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To study a nonlinear partial differential equation (PDE), the Painlevé expansion developed
by Weiss, Tabor and Carnevale (WTC) is one of the most powerful methods. In this paper,
using any singular manifold, the expansion series in the usual Painlevé analysis is shown to
be resummable in some different ways. A simple nonstandard truncated expansion with a quite
universal reduction function is used for many nonlinear integrable and nonintegrable PDEs such
as the Burgers, Korteweg de-Vries (KdV), Kadomtsev-Petviashvli (KP), Caudrey-Dodd-Gibbon-
Sawada-Kortera (CDGSK), Nonlinear Schrodinger (NLS), Davey-Stewartson (DS), Broer-Kaup
(BK), KdV-Burgers (KdVB), A¢*, sine-Gordon (sG) etc.

1. Introduction

There are some marvellous methods to study the in-
tegrability of a nonlinear partial differential equation
(PDE). The Painlevé analysis developed by Weiss,
Tabor and Carnevale (WTC) [1] is one of the most
effective approaches. Applying the WTC approach
to nonlinear PDEs, one can obtain not only prop-
erties like the Painlevé property, Lax pair, bilinear
form, Backlund transformation of integrable models
but also exact solutions both for integrable or nonin-
tegrable models.

In [2], Conte had proposed a simplification of the
WTC approach which is corresponding to the re-
summation of the usual WTC approach such that
the new expansion coefficients are all invariant un-
der the Mobius transformation. The standard trunca-
tion in Conte’s analysis is related to a special type of
nontruncated summation in the usual WTC approach.
According to Conte’s analysis, a special kind of sim-
ilarity reduction can be obtained [3], which can also
be obtained from the CK’s (Clarkson and Kruskal [4,
5]) direct method or the so-called nonclassical Lie ap-
proach [6]. In [7], Pickering proposed a nonstandard
truncation approach basing on Conte’s Painlevé ex-
pansion. If an original nonlinear PDE possesses more
than one branch in the usual WTC expansion, then
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some new nontrivial exact solutions can be obtained
due to Pickering’s nonstandard truncation approach.

Similar to Conte’s consideration, we may obtain
some other types of expansions to study the Painlevé
property if we relax Conte’s two requirements, be-
cause the singular manifold is arbitrary. Perhaps, the
different uses of the expansions may cause complex-
ity in the study of the Painlevé analysis. However it
is useful to get different new exact solutions.

In Pickering’s consideration, the nonstandard trun-
cation will yield a new nontrivial solution only for
those equations which possess more than one branch
in the original WTC analysis. We hope that, when
using some different expansions in the study of the
Painlevé analysis, some nonstandard truncation ap-
proaches may lead to some new exact solutions, no
matter whether the equations possess a single or more
branches in the usual Painlevé analysis.

In the next section, we discuss the general aspect
of the extended Painlevé expansion. In Sect. 3, we
use the Burgers equation as a simple example to re-
study its Painlevé property and to show how the non-
standard truncation approach yields some new ex-
act solutions. Applying the same idea to many sig-
nificant nonlinear equations such as the KdV, mod-
ified KdV (mKdV), KP, (1+1)- and (2+1)-dimens-
ional CDGSK (or name BKP), NLS, DS, Liou-
ville, sG, Mikhailov-Dodd-Bullough (MDB), Kolmo-
goroff-Petrovsky-Piscounov (KPP), Chazy class VII,
¢*, KdVB, equations etc., we find a quite universal
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reduction function which is valid for various inte-
grable and nonintegrable models. Section 4 brings a
list of the universal reductions for some physically
significant equations. The last section is a short sum-
mary and discussion.

2. Extend Painlevé Expansions

For a given PDE, say

F(t,21,%2, ooy Ty Uy Uz, Uz --.) = Fw) =0, (1)

the usual Painlevé expansion takes the form
u=¢* Y uid, @
=0

where ¢ = ¢(x;, x7,...,2,,t) = 0 is an arbitrary sin-
gular manifold. Because of ¢ being arbitrary, Conte
[2], choose (z; = x)

— &_%_l
\—((D )

20, 3)

as a new expansion variable such that the coefficients
u;, in the new expansion

(o o]
u=x* Z ;% 4)
=0
are invariant under the Mobius transformation

ap+b
co+d’

(ad # cb). (5)

Differentiating (3) with respect to z and ¢, respec-
tively, one gets two identities

1
Xz = 1+ =5x%, (6)
2
1
Xt=—C+Cax = 5(Cox + CH, )
where
o1‘.1‘.1‘ 3 @II 2
S = —— 8
Or 2 < O.l‘ ) ( )
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and

C=—-——, 9
. 9)

which are the Mobius transformation invariants. The
consistency condition (cross derivative) of (6) and (7)
reads
S;+Crzze+2C.S+CS, =0. (10)
Now let us consider the expansion (4) with (6), (7)
and (10) in an alternative way. The arbitrary expansion
function ¢ is changed to y, though it should satisfy (6)
and (7). The arbitraryness of the expansion function
is still preserved, because the two functions S and C
are included in the two equations, and there is only
one constraint on the two functions. From this point
of view, we may choose a different function which
is given by the pair of equations (with some other
functions) as new expansion variables. If the number
of constraints on the functions included in the pair
equation is less than the number of functions, then the
arbitrarity of the new expansion variable is preserved.
For instance, we may select £, which is related to
2N + 2 functions S; and Y; by

N
& = Z Sj£j~

7=0

(11)
and

N
&= Y&, (12)
=0

as a new expansion variable. It is easy to see that there
are only 2N — 1 consistent constraints

n+l
Snt = Yoz + D _ §(Si¥ni1—j — Y3Snu1-3) =0,

4=1

n=01,..,N, (13)

N

Y. i(Si¥nnj = YiSnu_) =0,
Jj=n+l—N

n=N+1,N+2,... 2N -2,

(14)

among 2N + 2 functions. So the arbitraryness of the
new expansion variable £ is preserved because at least
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three arbitrary functions are included in (11) and (12).
However, in this general case, the relation between
the usual expansion variable ¢ and the new expansion
variable ¢ will be only implicit except in some special
cases like Conte’s expansion.

Obviously, it seems not useful to simplify the pro-
cedure of the Painlevé test. However, using the new
expansions, we may get some different new exact
solutions because we can use some different trunca-
tions. To see this point more clearly we turn to some
concrete examples.

3. Revisit on the Painlevé Test of the
Burgers Equation

To be more specific, we restrict ourselves to N = 3
in (11) and (12) at first, i.e., the expansion variable
equations read

& = So+ S1€+ $26% + S5€, (15)

& =Yo+ Vi€ + o2 + Y38, (16)
and the constraint equations between the functions S;
and Y; are

S2Y3 - 531, =0, an

Syt — Y3, +253Y] — 25,3 =0, (18)

SZt = YZz = S|Y2 + SzYl — 3Y3So + 3S3Y() = 0,(19)

Sie = Y1z +25Yy — 225 =0, (20)

Sot — Yo — Y150 + S1Yp = 0. (21)
That is to say, there are only five constraint condi-
tions for eight functions Sy, S;, S,, S3, Yo, Y1, Y3,
and Y3. So the new expansion variable £ can still be
considered as arbitrary.

The Burgers equation

Uy — 2UUy + Ugy =0 22)
is one of the simplest integrable models. Now we use
the new expansion variable £ which is given by (11)
and (12). Substituting the expansion

u=€> ué (23)
3=0
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with (11) and (12) into the Burgers equation (22), one
can easily see that

Oz=—l, U()=—S() (24)

by using the leading order analysis; the other coeffi-
cients u; are given by

(j+ l)(] - 2)”] j;](ukvk =07 1727"'7j - 1) (25)
=7

where f; is a quite complicated function of the

uo, Up, U2, ..., uj—1. From (25) we know that the
resonances are located at j = —1 and 2. The reso-
nance at j = —1 corresponds to the expansion func-

tion being arbitrary. While the resonance condition,
f2 =0, at j = 2 should be satisfied identically be-
cause the Painlevé property of the Burgers equation
was known. Writing down the next two equations of
(25) explicitly for j = 1 and j = 2, we have

—211,()11,()JC + 2u(2)S| + 2UIUOS() + 3uOS()S|

(26)
— u0Soz — UoYo — 2up:So =0
and
—’u,()Shc + U()S]2 + 2U()S()Sz + Ut + Uozz
— ugY) — 2up: Sy +2uiS, (27)
= :lel(ﬂlllJr - 2’LL1U()I +2U1’U,()Sl =0.
Substituting ug = —Sp into (26) yields
. (S SoS; + Yo) (28)
uy = 25, 0z 01 0)-

Now using (24) and (28), one can see that the reso-
nance equation (27) (at j = 2) is simplified to
S()t = Y()z + Y()S] = SoYl =0. (29)
Equation (29) is just the consistency condition (21).
That is to say, the resonance condition f, = 0 is satis-
fied identically. So the Painlevé property of the Burg-
ers equation is re-obtained in the new expansion. Now
we turn to study the truncated expansion to get some
new exact solutions.
From (24) (or the standard Painlevé analysis [1]),
we know that the Burgers equation possesses only one
branch. So from Conte’s expansion one can not obtain
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anew exact solution by Pickering’s nonstandard trun-
cation. The present situation is quite different. From
the (15) and (16) we know that the derivative operator
d. (or d;) possesses different degrees in the negative
and positive directions. In the negative direction the
operator has degree one while it possesses degree two
in the positive direction. In Conte’s expansion, the dif-
ferential operators possess the same degree (one) in
both directions. So the balance conditions in the new
truncated expansion are always different in the nega-
tive and positive directions, no matter if the equation
possesses one or more branches in the usual Painlevé
analysis.

—4U3S3 (U3 = 253) = 0,

14U352S3 === 6U2U3S3 = 4u§57_ = 3"(@5% = 0,
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From the leading order analysis of the Burgers
equation one can easily find that the nonstandard ex-
pansion should have the form

u= %+u1 +u2§+u3§2 (30)

in order to balance the effects of the nonlinearity
and those of the dispersion in positive and negative di-
rections. Substituting the nonstandard expansion (30)
into the Burgers equation (22) and canceling the co-
efficients of ¢/ (J = —3,-2,...,5,6) yields seven
further constraints:

(€1Y)

(32)

5uyS) S3+4uz, S3+12u3.S) S3+6u3.S7 —du us Sy —2u3 S5 —6usus Sy —2uzus, —4u3 Sy +2usY3+2u3S3, = 0,(33)

—U()S;' + 4'IL251 53 + 2U2522 + UQS3I + IOU3SQS3 + IOU3S1 52 + 4u3152 < 3 2U3Y2 + u2Y3 M 2u2153

(34)

— 2u1u253 — 4u|u352 = ZU()U3S3 R 211'3“21 — 6‘U3U251 — 4u%50 — 211%52 e 21L2'U3I + ZU352I =0,

—4U1LL351 + 811'35()52 e 2'U0’U352 - 611,21135() — 2u1u252 + U3 + U3y T+ Uzl’z ot 4U3IS| * 2’[L3Y'1 + 2UZISQ

+4’LL3S% = UoSzS3 — 2u Uz, — 2UrUpy, — 211%51 — 2u3u11 + Sy, + 2U3Slr + 31L251 52 + 311,25053 =0,

2 .
—2’LLOISZ + 211,356 = uOYZ +upYy + 211,215() + U+ Uppe — 2U3UES) — 2Ur o, + 2u(2)53

(36)

= 2u0u21 - U()SZI — 2u1u,11 + ’leS()I + LL()S()S3 + u()Sl 52 + 2u1u052 — 21L]U250 + LL25()S1 =0,

21125()52 Uy + Uz + 6U3S()51 — uv()Y_; — 2U()IS3 + UQ)/I + 4’LL3IS() + 2’LL3YE) + 2UQI51 + 2u1u053

— UpU3p — 2UpU3, — 2Upu3S| — 2u1urS) — 4ujuzSy — 2u U, — 2UrU .

— 2u3Sy — 2uztg, + 2u3So, + u2Si, + u2S) =0

in addition to (17) through (21), (24) and (28) (four-
teen conditions in all) for twelve functions S;, Y;, and
u;. It is difficult to find out all possible solutions of
the overdetermined constraint equations. As in other
truncated expansion approaches, we consider only the
constant solutions on these constraint equations. After
some simplifications, the final result can be written as

£ = k(=16 + 66 + 962 + &%), (38)

& = ko(—16 +6£ + 962 + &) (39)

k c
u= ]6—] s = (;% = 3]1’1) & 2 12k|§ o+ 2]‘(1{2. 40)
1

(37

with two arbitrary constants £; and ky. Equations (38)
and (39) can be integrated implicitly:

= 1J% 8
s G -)F (26):—) SgE T

Obviously the solution (40) with (41) can not be ob-
tained from the other truncated expansions because
the coefficients of (38) are all fixed up to a constant of
proportionality and the function £, expressed implic-
itly by (4) possesses three branches (in the complex
sense).

Using the same procedure for other nonlinear
PDEs, we found that the reduction function (41) is

, n=kx+kox. (41)
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quite universal for many nonlinear PDEs. We list only

the final results in the next section.

4. Examples with a Common Reduction
4.1. KP and KdV Equations

The idea used in the last section can also be used in
higher dimensions. The (2+1)-dimensional KP equa-
tion

Ugs — 6u§ —OUULy + Upzzr + 302uyy =0 42
possesses also only a single branch in the usual

Painlevé expansion. Applying the new expansion ap-
proach to (42) lead to the result

k2 k2 o2k ko
51250 _19of L T gep? 4
u=>e ¢ 2 'Y ok,

— 16£kT + 264K7€% + 96K €3 + 8k3¢*,

43)

where £ is determined by the same reduction function
(41) but with

n = kix + kyy + kot. (44)

When k; = 0 (i. e., the model is y-independent), the

result (43) with (41) becomes the solution of the KdV
equation.

4.2. CDGSK and/or BKP Equations

The (2+1)-dimensional CDGSK or named BKP
equation

Up + SUgUze + SUUGzo + SUUy + SwU,

(45)
+ SUggy + Uzgzze — Swy =0,
Uy = Wq, (46)
possesses the exact solution
-1
u=—— (le (256 — 96¢ — 93¢2 — 8¢°
3ki& (47)

+ 13264 + 4865 +4£5) + §2k2) ,
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-1
15k2¢€2
+1700611262KS + 558062 k3 k,

(—15360k; ky + 5760k k&

(48)
— 362k ko + 206%k5 + 480k; k&3
— 7920k} kr&* — 2880k7 ko€ — 240k k£%)
with £ and ) being given by (41) and (44) respectively.

When the model is y-independent, the result becomes
that of the (1+1)-dimensional CDGSK equation.

4.3. A Boussinesq Type of Equation

From the variable separation approach of the DS
equation, the following Boussinesq type of equations
can be obtained [8]

(49)

Up + Wey + WW, — Uty =0,

W — Upy — WUy — W, = 0. (50)
The Boussinesq type of equation system (49,50) has

also the common reduction (41) and

u= (51)
16ik? — 6ik? + Eko + ilcrky + 12ik3€2 + 2ik3E3
ki€ ’
_ —l6k1 +§Cl — 12]6152 — 2k1€3

52
7 (32)

with a further constant ¢;.
4.4. BK System

Another Boussinesq type equation is the so-called
Broer-Kaup (BK) system [9]
(53)

Up + Ugpy — 2UU; — 2w, =0,

Wi — Wep — 2WU, — 2uw, = 0. (54)

The corresponding result for the BK system has the
form
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1 3
A7 32k2 — £k — 6Ek> 4.6. DS and NLS Equations
u ——2/@]{( 1 f 0 f 1 (55) '
+ 24362 + 41263 The reduction of the Davey-Stewartson system
: S [10, 8]
w = _ﬁ (64 — 24¢ — 84¢% — 263 W + Ugy + Uyy — 4uv — 2uw =0, (57)
& (56)
+33¢H + 128 + €9) — iV + Vg +Vyy — 407U — 20w =0, (58)
with & being given by (41) also. Wz — Wyy +4Uzz¥ + Uz vy +4uvy, =0, (59)
has the form

32kt — 32k} + 66kt — i€kok? — 6EkS + i€kok} + 2462K5 + 2462k} + 483k3 — 48k, *
u= ’
2b3€ (k3 + kf)

(60)

by (32k% + 32k} — 6Ek? — ifky — 6K3E + 24k3E% + 24K3E2 + 4k2E3 + 4K2E3)
V=
4¢ (k3 +k7)

: (61)

1
T e R K A KD
— (12883k1k3 + 64kD + 64Kk7K3) € + (228K — 2460k} k3 — kZk3 + k3k? — 5604k7k3 — 2916K3)¢2  (62)

j {4096k‘,‘k§ + 2048k + 2048k2k5 — (1536kk3 + 768k,° + 768k7k3) €

+ (2112k1k3 + 1056k + 1056k7k3)€* + (768k k3 + 384KS + 384k1k3) € + (64k1k3 + 32k + 32k12k‘2‘)§6},

with (41), (44) and b3 being arbitrary constants. When the fields are z-independent (k; = 0) and w = 0, the
result becomes that of the nonlinear Schrodinger equation.

4.5. KdVB Equation

As in the usual truncated expansion approach, the method proposed here can also be used to get some exact
solutions of nonintegrable models. The KdV-Burgers equation

Uy — OUUL + Uppy + OUgy =0, (63)

may be one of the most important physical models because of its wide applications. The KdVB equation has
also the reduction (41) with

5 4 51 1 ot
u=8kiE* + 96k + <§okl + 264k12> &+ (—Zﬁakl — 16k% + 13000 5, ) ¢
6 1 1 k 32 kf B
~ 186k2 — =gy — —0% + =<2 ¢ | 19287 + Sy } £ 1 4512-L.
86k; 501 1500 +6k1+< 1"'501 T+ &

But now a further constraint on the parameter k; is

required 4.7. mKdV Equation

- The modified KdV (mKdV) equation
k=% (65)

270° Wy — 6U Uy + Uyppy =0 (66)
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possesses two branches in the usual Painlevé expan-
sion. In addition to Pickering’s nonstandard trunca-
tion solution, a further reduction can also be obtained
using the present expansion. The result is

u= 16% — 3k + 12k, + 2k, €2 (67)
with (41) and
ko = 1458k;. (68)
4.8. \¢* Model
The A¢* model
Pet — Pzx — Pyy — Paz + P + Ao (69)

is another important nonintegrable model in physics.
When the condition

k2 =k} + k3 + k3 + (70)

1
1458"
holds, the /\4,94 model possesses the reduction

2/

= —(2§2+12{—3+16é) (71)

27\
with (41) but n = k& + kyy + k32 + kot.

4.9. Liouville, sG and MDB Models
The equation

Gzt +ae® + Xe ® + ue'2¢ =0 (72)

is the generalization of the Liouville (A = p = 0,),
sine-Gordon (or prefer sinh-Gordon) (1 = 0) and the
Mikhailov - Bullough equations (« = 0) [11]. Taking
the transformation e ~% = u, we have

Ulgr — Uzt + @ + Au+p = 0.

(73)

Equation (73) possesses the same reduction function
(41) when

Ckoky f 512 192 B aomd il
u= ——(— Tt 1662646966 8¢ )
3 pa? —7-2°-3"Mkgk] — 124koki A

2 a (8- 31k2k? + Aa)

o

; (714)
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and the parameters k( and &, are related to the model
parameters A, u, and o by

27u%a® +4N+2% - 312k2 k2N — 2638k} = 0.(75)

4.10. KPP Equation

In some other cases, the constants k£ and k( should
be all fixed. For instance, for the so-called KPP equa-
tion [12]

Up — Uge +2u° —u =0, (76)
the same reduction (41) yields
1 1
ky = , M= 77
0712967 "' T 5832 wH
for
u= —la_6l§ (=16 + 36 +9726ky — 126* — 26%) (78)
with a? = 256k3.
4.11. Chazy Class VII
For Chazy class VII [13]
Ugzs — Ulgy — 2u2 — 2ulu, =0, (79)

its reduction is the same as that of the mKdV equation
but with n = kz, and there is no restriction on k.

5. Summary and Discussion

Because the singular manifold in the usual Painlevé
analysis is arbitrary, one may expand a field in many
different forms. Starting from some different expan-
sion forms, one may take different truncation proce-
dures to get additional exact solutions. The truncated
reduction in one special expansion corresponds to a
special nontruncated solution in other types of expan-
sions.

In this paper, we have introduced a simple new ex-
pansion for many known integrable and nonintegrable
models like the Burgers, KdV, KP, mKdV, (1+1)-
and (2+1)-dimensional CDGSK, BK, NLS, DS, Liou-
ville, SG (ShG), MDB, KdVB, KPP, Chazy VII, and
Ap* equations, and a common reduction is obtained.
Though the reduction functions for all the mentioned
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models are the same for the special expansion, the
constraints on the parameters are different. In con-
trast to the usual single soliton (or solitary wave) so-
lutions, for the Burgers, KdV, KP, CDGSK, BK, NLS,
and DS equations there is no additional dispersion re-
lation required, i.e., there are no constraints on the
moment and energy parameters k; (and k; in (2+1)-
dimensions) and k. (The usual dispersion relations
will be re-found if we add the boundary conditions
on the obtained solutions, say, u(+oc) = 0 for the
KdV equation). For the mKdV, SG, MDB, KdVB,
and \¢* models, further constraints are required and
these constraints are also different from the disper-
sion relations for the usual single soliton solutions.
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