing with tem-
poral and spatial constraints - in a way that guarantees 
non-negativity of all probabilities. All the basic fea-
tures of quantum mechanics are obtained readily -
wave-particle duality, operator calculus and commu-
tation rules, uncertainty relations, Schrödinger equa-
tion, periodicity-related quantisation of angular mo-
menta and other physical quantities, etc. Moreover, 
elementary requirements for possible forms of the 
arbitrary phases of probability amplitudes lead un-
equivocally to the correct form of the electromag-
netic interaction. The spin-statistics relationship for 
indistinguishable particles is a logical consequence 
of the natural periodicity of spatial rotations. Planck's 
quantum of action appears automatically, as a "blur-
ring" parameter, as soon as the kinematics of proba-
bility wave packets is equated with Hamiltonian par-
ticle kinematics. Nonlocality (instantaneous collapse 
of the wave function throughout physical space if 
new information is taken into account) follows from 
strict adherence to Born's interpretation of \ip\2 as a 
probability density in combination with the Bayesian 
scheme for the updating of knowledge. There is no 
reason to doubt that physical quantities, such as the 
spin coordinates in the spin version of the Einstein-
Podolsky-Rosen experiment, have a reality indepen-
dent of the observer, in obvious contrast to eigenfunc-
tion expansions and eigenvalues that reflect his choice 
of measurement and thus of his preferred reference 
frame. From this viewpoint quantum mechanics looks 
much like an error propagation (or rather informa-
tion transmittal) formalism for uncertainty-afflicted 
physical systems that obey the classical equations of 
motion. Difficulties already present in Hamiltonian 
mechanics, for instance with the infinite electromag-
netic self-energy of charged point particles, must then 
also be expected in quantum theory. 

The formalism is holistic, taking into account all 
probability waves fitting into a given experimental 
setup, and thereby the ensemble of all possible tra-
jectories, as becomes especially clear in R. Feyn-
man's path integral formulation [35]. For a given 
path, r = r(t), the momentum p is not independent 
of r but related by differentiation along the path, in 
contrast to statistical mechanics where joint distribu-
tions are postulated for r and p without questioning 
mutual compatibility, and then extrapolated in time 
by integration. The two interfering cylindrical waves 
emerging with equal phases from the two slits in the 

particle version of Young's double-slit experiment do 
not indicate that the electron can pass both slits simul-
taneously but only that two slits are open for it and we 
do not know through which one it will go. Compar-
ison with experiment requires that observables such 
as relative frequencies are estimated from probabili-
ties [7,18]. The statistical samples, for instance the 
number of registered particles, are so large in typical 
diffraction experiments that relative frequencies and 
probabilities hardly differ numerically. In this sense 
an observed Young diffraction pattern shows the prob-
abilities rather directly (see the results of Möllenstedt 
and Jönsson [36] for an early realisation). In other 
cases, especially in high-energy physics, the number 
of observed events may be quite small (as small as 
one) but probability theory and thus quantum me-
chanics remain applicable, the only difference being 
that estimated root-mean-square errors become larger, 
hence predictions less certain. Quantum mechanics 
can thus be understood as a powerful extension of 
ordinary probability theory, particularly well suited 
for dealing with ensembles of particle trajectories or 
chains of space-time events fitting into given experi-
mental configurations. 

Quantum mechanics treats positions and momenta 
in symmetric fashion. Our exposition emphasised 
probabilities for particles and deduced wave-like be-
havior for spatially extended wave packets (states of 
information). One could, it seems, equally well con-
sider light waves and deduce the particle-like behavior 
of photons. The formal symmetry may be misleading, 
however. The location aspect appears to be more nat-
ural for massive particles for which the generalised 
momentum (wave length) is not gauge invariant as we 
saw. For the massless photons it is just the particle as-
pect (well defined position) that is problematic while 
for radio waves or radar pulses the wave aspect seems 
natural. A related question is whether it is necessary 
to quantise also the electromagnetic field. The electro-
magnetic field intensities are positive definite quanti-
ties like the probability densities for electrons, so the 
Riesz-Fejer theorem is applicable. Actually, Fourier 
techniques and the superposition principle were ap-
plied routinely to electromagnetic field strengths and 
potentials long before quantum mechanics appeared 
on the scene. Such problems belong to quantum elec-
trodynamics and will not be further discussed here. 
As far as ordinary quantum mechanics is concerned 
it should have become clear that it can be demystified 
to quite some extent with the Riesz-Fejer theorem. 
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The question seems not so much " How can it be like 
that?" but rather "Could it be otherwise?" 

What remains mysterious is the irreducible uncer-
tainty and lack of control caused by the empirical 
finite and universal value of Planck's quantum of ac-
tion. That its value is the same for electrons, nucle-
ons, photons etc. is not surprising since their mutual 
interactions must conserve energy and momentum. 
In fact, Jaynes [37] found that action is conserved, 
too, as a consequence of probability conservation, 
i. e. that there is an integral of motion which can 
be identified with h, if a spinless hydrogen-like atom 
is coupled to a (classical) electromagnetic field in a 
cavity. The role of Ti as a limit to the attainable in-
formation and control in microphysics has been clear 
ever since Heisenberg [27] discussed his uncertainty 
relations: Particle trajectories and orbits are always 
affected by a non-removable minimum blur. As fi-
nite particle size would produce a similar blur, one is 
tempted to ask if quantum mechanics can perhaps be 
viewed as a kind of minimum information (maximum 
entropy) generalisation of probabilistic Hamiltonian 
mechanics from mass points to particles with finite 
extension (spatial distribution) and internal motion 
(momentum distribution, spin). How this conjecture 
fits in with others, such as solitons, zitterbewegung, 
or superstrings, remains to be seen. 

Appendix: Proof of the Riesz-Fejer Theorem 

The proof presented by Fejer [2] as due to Riesz, 
and also contained in the book by Riesz and Sz.-
Nagy [3], is given here in slightly different notation. 
Consider the real Fourier polynomial 

n 

P(X) = p(xY eÜX' (C' = ( A 1 ) 

Z=—n 

Defining the polynomial g(z) as 

g(z) = c*n + ... + c\zn-l+c0zn 

+ Cizn+1 + ... + cnz2n, 
(A2) 

one can write p(x) = e nixg(etx) or, as the polyno-
mial p(x) is non-negative, 

p(x) = \g(elx)\. (A3) 

The polynomial g(z) is of degree 2n if c n 4 0, so that 
g(0) ^ 0. If Zk is a solution of g(z) = 0, 

g(zk) = c*n + ...+cnz2
k
n=0, (A4) 

then 1 /z*k is another solution, 

< 7 ( i ) = [ « + +cnz2
k
n)z~2nr = 0 (A5) 

One concludes that each root zk inside the unit circle 
is accompanied by another root l / z £ outside, with 
equal multiplicities of the roots inside and the accom-
panying ones outside. (Remember that zk = 0 can 
be excluded.) Equation (A3) shows that there are no 
solutions on the unit circle if the polynomial is defi-
nitely positive - which we may assume without loss 
of generality, as we can always add a small positive 
quantity e and let it vanish eventually. Thus one has 

n J 
g(z) = CN Y[(z - zk){z -) (A6) 

k=l 

(where not all the zk are different if there are multiple 
roots). For 2 = eIX one obtains 

p(x) = \g(eix)\ = 
fc=i 

e1* - 2 

y/Zk 
(A7) 

which is the absolute square of a Fourier polynomial 
of the same order as p(x), so that one can write 

n 
P(X) = J2 = , " T T < X < TT, (A8) 

/=—n 

tp(x) = el 
n -
Jfc=l Z\ •.. zr 

n 
= eia ak eikx ( a arbitrary). 

(A9) 

k=0 

This completes the (constructive) proof that each non-
negative real Fourier polynomial can be written as the 
absolute square of a complex one of (at most) the 
same order (same highest harmonic). The complex 
Fourier polynomial is mathematically more conve-
nient and more flexible because it is not subject to the 
non-negativity requirement and contains an arbitrary 
phase. 
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