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The method of multiple scales is used to analyse the nonlinear propagation of waves on the interface 
between two superposed dielectric fluids with uniform depths in the presence of a normal electric field, 
taking into account the interfacial surface charges. The evolution of the amplitude for travelling waves 
is governed by a nonlinear Schrödinger equation which gives the criterion for modulational instability. 
Numerical results are given in graphical form, and some limiting cases are recovered. Three cases, in 
the pure hydrodynamical case, depending on whether the depth of the lower fluid is equal to or greater 
than or smaller than the one of the upper fluid are considered, and the effect of the electric field on the 
stability regions is determined. It is found that the effect of the electric field is the same in all the cases 
for small values of the field, and there is a value of the electric field after which the effect differs from 
case to case. It is also found that the effect of the electric field is stronger in the case where the depth 
of the lower fluid is larger than the one of the upper fluid. On the other hand, the evolution of the am-
plitude for standing waves near the cut-off wavenumber is governed by another type of nonlinear 
Schrödinger equation with the roles of time and space are interchanged. This equation makes it possible 
to determine the nonlinear dispersion relation, and the nonlinear effect on the cut-off wavenumber. 

Key words: Hydrodynamic Stability; Electrohydrodynamics; Nonlinearity; Interfacial Instability; 
Dielectric Fluids; Surface Charges. 

1. Introduction 

The two-dimensional evolution of a nonlinear wave 
packet propagating on deep water has been investigated 
by Lighthill [1], Whitham [2], and Yuen and Lake [3], 
using the method of averaged Lagrangian. Also Chu and 
Mei [4], Hasimoto and Ono [5] used the multiple scales 
method to study the same problem. All the above authors 
derived two-dimensional nonlinear Schrödinger equa-
tion describing the modulation of the wave amplitude. 
Zakharov [6] showed that this equation provides an ele-
gant approach to examine the modulational instability of 
finite amplitude waves. It was shown by Yuen and Lake 
[3] that the nonlinear Schrödinger equation can be de-
rived by the averaged Lagrangian method when the spa-
tial variations in the amplitude are included in the dis-
persion relation. Moreover, they demonstrated that the 
two-dimensional nonlinear Schrödinger equation pro-
vides a quantitative satisfactory description of the long-
time evolution of weakly nonlinear wave packets. 

Reprint requests to Dr. M. F. El-Sayed: 
Department of Mathematics, Faculty of Education, 
Ain Shams University, Roxy, Cairo, Egypt. 

The nonlinear modulation of waves propagating along 
the interface between two liquid layers has been investi-
gated by Qi-su [7] and Tanaka [8]. By using the method 
of multiple scales, the evolution equation of a wave pack-
et of the wave train has been found. Then they discussed 
the stability of a wave train with infinitesimal perturba-
tion in the direction of propagation of the wave train and 
obtained the stability criterion. But their theory can not 
be used to discuss the instability when transverse pertur-
bation occurs. For recent works concerning the instabil-
ity of capillary-gravity waves, see the work of Chhabra 
and Khosla [9], Christodulides and Dias [10], Collin et 
al. [11], Jones [12], Dolai [13], Qingpu [14], Lee [15], 
and Kato et al. [16]. 

On the other hand, electrohydrodynamics is the field 
of the mechanics of continua that studies the motion of 
media interacting with the electric field. Such an inter-
action takes place as a result of action of the Coulomb 
force upon a medium, or as a result of work of the electric 
field in flowing of currents. The motion of a medium 
gives rise to re-distribution of a volume charge, which 
results in changing the electric field and, hence, the force 
acting on a medium. In the majority of problems under 
consideration, electric fields or electric charges are spec-
ified by external sources. Such a situation takes place 
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during operation of electrohydrodynamic generators, 
pumps, separators, filters, and other devices. This sub-
ject is treated in a vast literature. The last studied is the 
class of electrohydrodynamic problems in which the 
electric field or electric charges arise as a result of a con-
tact between media of different nature: liquid-solid 
body, liquid-gas or two different liquids (see [17]-
[22]). 

The effect of the electric field on the motion of fluids 
has been studied by a number of scientists since the 
pioneering work of Rayleigh [23], Stokes [24], and Mel-
cher [25]. Michael [26] investigated the stability of an 
incompressible, inviscid, perfectly conducting fluid layer 
in the presence of electrostatic forces, and he found that 
these forces can have a destabilising effect on the fluid 
motions. Shivamoggi [27] has also examined the stabil-
ity of such a problem in the neighbourhood of the linear 
cut-off wavenumber. Kant et al. [28] investigated the 
stability of weakly nonlinear waves on the surface of a 
perfectly conducting fluid layer in the presence of an ap-
plied electric field by using the derivative expansion 
method. The nonlinear electrohydrodynamic Rayleigh-
Taylor instability was investigated by Mohamed and El-
shehawey [29], They obtained two nonlinear Schrödinger 
equations by means of which one can deduce the cut-off 
wavenumber and analyze the stability of the system. 
Quite recently, Elshehawey [30] investigated the same 
problem of Rayleigh-Taylor instability for a normal pe-
riodic electric field and the intervals of stability condi-
tions. For recent works concerning the linear and nonlin-
ear electrohydrodynamic instability at the interface 
between two fluids, see [31]-[34], and for an excellent 
review of the subject, see the recent review of Saville 
[35], 

In this paper, the interfacial stability of two superposed 
dielectric fluids of finite depths is investigated with the 
effect of normal electric fields in the presence of surface 
charges on the surface of separation between the two 
fluids. The stability here is discussed in detail for the cas-
es of travelling and standing waves, and the results of 
Hasimoto and Ono [5], Qi-su [7], and Mohamed and El-
shehawey [29] are extended. 

2. Formulation of the Problem 

We consider the two-dimensional wave motion on the 
interface y = 0 between the two superposed dielectric 
fluids with uniform depths, the upper fluid having the 
density p(2), dielectric constant £*21 and being bounded 

by the conducting plane y = b0 which is raised to the po-
tential V0 whereas the lower fluid with density p ( l \ di-
electric constant £( 11 is bounded from below by an earthed 
conducting plane y = -a0. As a result of the potential dif-
ference between the planes, both fluids are subjected to 
a constant electric field normal to the interface EQ2) and 
Eo \ where the superscripts 1 and 2 refer to the lower and 
upper fluids, respectively. 

If the two fluids are assumed to be inviscid and incom-
pressible, and the fluid motion being irrotational, then 
there exist velocity potentials (p(j)(x, y, t) within the two 
regions such that v^' = V</)0). Since the system is stressed 
by a normal electric field, we shall assume that it allows 
for the presence of surface charges at the interface such 
that 

We shall assume that the quasi-static approximation is 
valid and the electric field E is irrotational. The electric 
potentials y/J) are defined such that 

E(J) =-E(
0
j)ev 

Aj) _ V n £ ( ' ' ± n 

(e(2)b0+e'l,a0) ( i ) , (1) 

where ey is the unit vector in the y-direction. 
The basic equations relevant to our problem, are 

and v ^ + V ^ O , 

y = l , 2 . (2) 

where j = 1,2 represet the regions -h <y < ri(x, t) and 
ri(x, t) < y < b0, respectively, y = t](x, t) is the elevation 
of the interface measured from the unperturbed level, and 
t denotes the time. 

The various physical quantities are normalized with 
respect to a characteristic length /c = (77p(1)g)1/2 and a 
characteristic time tc = (lc/g)u2 and the characteristic po-
tential functions 0C = (g/3)1/2, y/c = {p(X)gllY'2, where g 
is the acceleration due to gravity acting in the negative 
y-direction and T is the surface tension. Hence we have 
I = / / , t = t / , (p(J> = (pc(p'(J) and y/<J) = y/cy/u\ where /', 
t', (p'(J) and y/'{J) are dimensionless; next we drop the 
primes for simplicity. 

The boundary conditions at the interface y = r\(x, t) are 
[36] 

77,-0 {yJ)+rj, >.V;) =0, j = 1 , 2 , 

Tlx({Vy}) + {{Vx)) = rix{(Eo», 

nx{{£Vx))-((£Vy)) = 0> 

(3) 

(4) 

(5) 
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- P<Pt2) + 0 + ~ P 0 i 2 ) 2 ) + _ P 0 y 2 ) 2 ) = 

= Tlxx(l+7ll)~2 ))+^{{£V/y ))~({£^o¥y )) + 2rlx {{£EqVx ))~^t1x ((zYxVy 
2" " 2 

- rix {(eEq )) + 2rix UeE0y/y )) +higher order terms, 

(6) 

where p = p(2)/p(1), and «•)) represents the jump across 
the interface. 

The solutions (f>u\ y / j ) of (2) must satisfy the follow-
ing conditions at the boundaries y = -a, b\ 

A j ) ,y / (
x

j ) = 0 on y = -a,b, (7) 

where a and b are the dimensionless quantities for the 
depths. 

To investigate the modulation of a weakly nonlinear 
wave with narrow band width spectrum, we employ the 
method of multiple scales [37] by introducing the 
variables xn = e"x and tn = e"t, (n = 0, 1, 2, 3), and 
expanding r\, <p(J) and i f / ^ J = 1, 2 in the asymptotic se-
ries 

F(x,y,t) = 
3 

e" Fn(x0,xl,...,xN ,y,t0,ti,...tN) 
n=1 
+0(e4), (8) 

where the small parameter e characterizes the steepness 
ratio of the wave, and the expansion of r\ according to 
(9)is independent of y. 

Expanding now the boundary conditions (3)-(7) into 
Maclaurin series expansions around y = 0, then substi-
tuting (8) into (2) and the boundary conditions (3)-(7), 
and equating the coefficients of equal powers in e, we 
obtain the linear and successive nonlinear partial diffe-
rential equations for ry„, and i/^1),(2) [36]; they will not 
be given because they are very lengthy. 

3. Linear Theory 

We assume that there is no steady flow in the undis-
turbed state, so that we choose the following quasi-mono-
chromatic wave as the starting solutions to the first or-
der problem 

77, = iox Ae'6 + c.c., 

(ocosh(ky + a') 
kcosh a ' 

Aelt> +c.c. + B ( i ) 
l 

(9) 

(10) 

,2) ^ cocoMky-b') o^Aeie +c c (11) 

kcoshb' o2 

y f [ l ) = i ' 4 1 ) s i n h ^ + fl') aJQ 
cosh a ' 

Ae + c.c., 

v ! 2 ) = -
iE(

Q
2)ox s i n h { k y - b ' ) 

o 2 cosh b' 
Aeie + c.c., 

(12) 

(13) 

where a = ka, b' = kb, cr, = tanh a', <J2 = tanh b', and 
0 (= kx0 - cot0) is the phase of the carrier wave, k and co 
being, respectively, the wavenumber and frequency of 
the centre of the wave packets, and c.c. stands for the 
complex conjugate of the preceding term (or terms), and 
1 is the imaginary unit. Here, the complex amplitude A 
and the additional real constants B ^ (which represent the 
arbitrariness associated with the velocity potential) are 
functions of the slow scales xx,x2, tx, and t2. 

In order that the starting solution should not be trivi-
al, the wavenumber k and the frequency co must satisfy 
the dispersion relation 

co1 =k 
CT, 0 2 

f V2 v 2 l 
1 - p + A ; 2 - k i + - L -1 - p + A ; 2 - k 

, c t 2 J 
(14) 

where 

V2 _ Fij)Fur 7 = 1,2. 

The dispersion relation (14) was initially obtained by 
Melcher [25], Mohamed and Elshehawey [29] (for the 
case of two-dimensional, semi-infinite fluids), and also 
by Qi-Su [7] (for the corresponding hydrodynamical 
case, i.e. when = 0 or The critical wave-
number kc at which ft) = 0 is the linear electrohydrodynam-
ic cut-off wavenumber separating stable from unstable dis-
turbances. For a numerical discussion of the dispersion 
equation (14), we have a transition curve, namely 

k -k 
' V 2 r2 \ 

+ — -C2 O \ + (1 - p ) = 0. (15) 
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ß 
Fig. 1. Stability diagram for the linear case in the k-p plane for 
some values of the electric field variations Vf, V\, and the den-
sity ratio p > 1. The curve in Fig. 1 a corresponds to the values 
V\ = V\ - 0. The solid, dashed, dot-dashed, dotted and 3 
dot-dashed curves in Fig. 1 b correspond respectively to the val-
ues vl = 0.05, 0.1, 0.15, 0.2 and 0.25 where V? = 0.009 and 
a' = b' = 0.9. 

From (15) we calculated the values of k corresponding 
to some different values of V2 and V2 in the cases when 
a = b', a > b' and a < b', respectively, for values of the 
density parameter p > 1. We plotted the neutral stability 
condition (15), separating the stable S and unstable U re-
gions. Figures 1 and 2 are the stability diagrams for the 
linear case in the k - p plane for different values of the 
electric field variations. 

Figure 1 a is drawn for the case of no electric field in-
fluence, i.e. Vf = V\ = 0 for any depths of the fluids. The 
resulting curve represent the neutral curve separating the 

stable and unstable regions. Figure 1 b is drawn for the 
case of equal depths (i.e. a = b' = 0.9), and the resulting 
curves correspond to the electric field values V\ = 0.05, 
0.1, 0.15, 0.2 and 0.25, respectively, with V,2 = 0.009. It 
is clear from Fig. 1 a that increasing the electric field val-
ues increases the unstable region, i.e. the electric field 
has a destabilizing effect. 

Figure 2a is drawn for the case when the lower depth 
is greater than the upper one (i.e. a > b', where d = 0.9 
and b' = 0.3), while Fig. 2 b is drawn for the case when 
the lower depth is less the upper one (i.e. a < b\ where 
a = 0.3 and b' = 0.9). The resulting curves in Fig. 2 cor-
respond to the same values of the electric field mentioned 
inFigure 1 b. It is clear from Fig. 2 that the normal electric 
field has usually a destabilizing effect and that the effect 
is stronger or faster in the case a' > b' than the other cas-
es when a < b' and a = b'. 

Now, to derive the equation for the evolution of trav-
elling waves, we need to proceed to the second order and 
higher order problems. 

4. Second Order Solution 

Since our aim is to study the amplitude modulation for 
travelling waves when ft)2 > 0, we now proceed to the 
second order problem in 0 (e 2 ) . With the use of the first 
order solutions given by (9)-( 13) on the right-hand sides 
of the second order equations, and solving the resulting 
equations, the second order solutions 7]2, <t>2

] and 1//V' 
(y = l, 2), take the form 

rii = 
(q'-t-CTI ) dA CTi dA 

k dx* CO dt\ 
eid +AA2e2ie +C.C. + & , (16) 

+ a V ' ^ c . C . + M 0 , (17) 
k~ cosh a' 2kO\ cosh2a ' 

> ( 2 ) = - 2 
wxj\ 
k~o2 

{ky-b')s\n\x(ky-b') + ( a' qOcoshjky-b') 
coshfr' I, (Ti a2 J cosh b' 

dAeie 
dx\ 

ico(\ + a 2 / 
2 ko-

A -
ka 2 A cosh2 (ky-b')A2e2ie+cc+Bm 

cosh 2 b' 

(18) 

Y 2 ~ c 0 
[ s\nh{ky + a') + (ky + a')cos,h(ky + a')) 3A sinh(fcy + tf') dA 

kcosh a' ö)cosh a ' dt\ 
(19) 

£ j ' ( l + CTf) , sinh2(/cy + fl') a2 2ie 
2a, cosh2 a' 
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V 
( 2 ) _ 

G2 

: (2 ) 

a' b' | 1
> j s inh(Ay-fc / ) | (ky-b')cosh (ky - b') \ dA | s i n h ( f o - 6 ' ) dA 

G] G 2 J kcoshb' kcoshb' J ctaf] cocoshb' dtx 

2g-, 

kG 2 

G2 

s i n h 2 ( k y - b ' ) 2 2ie A e + c.c 
cosh2 b' 

(20) 

where (which represents the induced mean motion or 
the zero frequency correction to slow modulation of the 
fundamental mode), and B V* are real functions of the slow 
scales xx, x2, tx, and t2 to be determined by considering 
the equations of higher orders, and 

II 
a 

_ 

I « 
2 

2 d 1
2 ( l - p ) -

3 co2 

2 I 

k T 

I 2 
> ~> T 

2 I 2 
> ~> 

per 2 \ 
(21) 

where 

G, = ^ ( G X +PG2)-3k2 + k{V2G2+V2Gx } k L - J 

(22) 

On substitution from (16)-(20) into the last condition 
of the second order equations, we obtain the non-secu-
larity condition, which consists of two parts; one is 

dA 
Bh 

+ V , 
dA 
dx. 

= 0 (23) 

together with its c.c., where vg (= dco/dk) is the group 
velocity of the wave train, and the other one is 

0 - p ) 6 + 
BB[l) 

3f. 

dB(2) 

• p — 1 — + G 2 |A|2 = 0 , (24) 
dt\ 

0 . 5 

(a) 

S v2
2=0.25 

1 . 0 1 1 . 0 2 1 . 0 3 1 . 0 4 

P 

1 .01 1 . 0 2 1 . 0 3 1 . 0 4 

P 
Fig. 2. Stability diagram for the system considered in Fig. 1 b, 
but with (a) a = 0.9, b' = 0.3, and (b) a' = 0.3, b' = 0.9. 

ference moving with the group velocity vg of the waves, 
that is, A depends on xx and tx only through £ defined as 
£= xx - vgtx = e(x-vgt). In (21), the case when Gx = 0, 
for which r\2, (p^ and become infinite, corresponds 
to the case of second harmonic resonance which can be 
dealt with along the lines outlined by Singla et al. [20], 
in another problem of interest. Such a kind of resonance 
in our case will be discussed separately in another paper 
in the near future. In this section, we have assumed that 
this quantity is different from zero in (16)-(20). 

where 

and 

Gi = g; co* 
V '2 7 

V, 2 A 

'1 / 

S]=G2/(1-G2), 7 = 1,2. 

Equation (23) implies that, to the lowest order in e, the 
complex amplitude A remains constant in a frame of re-

5. Third Order Solution 

Let us proceed to the third order problem. Introduc-
ing (9)—(13) and (16)-(20) into the third order pertur-
bation equations and solving the resulting equations, we 
obtain the third order solutions r]3, (j)^ and i//^' as indi-
cated in the Appendix. On substitution from (A. 1)-(A.5) 
into the last condition of the third order problem, we ob-
tain the non-secularity condition from the coefficient of 
eie, that is 
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2 CO 
k 

1 + l 

<J2 

dA ^ dA 
dt2 * dx2 

1 + 
pcr , ) d 2 A 2/<j | 

(J2 J er. 
1 + Per, 

(T2 

a 1 + 
CT,CT2 S 2 

y 

3 2A , / 

V ^ i I a ' 

ö T 1 1 + per, ^ p / / c r , f a' b' ^ 

a 2 G\ o 2 

- — \ a'(\- p + 3k2 ) + — (1 - p +13&2) 
k l 4 

/ \ 

C 2 V CT J <J2 J 
2 -

b'o2 

'2 y 
+ 2cT , (V 2

2 ^ / + V 1
2f l ' ) + ^ 

i /2 VfCTi 

cr2 
+ W 

^ A 

+ /G3A2A +i 

where 

a 2 

A = 0, 

(25) 

G 3 =coUA 
f p { o x +CT 2 ) (2 + (T1CT2) | p a , ( 1 - 2 e r 2 ) ( l - 2 a 2 ) ^ 

+ ko. 

CT 2 CT, CT] 

' p ^ - c r 2 ) p e r 2 ( 2 — 7er 2 ) (2-1 g2 ) ^ 

2er 

-Ä:(l + p + Ä:z)<j(2 + a f )A + - ^ - ( 2 - ( T f ) V o * + 
/c<T| 

2 

2er, 

3 i 4 _3 , 

^ ( 2 + e r 2 ) ( 3 - C T 2 V 
— + — 

CT2 

A + 
k(7 (2-er ,2 ) 4CT,(1-2CT2)^ 

2 l / 2 0 - 2 < T , 2 ) 

Furthermore, from the non-secularity condition for we have 

3^2 ( a ' , - 6 ' ) 

3f. 
+ 2 coo 11 1,- — 

CT2 

d| A 
cki 

= 0. 

(26) 

(27) 

If we assume that as well as A depend onx, and tx only through £ = -vgti, (26) yields 

dB(j) 

{a,b'(\-p)-kv2
g(b' + pa')}-^— = 

ÖC, 

k\2(0kpG^öx+G2\](p,\)-2(OOx(\-p)(b' -a'(ji/(j2) + vg(-b' ,a')G2}\A\2 +fj(x2,t2 ), 
I c r2 

where we assume v2 * ab(\ - p)/(b + pa). The slow 
functions fj(x2, t2) in (27) are to be determined under ap- £2 = - vgt2

 a n d T = r2> w e obtain finally a nonlinear 
propriate boundary and/or initial conditions of the prob- Schrödinger equation 
lern under consideration. Hereafter, however, we omit 
these terms, since they can be eliminated from the final 
result by a simple transformation [38] and cause no ef-
fect on the stability characteristics. Then £2, dB^/d:c, in where 
(25) can be expressed in terms of A. Using (23) and (24), 
introducing the expressions for £2, dB^/dx^ into (25), 
and assuming that A depends on x2 and t2 through 

• 3A,,, 32A , \ a \2 . f , 1 — + u—r—|- v A A = 0, 
3T ^ d ; 2 1 1 

1 dvg 
2 dk 

(28) 

(29) 
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and 

2(0 ^ <r2 
G i + 

{a'b'(\-p)-kv2
g(b' + pa')} (30) 

k~ tt)~ po \ (o~i + 0*2 ) 2 2 2 2 kco , . .. ab' 2 
2 V^ 2 ( P A CJJ +b o2 ) - I — VG ( p a ox -b g2 )G2 Gn 

G 2 4G 

where v is the nonlinear intercation coefficient; it should 
be noted that this coefficient becomes infinite and the 
perturbation scheme becomes invalid for values of k, p, 

a and b which satisfy vg- ab(l-p)/(b+pa)=0, 
which indicates that the group velocity of the wave train 
(i.e. v^) coincides with the phase velocity of the infinite-
ly long waves (i.e. A ab( 1 - p)/(b + pa)). In this case we 
have to modify the perturbation expansion so as to avoid 
the trouble of undboundedness. It is interesting to note 
that this case is expected to indicate a kind of resonant 
interaction between the group and phase velocities (i.e. 
between the short and the long waves); such a modifica-
tion may be possible following the same lines as in [39]. 

6. Numerical Discussion 

Equation (28) describes the nonlinear self-modulation 
of the capillary-gravity waves on liquid layers of uniform 
depths. It is interesting to note that the two coefficients 
p and v are responsible for the modulational instability 
of a nonlinear plane wave solution of (28). The original 
wave train is stable or unstable if pv is positive or nega-
tive [5]. The nonlinear Schrödinger equation is well 
known to admit various types of envelope solitons ac-
cording to the sign of pv. 

(a) In the case of pv > 0 

A 0 sech ( / r + Oexp{ / (vA 2 / 2 ) r} (31) 
with 

K+ = ^VA^/2P. 

This convex envelope wave is called a bright soliton. 
b) In the case of pv < 0 

\Ad(£,T)\2 = Al - A 2 s e c h 2 ( t f _ 0 (32) 

with 

> An > 0. 

This concave envelope wave is called a dark soliton or 
envelope hole. In this case, a shock type solution called 

a phase jump also exists: 

AP (£ ,T) = A0 t anh( t f_Oexp( / (A 0
2 v)R) . (33) 

The above envelope waves all stand steadily in (£ T) 
space. 

If in the nonlinear Schrödinger equation (28), we take 
the limit when ka —> and kb-*°° (i.e. cx, G2 —> 1), 
we recover the results obtained earlier by Mohamed and 
Elshehawey [29]. The results of Qi-su [7] for the corre-
sponding pure hydrodynamical case can be obtained by 
setting = Oor £*l> = e(2) in the nonlinear Schrödinger 
equation (28). We should also remark here that for ideal 
fluids, in the limit of no capillarity, (28) recovers the re-
sult for the gravity waves obtained earlier by Tanaka [8]. 

As we mentioned before, the original wave train is 
stable or unstable if pv > 0 or pv < 0. The stability char-
acteristics change critically depending on the values of 

p, k, a, and b. The stability chart in the k - p 
plane is divided into stable and unstable regions bound-
ed by the curves. 

and 

p = 0 

v = 0. 

(34) 

(35) 

We observe from (35) and (21) that v changes sign across 
the transition curves 

and 

G, = 0 

kv2(b' + pa')-a'b'(\-p) = 0, 

(36) 

(37) 

which represent the third and fourth transition curves in 
the stability diagrams. We note from (29) and (30) that 
the stability of the system does note depend on which one 
of the fluids has a larger dielectric constant. We comput-
ed the relations (34)-(37) for different values of VJ in 
the three cases a' = b', a' > b' and a' < b', respectively, 
for values of the density ratio p < 1. In the graphs, we 
plot the neutral stability conditions (34)-(37). Fig-
ures 3 - 9 represent the stability diagrams in the k-p 
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Fig. 3. Stability diagram for the nonlinearity effect in the k-p 
plane for p < 1 and a = b' = 0.9. The solid, dotted, dashed and 
dot-dashed curves represent respectively equations (34)-(37), 
when (a) V\ = V\ = 0, (b) V? = V\ = 0.009, and (c) V? = 0.009, 
V\ = 0.04. 

plane, due to the nonlinearity effect and the presence of 
the electric field, drawn for the three cases a = b', a > b' 
and a < b', respectively. Figures 3 - 5 represent the case 
a = b' (i.e. with two equal depths, wehre a -b' - 0.9). 
In this case the resulting curves from (34)-(37) are rep-
resented by the solid, dotted, dashed and dot-dashed 
curves, respectively, and we notice that there are two dot-
ted curves which correspond to (35), we refer to them as 
the upper and lower parts of the dotted curve. 

In Fig. 3 a, where Vf = V\ = 0 (the pure hydrodynam-
ical case), there are three stable regions between the 
curves, the first region 5] is above the upper part of the 
second curve, while the second stable region S2 is 
between the first and the fourth curves, and the third re-
gion S3 is between the third curve and the lower part of 
the second curve, respectively. There are three unstable 
regions too, the first region Ux is between the upper part 
of the second curve and the fourth curve, the second un-
stable region U2 is between the first and the third curves, 
and the third region U3 is under the lower part of the 
second curve. In Figs. 3 b, c, where V2 = 0.009 and 
v i = 0.009. 0.04, respectively, we note that the solid 
curve goes up slightly, creating a new unstable region U4 

which increases due to increase the electric field values, 
and the regions 5j, S3 decrease, while region S2 increas-
es; and the region t/, decreases while the regions U2 and 
U3 increase. We note also that the upper part of the dot-
ted curve and the fourth curve coincide at p > 0.8 and al-
so the lower part of the dotted curve and the second curve. 

In Figs. 4 we have Vf = 0.009 and Vj = 0.08,0.15 and 
0.3, respectively. The resulting curves here have the same 
behaviour as the curves in Fig. 3, but in addition we find 
that region U4 increases and region S2 in Fig. 4 a is splite 
into two regions S3 as in Figs. 4b, c, where the first re-
gion decreases and the second one increases due to the 
increase of the electric field values. A new stable region 
S4 appears in Figure 4c. 

In Fig. 5 a, where V,2 = 0.009 and V2 = 0.5, the curves 
still have the same behaviour as in Fig. 4, and we notice 
that the new stable region S4 increases due to the increase 
of the electric field. In Figs. 5 b, c, where Vj = 0.009 and 
V\ - 0.8, 1.0, respectively, we find that the solid curve 
drops and changes the situation mentioned in the previ-
ous figures where regions S4, U4 disappear and regions 

and S2 increase. The first region of S3 diminishes and 
the second region increases, and region U2 changes its 
place. A new unstable region U5 appears due to the in-
crease of the electric field values. In Fig. 5 c, we find that 
regions U2, and U5 increase, while regions U\, U3, 
and S3 decrease, creating a new stable region S5. 

Figures 6 and 7 represent the case a' > b' (i.e. when 
the lower depth is larger than the upper one, where 
a' = 0.9, b' = 0.3). In Fig. 6a where V,2 = V2

2 = 0, we no-
tice that we get curves quite similar to those in Fig. 3 a 
for the case a = b', but in this case we have four stable 
regions and four unstable regions due to the intersection 
of the upper part of the second curve with the fourth curve 
(at p — 0.12) producing two unstable regions U] instead 
of the first unstable region U\ in the previous case, and 
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Fig. 4. Stability diagram for the system considered in Fig. 3, 
when V? = 0.009, but with (a) V\ = 0.08, (b) Vj = 0.15, and (c) 
V2

2 = 0.3. 

we call them the first and second parts of the first un-
stable region Ux. Also the intersection of the lower part 
of the second curve with the third curve (at p 0.13) 
produces two stable regions S3 instead of the third stable 
region, and we call them too the first and second parts of 
the third stable region S3. 

In Figs. 6 b, c, where V,2 = 0.009 and V\ = 0.005 and 
0.009, respectively, we notice that as in the previous case, 
the increase of the electric field slightly decreases the 
first stability region 5, and the first part of the third re-

gion S3, while it increases the second stability regon S2 

and the second part of the third region S3. The two parts 
of the first unstable region Uj decrease and the second 
unstable region U2 increases while the third unstable re-
gion U3 decreases. The solid curve turns out at p — 0.9, 
creating a new unstable and stable regions U4 and S4, re-
spectively, under it with further increasing of the electric 
field values as shown in Figures 7. 

In Figures 7, where V,2 = 0.009 and V\ =0.03, 0.055 
and 0.08, respectively, we note that the behaviour of the 

0 0.2 0 .4 0.6 0.8 1 

f 

Fig. 5. Stability diagram for the system considered in Fig. 3, 
when V\ = 0.009, but with (a) V\ = 0.5, (b) V2

2 = 0.8, and (c) 
V2

2=\. 
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/ 
Fig. 6. Stability diagram for the nonlinearity effect in the k-p 
plane for p < 1 and a = 0.9, b' = 0.3. The solid, dotted, dashed, 
and dot-dashed curves represent respectively equations 
(34)-(37), when (a) V\ = V\ = 0, (b) V? = 0.009, Vj = 0.005, 
and (c) Vf = 0.009, V\ = 0.009. 

different curves and regions is still as before except that 
the solid curve goes up slightly, creating two new regions, 
one being unstable U4 and the other one stable 54 under 
it as in Figure 7 a. It is clear from Figs. 7 b, c that the in-
crease of the electric field increases the new unstable re-
gion U4 while it decreases the new stable region S4; i.e. 
the normal electric field has a destabilizing effect in the 
two new regions. 

Figures 8 and 9 represent the case a' < b' (i.e. when 
the lower depth is smaller than the upper one, where 

and D. K. Callebaut • Nonlinear Electrohydrodynamic Stability 226 

Fig. 7. Stability diagram for the system considered in Fig. 6, 
when Vf = 0.009, but with (a) V\ = 0.03, (b) V\ = 0.05, and (c) 
Vj = 0.08. 

a = 0.3, b' = 0.9). Figure 8 are drawn for the electric field 
Vj = 0.009 and Vj = 0.005, 0.02 and 0.06, respectively. 
We notice that the curves have the same behaviour as in 
the case a' = b' (i.e. we have three stable regions S2, 
53 and three unstable regions t/,, U2, U3), and due to the 
increasing of the electric field as in Fig. 8 b, the first and 
the third stability regions S\ and S3 decrease while the 
second stability region S2 increases; and the three in-
stability regions U\, U2 and U3 increase. Also the solid 
curve goes up slightly, creating two new regions, one is 
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Fig. 8. Stability diagram for the nonlinearity effect in the k-p 
plane for p < l and a' = 0.3, b' = 0.9. The solid, dotted, dashed, 
and dot-dashed curves represent respectively equations 
(34)—(37), when Vf= 0.009 and (a) V\ = 0.005, (b) V\ = 0.02, 
and (c) v\ = 0.06. 
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Fig. 9. Stability diagram for the system considered in Fig. 8, 
when V? = 0.009, but with (a) v\ = 0.1, (b) V\ = 0.2, and (c) 
V\ = 0.3. 

stable S4 and the other one is unstable U4 as shown in 
Figs. 8 b, c in which the increase of the electric field in-
creases region U4 while decreases region S4. 

In Figs. 9, where Vf = 0.009 and V\ =0.1,0.2 and 0.3, 
respectively, we notice from Fig. 9 a that the unstable re-
gion U4 increases while the stable region S4 decreases 
due to the increase of the electric field. Further values of 
the electric field produce a new stable regions S5, S6 and 
an unstable region U5, as shown in Figure 9b. In Fig. 9c, 

we find that in addition to the previous behaviour of the 
curves, the three new regions S5, S6 and U5 increase due 
to increasing the electric field, and also a new stable re-
gion S-j appears. 

Thus the effect of the electric field is the same in all 
the cases for small values of the electric field; and for a 
fixed value of Vj2 and after a definite value of V\, the ef-
fect of the electric field is different from one case to an-
other, and it is stronger in the case when a > b'. 
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7. Amplitude Modulation of Standing Waves where 

When k tends kc, ft) tends to zero, so that the group ve-
locity Vg, and the coefficients p and v given by (29) and 
(30), respectively, become infinite. Therefore the preced-
ing obtained results are no longer valid near the cut-off 
wavenumber k = kc, and we need to modify the preced-
ing analysis to obtain the suitable equation for the com-
plex amplitude near the cut-off wavenumber. Since we 
are concerned with waves near k = kc and ft) = 0, the car-
rier wave is not travelling, but standing, hence we choose 
the starting solutions to the first order problem as 

11 iGxAeik<x° +c.c., 

i\j)=B\j), j = 1,2, 

(38) 

(39) 

y j n ^ i ' ^ ^ t ^ ^ ' + c . c . , (40) 
cosh a ' 

2) iE(2)Gx s i n h ( k c y - b ' ) 

0*2 coshb ' 

Ae*'*0 +c.c. (41) 

instead of (9)—(13), where a = kc a and b' = kcb. 
Proceeding as before, we can get the uniformly valid 

solution of the second order problem in the form 

r\2 = AA2e2ik<x°+c.c. + £ 2, 

icosh(kcy + a') dA ikrx„ 
kr cosh a ' dt, 

+ C.C. + B ( i ) 

,(2) icosh(kcy-b') a| dA cikrXn 

kccoshb' (J2 dt! 

(42) 

(43) 

(44) 
+c.c.+ B ( 2 ) 

^ ( l + c r , 2 ) 

2(7-
(A + kc G\ 

8inh2(fccy + fl-)A2g2/Mo+c.c.t ( 4 5 ) 

cosh 2 a' 

A = 
i 2 ~> kc fff 

V,2 

V ^ 2 
- w J L + _ L 

c r e r r v w 1 

{(v2-G2+v2G,)-3kcy 

under the non-secular condition 

dA 
dx. 

= 0, 

(47) 

(48) 

which shows that the complex amplitude A is indepen-
dent of the first slow scales .x,. This should be compared 
with (23) for the travelling waves. 

Let us now proceed to the third order problem. After 
straightforward calculations, the requirement that the 
third order perturbation be non-secular yields 

dA d2 A 
dxi dt, 

= v * [ A \ A + RA, 

where 

fj* = d2k 
2 do)2 

kc d2k 
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(52) 
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2(7 i 
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G2 

s i n h 2 ( k c y - b ' ) ^ „ 2 , M o 
cosh 2 b' 

A i e u k c x 0 ( 4 6 ) 

where E(x2, t2) is a constant in the slow scales xx and tx. 
Equation (49) is also a nonlinear Schrödinger equa-

tion, with time and space variables interchanged and 
hence furnishes the amplitude modulation of standing 
waves. The linear interaction term RA in (49) causes on-
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ly a phase shift and thus can be removed by using the 
transformation 

A(x2 ,t\) = Aexp -i J/?(x2) d*2 (53) 

The nonlinear Schrödinger equation (49) now takes the 
form 

dA d2A = v*| A I" A. (54) 
dx2 ' dt( 

We now examine the plane wave solution of the form 

A(x2,t] )=B0e (55) 

where B0 is a complex constant, and K and Tare real con-
stants representing respectively the wavenumber and fre-
quency shifts. 

On substituting (55) into (54), we get the dispersion 
relation 

r2 =-(K+V*\Bq\2)//Li*. (56) 

For r to become imaginary, we must have 
K < v*|ß0 |2 . Combining (55) with the carrier wave, we 
can determine the "nonlinear" cut-off wavenumber as 

form depths and solid walls under the influence of a nor-
mal electric field and in the presence of surface charges 
at the interface between the two fluids. In the linear elec-
trohydrodynamic case, which is studied analytically else-
where [25], we found (numerically) that the normal 
electric field has usually a destabilizing effect, and this 
effect is stronger when the depth of the lower fluid is 
greater than the depth of the upper one. The dielectric 
constant ratio does not play any significant role in the 
linear stability case studied here, in contrast with our pre-
vious result in the case when the surface charges on the 
interface are absent [36]. 

It is also found that the complex amplitude of quasi-
monochromatic travelling waves can be described by a 
nonlinear Schrödinger equation in a frame of reference 
moving with the group velocity. The stability character-
istics of a uniform wave train are examined both analyt-
ically and numerically on the basis of the nonlinear 
Schrödinger equation, and we found that the stability of 
the system does not depend on which of the fluids has a 
larger dielectric constant. We studied the three cases 
when the depth of the lower fluid is equal to or greater 
than or smaller than the depth of the upper fluid, respec-
tively, in the case of presence (and absence) of the nor-
mal electric field force when there are surface charges at 

kn — kr 1 + £ | B 0 r d2k 
dco' O)=0 

- U J L 
<j, a 2 

- 1 

jkc
4a2-k2A{v2 4 + 4 

V ^ 2 
- V / 

'2 y 

.2 xi 

x2 
J / ? ( * 2 ) d * 2 . 

- 2 - + J -
CJ,2 S2 

V 1 / 
+ 2k3

c(jUv2 

s2 - V , 1 

v 
- 1 

(57) 

which shows that the nonlinear cut-off wavenumber kn 

depends sensitively on the initial condition with respect 
to tx. It is clear that the bandwidth of the spectrum is of 
0(e) in the frequency space for the standing wave, i.e. 
it is of 0(e 2) in the wavenumber space. 

8. Conclusions 

In this work, we have investigated the nonlinear elec-
trohydrodynamic stability of interfacial capillary-grav-
ity waves of two superposed dielectric fluids with uni-

the interface. We found that the effect of the normal 
electric field is different for different regions or stability, 
depending on the values of the density ratio p, the wave-
number k, the depths of the two fluids a and b, and the 
electric field values V{ and V2. 

In the first and the third cases, when a = b' and a < b', 
respectively, the stability diagrams when V2, V2 = 0 are 
divided by three stable regions and three unstable re-
gions; and for small electric field values we found that 
the electric field has a destabilizing effect in the first and 
the third stability regions while it has a stabilizing influ-
ence in the second stable region. Two new regions ap-
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pear, one of them is stable and the other is unstable, and 
they increase due to increase the electric field in the case 
a' = b', while the new stable region decreases and the un-
stable region increased if a < b'. For a fixed value of Vf 
and after a definite value of V2, the distribution of stable 
and unstable regions in the first case a = b' changes and 
two more stable and unstable regions appear and in-
crease; while in the third case a < b', only two more 
stable and unstable regions appear and increase due to 
increase the electric field. 

In the second case a > b', the stability diagram is di-
vided by four stable and four unstable regions, and the 
effect of the electric field is destabilizing in the first stable 
and the first part of the third stable region, and stabiliz-
ing in the second stable and the second part of the third 
stable region. Two newly regions appear, one of them is 
unstable and the other one is stable, and the electric field 
increases the first new region and decreases the second 
new one. 

Thus the effect of the electric field is the same in all 
the cases for small values of the electric field; and for a 
fixed value of V2 and after a definite value of V2, the ef-
fect of the electric field is different from one case to an-
other, and it is stronger if a > bf. Therefore the normal 
electric field, in the presence of surface charges at the 
interface, creates some new regions of stability and in-
stability, which were hiden in the corresponding case 
when there are no charges at the interface between the 
two fluids [34], 

We also recovered some previous work and limiting 
cases corresponding to, e.g. the pure hydrodynamical 
case, the case of two semi-infinite fluids, the case of cap-
illary waves, etc.; and the results of the linear theory are 
confirmed. We treated our problem too in the case of 
standing waves near the cut-off wavenumber, which is 
governed also by a nonlinear Schrödinger equation with 
the roles of time and space are interchanged. We finally 
determined the nonlinear dispersion relation and the non-
linear effect on the cut-off wavenumber. 

Appendix 

The solutions of the third order problem are given by 
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where here and hereaf te r NSPT represents terms that do Acknowledgements 
not produce secular terms, and B3'' and B(2) are real 
funct ions of the s low scales x b x2, tx and t2 to be deter-
mined by consider ing the equat ions of h igher orders . 
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