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The method of multiple scales is used to analyse the nonlinear propagation of waves on the interface
between two superposed dielectric fluids with uniform depths in the presence of a normal electric field,
taking into account the interfacial surface charges. The evolution of the amplitude for travelling waves
is governed by a nonlinear Schrodinger equation which gives the criterion for modulational instability.
Numerical results are given in graphical form, and some limiting cases are recovered. Three cases, in
the pure hydrodynamical case, depending on whether the depth of the lower fluid is equal to or greater
than or smaller than the one of the upper fluid are considered, and the effect of the electric field on the
stability regions is determined. It is found that the effect of the electric field is the same in all the cases
for small values of the field, and there is a value of the electric field after which the effect differs from
case to case. It is also found that the effect of the electric field is stronger in the case where the depth
of the lower fluid is larger than the one of the upper fluid. On the other hand, the evolution of the am-
plitude for standing waves near the cut-off wavenumber is governed by another type of nonlinear
Schrodinger equation with the roles of time and space are interchanged. This equation makes it possible

to determine the nonlinear dispersion relation, and the nonlinear effect on the cut-off wavenumber.
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1. Introduction

The two-dimensional evolution of a nonlinear wave
packet propagating on deep water has been investigated
by Lighthill [1], Whitham [2], and Yuen and Lake [3],
using the method of averaged Lagrangian. Also Chu and
Mei [4], Hasimoto and Ono [5] used the multiple scales
method to study the same problem. All the above authors
derived two-dimensional nonlinear Schrodinger equa-
tion describing the modulation of the wave amplitude.
Zakharov [6] showed that this equation provides an ele-
gant approach to examine the modulational instability of
finite amplitude waves. It was shown by Yuen and Lake
[3] that the nonlinear Schrodinger equation can be de-
rived by the averaged Lagrangian method when the spa-
tial variations in the amplitude are included in the dis-
persion relation. Moreover, they demonstrated that the
two-dimensional nonlinear Schrodinger equation pro-
vides a quantitative satisfactory description of the long-
time evolution of weakly nonlinear wave packets.

Reprint requests to Dr. M. F. El-Sayed:
Department of Mathematics, Faculty of Education,
Ain Shams University, Roxy, Cairo, Egypt.

The nonlinear modulation of waves propagating along
the interface between two liquid layers has been investi-
gated by Qi-su [7] and Tanaka [8]. By using the method
of multiple scales, the evolution equation of a wave pack-
et of the wave train has been found. Then they discussed
the stability of a wave train with infinitesimal perturba-
tion in the direction of propagation of the wave train and
obtained the stability criterion. But their theory can not
be used to discuss the instability when transverse pertur-
bation occurs. For recent works concerning the instabil-
ity of capillary-gravity waves, see the work of Chhabra
and Khosla [9], Christodulides and Dias [10], Collin et
al. [11], Jones [12], Dolai [13], Qingpu [14], Lee [15],
and Kato et al. [16].

On the other hand, electrohydrodynamics is the field
of the mechanics of continua that studies the motion of
media interacting with the electric field. Such an inter-
action takes place as a result of action of the Coulomb
force upon a medium, or as aresult of work of the electric
field in flowing of currents. The motion of a medium
gives rise to re-distribution of a volume charge, which
results in changing the electric field and, hence, the force
acting on a medium. In the majority of problems under
consideration, electric fields or electric charges are spec-
ified by external sources. Such a situation takes place
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during operation of electrohydrodynamic generators,
pumps, separators, filters, and other devices. This sub-
jectis treated in a vast literature. The last studied is the
class of electrohydrodynamic problems in which the
electric field or electric charges arise as aresult of a con-
tact between media of different nature: liquid-solid
body, liquid-gas or two different liquids (see [17]-
[22D).

The effect of the electric field on the motion of fluids
has been studied by a number of scientists since the
pioneering work of Rayleigh [23], Stokes [24], and Mel-
cher [25]. Michael [26] investigated the stability of an
incompressible, inviscid, perfectly conducting fluid layer
in the presence of electrostatic forces, and he found that
these forces can have a destabilising effect on the fluid
motions. Shivamoggi [27] has also examined the stabil-
ity of such a problem in the neighbourhood of the linear
cut-off wavenumber. Kant et al. [28] investigated the
stability of weakly nonlinear waves on the surface of a
perfectly conducting fluid layer in the presence of an ap-
plied electric field by using the derivative expansion
method. The nonlinear electrohydrodynamic Rayleigh-
Taylor instability was investigated by Mohamed and El-
shehawey [29]. They obtained two nonlinear Schrodinger
equations by means of which one can deduce the cut-off
wavenumber and analyze the stability of the system.
Quite recently, Elshehawey [30] investigated the same
problem of Rayleigh-Taylor instability for a normal pe-
riodic electric field and the intervals of stability condi-
tions. For recent works concerning the linear and nonlin-
ear electrohydrodynamic instability at the interface
between two fluids, see [31]—[34], and for an excellent
review of the subject, see the recent review of Saville
[35].

In this paper, the interfacial stability of two superposed
dielectric fluids of finite depths is investigated with the
effect of normal electric fields in the presence of surface
charges on the surface of separation between the two
fluids. The stability here is discussed in detail for the cas-
es of travelling and standing waves, and the results of
Hasimoto and Ono [5], Qi-su [7], and Mohamed and El-
shehawey [29] are extended.

2. Formulation of the Problem

We consider the two-dimensional wave motion on the
interface y =0 between the two superposed dielectric
fluids with uniform depths, the upper fluid having the
density p@, dielectric constant € and being bounded
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by the conducting plane y = b, which is raised to the po-
tential V,, whereas the lower fluid with density p“’, di-
electric constant £ is bounded from below by an earthed
conducting plane y = —a,. As a result of the potential dif-
ference between the planes, both fluids are subjected to
a constant electric field normal to the interface E{> and
E{", where the superscripts 1 and 2 refer to the lower and
upper fluids, respectively.

If the two fluids are assumed to be inviscid and incom-
pressible, and the fluid motion being irrotational, then
there exist velocity potentials ¢U)(x, y, t) within the two
regions such that v = V¢"_ Since the system is stressed
by a normal electric field, we shall assume that it allows
for the presence of surface charges at the interface such
that £VED # PEP.

We shall assume that the quasi-static approximation is
valid and the electric field E is irrotational. The electric
potentials Y’ are defined such that

EV =—E{)e, ~Vy),

1)
EU) = Voe! |
0 ~ ,.(2) (1) ’ (1)
(e'“ bo +E a())
where e, is the unit vector in the y-direction.
The basic equations relevant to our problem, are
) 1) — (j (J) —
ol +94) =0 and yY +y{) =0,
j=1.2. @)

where j = 1, 2 represet the regions —h <y < n(x, t) and
n(x, 1) <y < by, respectively, y = n(x, ?) is the elevation
of the interface measured from the unperturbed level, and
t denotes the time.

The various physical quantities are normalized with
respect to a characteristic length I = (T/p"g)""* and a
characteristic time 7. = (I/g)""* and the characteristic po-
tential functions ¢. = (g/°)""?, y. = (p'Vgl2)"?, where g
is the acceleration due to gravity acting in the negative
y-direction and T is the surface tension. Hence we have
=10, t=tt, ¢V = ¢.¢/ and y¥ = y 'V, where I,
7, ¢V and y’? are dimensionless; next we drop the
primes for simplicity.

The boundary conditions at the interface y = n(x, ) are
(36]

M -0y +n,0Y) =0, j=1,2, 3)

e (W, )+ (e )) =10 ((Eo ) 4)

N ((ew,))—((ewy))=0, ®)
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p'", and {-)) represents the jump across

where p=p
the interface.

The solutions ¢, Y/ of (2) must satisfy the follow-
ing conditions at the boundaries y = —a, b:

¢§,”, ;f’zo on y=-a,b, @)
where a and b are the dimensionless quantities for the
depths.

To investigate the modulation of a weakly nonlinear
wave with narrow band width spectrum, we employ the
method of multiple scales [37] by introducing the
variables x,=£€"x and t,=£€"t, (n=0, 1, 2, 3), and
expanding 7, ¢ and w", j = 1, 2 in the asymptotic se-
ries

F(x,y,t)=

3
2 E"F,,(Xo,xl AT

n=l

+O(&Y), 8)

XN,y,t(),t] ,...IN)

where the small parameter € characterizes the steepness
ratio of the wave, and the expansion of 71 according to
(9) is independent of y.

Expanding now the boundary conditions (3)—(7) into
Maclaurin series expansions around y = 0, then substi-
tuting (8) into (2) and the boundary conditions (3)—(7),
and equating the coefficients of equal powers in €, we
obtain the linear and successive nonlinear partial diffe-
rential equations for 7,,, ¢, and w'® [36]; they will not
be given because they are very lengthy.

3. Linear Tlieory

We assume that there is no steady flow in the undis-
turbed state, so that we choose the following quasi-mono-
chromatic wave as the starting solutions to the first or-
der problem

n  =io A+ c.c., )

(1) _ @cosh(ky+a’) . o (1
=— = A"’ +c.c.+ By,
L kcosha’ ! (10)

) = QOShy=b)) 01 ooy o 4 B®, (11)
kcoshb” 0o,
y® =g SO oy (12)
cosha’
@ B G sinhy=b") yo o 13)

(o) coshb’

where a’ = ka, b’ = kb, 0, =tanh a’, 0, =tanh b’, and
6 (= kxy — wty) is the phase of the carrier wave, k and @
being, respectively, the wavenumber and frequency of
the centre of the wave packets, and c.c. stands for the
complex conjugate of the preceding term (or terms), and
i is the imaginary unit. Here, the complex amplitude A
and the additional real constants B’ (which represent the
arbitrariness associated with the velocity potential) are
functions of the slow scales x;, x,, t,, and #,.

In order that the starting solution should not be trivi-
al, the wavenumber k and the frequency @ must satisfy
the dispersion relation

=1
2={l*£J
o Oy
vZ v?
~|:1—p+k2—k[—2+—'ﬂ,
o, O

2 _ . (HpG)?
Vj =eVE)" ,

(14)

where
i=12.

The dispersion relation (14) was initially obtained by
Melcher [25], Mohamed and Elshehawey [29] (for the
case of two-dimensional, semi-infinite fluids), and also
by Qi-Su [7] (for the corresponding hydrodynamical
case, i.e. when EY = 0 or £ = £€?). The critical wave-
number k. at which @ = O1is the linear electrohydrodynam-
ic cut-off wavenumber separating stable from unstable dis-
turbances. For a numerical discussion of the dispersion
equation (14), we have a transition curve, namely

5)

v W
k* —k(—i+—'—]+(1—p)=0.
(o) (o]
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Fig. 1. Stability diagram for the linear case in the k-p plane for
some values of the electric field variations VZ, V2, and the den-
sn rat10 p> 1. The curve in Fig. 1 a corresponds to the values

=V%=0. The solid, dashed, dot-dashed, dotted and 3
dot dashed curves in Fig. 1b correspond respectlvely to the val-
ues VZ=0.05, 0.1, 0.15, 0.2 and 0.25 where V7 = 0.009 and
a=b=09.

From (15) we calculated the values of k corresponding
to some different values of V7 and V3 in the cases when
a’ =b",a’ >b and a’ < b’, respectively, for values of the
density parameter p > 1. We plotted the neutral stability
condition (15), separating the stable S and unstable U re-
gions. Figures 1 and 2 are the stability diagrams for the
linear case in the k — p plane for different values of the
electric field variations.

Figure 1a is drawn for the case of no electric field in-
fluence, i.e. V{ = V3 = 0 for any depths of the fluids. The
resulting curve represent the neutral curve separating the

nzz{w’wn)aﬁm?_@é

k a.Xl w at]
() __ia)(ky+a’)sinh(ky+a')aiAe,-9 B in(1+0})
. k? cosha’ ox, 2ko,

D) = 100 [(k_v—b’)sinh(ky-
: k%o, cosh b’

. 3 2
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2k0'2 (o)

1) E(,)Hsinh(k_v+a')+(ky+a')cosh(ky+a')}

b9 | [L'_L'
- o, O3
cosh2(ky—b")
cosh2b’
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+ 20 (1+o7)

A+ko
20, ( 1)

cosh2a’

}zie +AA%e?® ycc 4+ &y,

(A+koy)

a_A+sinh(k_v+a')a_A oif
ox, wcosha’ dr,

Sih2(ky+a ) 42,208 40
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stable and unstable regions. Figure 1b is drawn for the
case of equal depths (i.e. @’ = b" = 0.9), and the resulting
curves correspond to the electric field values V3 = 0.05,
0.1,0.15, 0.2 and 0.25, respectively, with V = 0.009. It
is clear from Fig. 1 a that increasing the electric field val-
ues increases the unstable region, i.e. the electric field
has a destabilizing effect.

Figure 2a is drawn for the case when the lower depth
is greater than the upper one (i.e. a’ > b’, where ' = 0.9
and b" = 0.3), while Fig. 2b is drawn for the case when
the lower depth is less the upper one (i.e. a’ < b’, where
a’ =0.3 and b’ = 0.9). The resulting curves in Fig. 2 cor-
respond to the same values of the electric field mentioned
inFigure 1b.Itisclear from Fig. 2 that the normal electric
field has usually a destabilizing effect and that the effect
is stronger or faster in the case a” > b” than the other cas-
eswhena' <b anda’ =b".

Now, to derive the equation for the evolution of trav-
elling waves, we need to proceed to the second order and
higher order problems.

4. Second Order Solution

Since our aim is to study the amplitude modulation for
travelling waves when @ >0, we now proceed to the
second order problem in O(£?). With the use of the first
order solutions given by (9)—(13) on the right-hand sides
of the second order equations, and solving the resulting
equations, the second order solutions 17,, ¢’ and y%’
(j=1, 2), take the form

(16)

cosh2(y+a’) 42,208 4 oo 4 BV, (17)
cosh2a’ )

coshb’

cosh(ky—5b") a—Ae'e
8x|

(18)

21 9
2629 4p.6.% Bé",

(19)
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(o] (o) kcoshb’

EY (1+02
_Eo ( 7) A

20, o, cosh2b’

where &, (which represents the induced mean motion or
the zero frequency correction to slow modulation of the
fundamental mode), and BY’ are real functions of the slow
scales x,, x,, t;, and t, to be determined by considering
the equations of higher orders, and

i {1, 5.3 302(, PO}
A=—| —w?c?(1-p)-22—|1-2=L [ (2D
Gl[z A [ J

kzof{vf V2
+ -2.(3-02)--L-(3-0?
2 2 1 2
2 | o? o}

where

2
G, =“’T(ol +p0oy)-3k2 +k{V2202 +Vlo }

(22)

On substitution from (16)—(20) into the last condition

of the second order equations, we obtain the non-secu-
larity condition, which consists of two parts; one is

oA, 04 _

=0
a[l o axl (23)

together with its c.c., where v, (= dw/dk) is the group
velocity of the wave train, and the other one is

(1 (2)
1 9B

ot g o

(1-p)&, + +G,|A* =0, (24)

where
w2 w
ool g )44
1 2 2 1

2 _ 2 2 .
$?=c2(1-0?), j=12.

and

Equation (23) implies that, to the lowest order in £, the
complex amplitude A remains constant in a frame of re-

2) _&H(g_’_b_’*_1)sinh(ky—b’)+(ky—b')cosh(ky—b’)}aA

2N s ’
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Fig. 2. Stability diagram for the system considered in Fig. 1b,
but with (a) a’=0.9, b’ =0.3, and (b) a’ = 0.3, b"=0.9.

ference moving with the group velocity v, of the waves,
that is, A depends on x; and ¢, only through { defined as
{=x;—vgt; = E(x—v,1). In(21), the case when G, = 0,
for which 17,, ¢ and w5’ become infinite, corresponds
to the case of second harmonic resonance which can be
dealt with along the lines outlined by Singla et al. [20],
in another problem of interest. Such a kind of resonance
in our case will be discussed separately in another paper
in the near future. In this section, we have assumed that
this quantity is different from zero in (16)—(20).

5. Third Order Solution

Let us proceed to the third order problem. Introduc-
ing (9)—(13) and (16)—(20) into the third order pertur-
bation equations and solving the resulting equations, we
obtain the third order solutions 73, (31 ) and |//(3j ) as indi-
cated in the Appendix. On substitution from (A.1)—(A.5)
into the last condition of the third order problem, we ob-
tain the non-secularity condition from the coefficient of
e'% that is
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2_w(1+eﬁ) a_A+vga_A}_L(1+p°'1 ]a A_Zis, V_x(Heﬂ) ro G[HLJ_&”
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where

(6,+0,)2+0,0,) po(1-26%) (1-20})
G3=a)2{A(p 1 702 iy}, 10-2 2) o_l
) 2 1

p(o3 -o}) pol(2-703) (2-70})
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k2V220']
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1-20}
—kzv,z{gmg(z—wf)}.
(2

Furthermore, from the non-secularity condition for 1;, we have
*._b’) 3B 3 Al
&.}.M—lz + 2(00'[ (]’_ ﬂ.)—‘ =0.
at, k axl (o) aX] (26)
If we assume that &, B{’ as well as A depend on x, and #, only through {=x, — v, 1,, (26) yields
aB(j)
{a'b"(1-p)—kvy (b"+pa’)}—L—=

o¢
k{z“’k’"";"‘ t92) 12 (p.1)-200,(1- p)(b',—a’ 01103 ) +ve (=b" . )Gy Y| A2 + £, (xa .12,
2

(27)

where we assume vi‘ #ab(1 - p)/(b+ pa). The slow
functions f; (x,, 1) in (27) are to be determined under ap- {r=x-v,1, and T=1,, we obtain finally a nonlinear
propriate boundary and/or initial conditions of the prob- ~ Schrédinger equation

lem under consideration. Hereafter, however, we omit

9
these terms, since they can be eliminated from the final iaA + U a—H‘;i +v|A \2 A=0, (28)
result by a simple transformation [38] and cause no ef- a7 Cle
fect on the stability characteristics. Then &, 9BY"/0x; in  pere
(25) can be expressed in terms of A. Using (23) and (24),
introducing the expressions for &, dB{"/dx, into (25), 1 dvg

= —— 29
and assuming that A depends on x, and t, through # 2 dk s
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and

-1
sz(H&) Gy + 4
20\ o, {a’b’(1-p)—kv2 (b’ + pa’)}

2 2
o, )

x

. {kzwzpol(ol +03)> ,_ko’ci(1-p)

where v is the nonlinear intercation coefficient; it should
be noted that this coefficient becomes infinite and the
perturbation scheme becomes invalid for values of &, p,
&, EQ, a and b which satisfy vZ— ab(1-p)/(b+pa)=0,
which indicates that the group velocity of the wave train
(i.e. v,) coincides with the phase velocity of the infinite-
ly long waves (i.e. ) ab(1 - p) /(b + pa)). In this case we
have to modify the perturbation expansion so as to avoid
the trouble of undboundedness. It is interesting to note
that this case is expected to indicate a kind of resonant
interaction between the group and phase velocities (i.e.
between the short and the long waves); such a modifica-
tion may be possible following the same lines as in [39].

6. Numerical Discussion

Equation (28) describes the nonlinear self-modulation
of the capillary-gravity waves on liquid layers of uniform
depths. It is interesting to note that the two coefficients
M and v are responsible for the modulational instability
of a nonlinear plane wave solution of (28). The original
wave train is stable or unstable if yv is positive or nega-
tive [5]. The nonlinear Schrodinger equation is well
known to admit various types of envelope solitons ac-
cording to the sign of uv.

(a) In the case of uv >0

Ag(£,1)=

Agsech(K, {)exp{i(vad/2)7} @31

with
K, =vA2/2p.

This convex envelope wave is called a bright soliton.

b) In the case of uv <0
|Ap (¢, 7)|* = A2 — A2sech® (K _{) (32)

with

K_=\-vA212u, A.>Ay>0.

This concave envelope wave is called a dark soliton or
envelope hole. In this case, a shock type solution called

(pa’cl +b'c3 )+1‘9vg(pa’cfl -b'0, )G, -

(30)
a’b

GZZ} \
(o) 40,

a phase jump also exists:

Ap(£.7)=Ag tanh(K _{)exp(i(AJv)T). (33)

The above envelope waves all stand steadily in (§, 7)
space.

If in the nonlinear Schrodinger equation (28), we take
the limit when ka — —oo and kb — o (i.e. G}, 0, = 1),
we recover the results obtained earlier by Mohamed and
Elshehawey [29]. The results of Qi-su [7] for the corre-
sponding pure hydrodynamical case can be obtained by
setting EY’ = 0 or £ = &2 in the nonlinear Schrodinger
equation (28). We should also remark here that for ideal
fluids, in the limit of no capillarity, (28) recovers the re-
sult for the gravity waves obtained earlier by Tanaka [8].

As we mentioned before, the original wave train is
stable or unstable if uv > 0 or uv < 0. The stability char-
acteristics change critically depending on the values of
Eg), eV, p, k, a, and b. The stability chart in the k— p
plane is divided into stable and unstable regions bound-
ed by the curves.

©=0 (34)

and

v=0. (35)

We observe from (35) and (21) that v changes sign across
the transition curves

G, =0 (36)

and

kv (b +pa’)-a’b’(1-p)=0, (37)

which represent the third and fourth transition curves in
the stability diagrams. We note from (29) and (30) that
the stability of the system does note depend on which one
of the fluids has a larger dielectric constant. We comput-
ed the relations (34)—(37) for different values of ij in
the three cases a’ = b’, ' > b" and a’ < b’, respectively,
for values of the density ratio p < 1. In the graphs, we
plot the neutral stability conditions (34)—(37). Fig-
ures 3—9 represent the stability diagrams in the k- p
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Fig. 3. Stability diagram for the nonlinearity effect in the k-p
plane for p < 1 and @’ = b" = 0.9. The solid, dotted, dashed and
dot-dashed curves represent respectively equations (34)—(37),
when (a) Vi =V3=0,(b) V= V3=0.009,and (c) Vi = 0.009,
V3=0.04.

plane, due to the nonlinearity effect and the presence of
the electric field, drawn for the three casesa’ = b",a’ > b’
and a’ < b’, respectively. Figures 3—5 represent the case
a’ = b’ (i.e. with two equal depths, wehre @’ = b" = 0.9).
In this case the resulting curves from (34)—(37) are rep-
resented by the solid, dotted, dashed and dot-dashed
curves, respectively, and we notice that there are two dot-
ted curves which correspond to (35), we refer to them as
the upper and lower parts of the dotted curve.

M. F. El-Sayed and D. K. Callebaut - Nonlinear Electrohydrodynamic Stability

In Fig. 3a, where V = V3 = 0 (the pure hydrodynam-
ical case), there are three stable regions between the
curves, the first region S, is above the upper part of the
second curve, while the second stable region S, is
between the first and the fourth curves, and the third re-
gion S is between the third curve and the lower part of
the second curve, respectively. There are three unstable
regions too, the first region U, is between the upper part
of the second curve and the fourth curve, the second un-
stable region U, is between the first and the third curves,
and the third region U; is under the lower part of the
second curve. In Figs.3b,c, where Vi =0.009 and
V2 =0.009. 0.04, respectively, we note that the solid
curve goes up slightly, creating a new unstable region U,
which increases due to increase the electric field values,
and the regions S, S; decrease, while region S, increas-
es; and the region U, decreases while the regions U, and
Us; increase. We note also that the upper part of the dot-
ted curve and the fourth curve coincide at p > 0.8 and al-
so the lower part of the dotted curve and the second curve.

In Figs. 4 we have Vi = 0.009 and V3 = 0.08, 0.15 and
0.3, respectively. The resulting curves here have the same
behaviour as the curves in Fig. 3, but in addition we find
that region U, increases and region S, in Fig. 4a is splite
into two regions S5 as in Figs. 4b, ¢, where the first re-
gion decreases and the second one increases due to the
increase of the electric field values. A new stable region
S, appears in Figure 4c.

In Fig. 5a, where VZ = 0.009 and V3 = 0.5, the curves
still have the same behaviour as in Fig. 4, and we notice
that the new stable region S, increases due to the increase
of the electric field. In Figs. 5b, ¢, where V{ = 0.009 and
V3=0.8, 1.0, respectively, we find that the solid curve
drops and changes the situation mentioned in the previ-
ous figures where regions S,, U, disappear and regions
S, and S, increase. The first region of S3 diminishes and
the second region increases, and region U, changes its
place. A new unstable region Us appears due to the in-
crease of the electric field values. In Fig. Sc, we find that
regions S, U,, and Us increase, while regions U, Us,
and S5 decrease, creating a new stable region Ss.

Figures 6 and 7 represent the case a’ > b’ (i.e. when
the lower depth is larger than the upper one, where
a =09, =0.3). In Fig. 6a where V{ = V3 =0, we no-
tice that we get curves quite similar to those in Fig. 3a
for the case @’ = b’, but in this case we have four stable
regions and four unstable regions due to the intersection
of the upper part of the second curve with the fourth curve
(at p = 0.12) producing two unstable regions U, instead
of the first unstable region U, in the previous case, and
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Fig. 4. Stablllty diagram for the system con51dered in Fig. 3,
when V, =0.009, but with (a) V2 =0.08, (b) V2 =0.15,and (¢c)
Vi=03.

we call them the first and second parts of the first un-
stable region U,. Also the intersection of the lower part
of the second curve with the third curve (at p = 0.13)
produces two stable regions S5 instead of the third stable
region, and we call them too the first and second parts of
the third stable region S;.

In Figs. 6b, ¢, where V= 0.009 and V3 = 0.005 and
0.009, respectively, we notice that as in the previous case,
the increase of the electric field slightly decreases the
first stability region S, and the first part of the third re-

1
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05 |
k 0.2

0.1 }
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0.05 }

Fig. 5. Stablhty diagram for the system consndered in Fig. 3,
when V, =0.009, but with (a) V2 =0.5, (b) V2 =0.8, and (c)
Viz=1.

gion S3, while it increases the second stability regon S,
and the second part of the third region S;. The two parts
of the first unstable region U, decrease and the second
unstable region U, increases while the third unstable re-
gion Uj decreases. The solid curve turns out at p = 0.9,
creating a new unstable and stable regions U, and Sy, re-
spectively, under it with further increasing of the electric
field values as shown in Figures 7.

In Figures 7, where V= 0.009 and V3 =0.03, 0.055
and 0.08, respectively, we note that the behaviour of the
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Fig. 6. Stability dlagram for the nonlinearity effect in the k-p
plane for p< 1anda” = 0.9, b” = 0.3. The solid, dotted, dashed,
and dot-dashed curves represent respectively ~equations
(34)- (37) when (a) V1 =V3=0, (b) Vi =0.009, V3 = 0.005,
and (c) V{ = 0.009, V3 = 0.009.

different curves and regions is still as before except that
the solid curve goes up slightly, creating two new regions,
one being unstable U, and the other one stable S, under
it as in Figure 7a. It is clear from Figs. 7b, c that the in-
crease of the electric field increases the new unstable re-
gion U, while it decreases the new stable region Sy; i.e.
the normal electric field has a destabilizing effect in the
two new regions.

Figures 8 and 9 represent the case a’ < b” (i.e. when
the lower depth is smaller than the upper one, where
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Fig. 7. Stability diagram for the system considered in Fig. 6,
when Vl =0.009, but with (a) V7 =0.03,(b) V‘) =0.05, and (¢)
V') =0.08.

a’ =0.3,b" =0.9). Figure 8 are drawn for the electric field
Vi =0.009 and V3 = 0.005, 0.02 and 0.06, respectively.
We notice that the curves have the same behaviour as in
the case @’ = b’ (i.e. we have three stable regions S, S,
S5 and three unstable regions U, U,, Us), and due to the
increasing of the electric field as in Fig. 8b, the first and
the third stability regions S; and S3 decrease while the
second stability region S, increases; and the three in-
stability regions U, U, and Uj increase. Also the solid
curve goes up slightly, creating two new regions, one is
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Fig. 8. Stability diagram for the nonlinearity effect in the k-p
plane for p < 1 and @’ = 0.3, " = 0.9. The solid, dotted, dashed,
and dot-dashed curves represent respectxvely equations
(34)- (37% when V= 0.009 and (a) V3 = 0.005, (b) V3 = 0.02,
and (c) V5 =0.06.

stable S; and the other one is unstable U, as shown in
Figs. 8b, c in which the increase of the electric field in-
creases region U, while decreases region S;.

In Figs. 9, where V,2 =0.009 and V% =0.1,0.2and 0.3,
respectively, we notice from Fig. 9a that the unstable re-
gion U, increases while the stable region S, decreases
due to the increase of the electric field. Further values of
the electric field produce a new stable regions Ss, S¢ and
an unstable region Us, as shown in Figure 9b. In Fig. 9c,
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when Vi =0.009, but with (a) V3=0.1, (b) V3=0.2, and (c)
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we find that in addition to the previous behaviour of the
curves, the three new regions Ss, S¢ and Us increase due
to increasing the electric field, and also a new stable re-
gion S, appears.

Thus the effect of the electric field is the same in all
the cases for small values of the electric field; and for a
fixed value of V? and after a definite value of V3, the ef-
fect of the electric field is different from one case to an-
other, and it is stronger in the case when a” > b’.
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7. Amplitude Modulation of Standing Waves

When £ tends k.., @ tends to zero, so that the group ve-
locity v,, and the coefficients u and v given by (29) and
(30), respectively, become infinite. Therefore the preced-
ing obtained results are no longer valid near the cut-off
wavenumber k = k., and we need to modify the preced-
ing analysis to obtain the suitable equation for the com-
plex amplitude near the cut-off wavenumber. Since we
are concerned with waves near k = k. and @ = 0, the car-
rier wave is not travelling, but standing, hence we choose
the starting solutions to the first order problem as

m  =io Ae* +c.c., (38)
o' =B, j=12, (39
V/:” Eol)mf\e”‘w“ +c.c., (40)
cosha
o __iEg*)o sinh(key—b")
1 o, coshb’
e e, @D

instead of (9)—(13), where a’ = k. a and b" = k_b.
Proceeding as before, we can get the uniformly valid
solution of the second order problem in the form

N, =AA%e?*k%0 1 cc +&,, (42)

(1) _icosh(key+a’) 9A ik x,
O et R X:
- k. cosha” o

+c.c.+B£l), (43)

_icosh(k.y—b") 0, 0A
k. coshb” o, o

+c.c.+B;_2).

e ik.xg

o) =
(44)

0 EV(+o})
. 20,

. sinh2(k.y+a’)
cosh2a’

(A+keo})

-
Ale?ke¥o ycc,

k.o}
0>

o) €
AZe?kxo e

(45)

5 E¥ (14072
yy) =-—2 (+o2)f 4
4 20,
_sinh2(k.y-b")

(46)
cosh2b’
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where

k2ol | o 2 1 2f 21
A=y frots [ PR i
2 { 2 g S . ol of

{vio, +V120'1)—3kc} (47)
under the non-secular condition
94 _p, (48)
axl

which shows that the complex amplitude A is indepen-
dent of the first slow scales x,. This should be compared
with (23) for the travelling waves.

Let us now proceed to the third order problem. After
straightforward calculations, the requirement that the
third order perturbation be non-secular yields

8 %A _ 2
+u*——=v*lA|"A+RA, (49)
5, TF a2 |A|
where
1 9%k
T .3 (50)
a 28602 w=0
-1
2
e _ke 3%k (ug)
2 do” |yoo\ O O
344 2 2 2| 2 1
J Lpdal —R2AVE| =5
[2 ‘ {2[03 S%]
2 1
—V2 +—
‘(Gf St ]}
2kde2{ 2 [%-1}-'[%—1) ]
2 S2 (o] Sl
(51)
and
__k 9% (L+ij_l
2 awz ©=0 (o] (o)
i V{—V]j E(xy,15), (52)
Sy 8

where E(x», 1,) is a constant in the slow scales x; and #,.

Equation (49) is also a nonlinear Schrodinger equa-
tion, with time and space variables interchanged and
hence furnishes the amplitude modulation of standing
waves. The linear interaction term RA in (49) causes on-
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ly a phase shift and thus can be removed by using the
transformation

A(xy 1 )=Aexp[—ifR(x§)dx§j. (53)

The nonlinear Schrodinger equation (49) now takes the
form
2
i9A Ly OA x4

54
aXZ atl %)

We now examine the plane wave solution of the form

’ _ - AR(xﬁ)dxﬁ
A(xy,t; )= Bye'(Fx2=Th)e I ,

(55)
where B is acomplex constant, and K and I"are real con-
stants representing respectively the wavenumber and fre-
quency shifts.

On substituting (55) into (54), we get the dispersion
relation

2 =—(K+v*[By[*)/u*. (56)

For I' to become imaginary, we must have
K< v*IBolz. Combining (55) with the carrier wave, we
can determine the “nonlinear” cut-off wavenumber as

2 -1
€[Bo|” 3% (L+L)
8 o O3

kn =k{l+ 7 30

w=

< ) 2 2 1 2
| 2xba? —k2AIVE| = 4— |-V
{2“ C{z{dﬁ 522] '[

£2 2 ’ ’
£ [R(x3)dx3,
X2

which shows that the nonlinear cut-off wavenumber k,
depends sensitively on the initial condition with respect
to t,. It is clear that the bandwidth of the spectrum is of
O(€) in the frequency space for the standing wave, i.e.
it is of O(£?) in the wavenumber space.

8. Conclusions
In this work, we have investigated the nonlinear elec-

trohydrodynamic stability of interfacial capillary-grav-
ity waves of two superposed dielectric fluids with uni-
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form depths and solid walls under the influence of a nor-
mal electric field and in the presence of surface charges
at the interface between the two fluids. In the linear elec-
trohydrodynamic case, which s studied analytically else-
where [25], we found (numerically) that the normal
electric field has usually a destabilizing effect, and this
effect is stronger when the depth of the lower fluid is
greater than the depth of the upper one. The dielectric
constant ratio does not play any significant role in the
linear stability case studied here, in contrast with our pre-
vious result in the case when the surface charges on the
interface are absent [36].

It is also found that the complex amplitude of quasi-
monochromatic travelling waves can be described by a
nonlinear Schrédinger equation in a frame of reference
moving with the group velocity. The stability character-
istics of a uniform wave train are examined both analyt-
ically and numerically on the basis of the nonlinear
Schrodinger equation, and we found that the stability of
the system does not depend on which of the fluids has a
larger dielectric constant. We studied the three cases
when the depth of the lower fluid is equal to or greater
than or smaller than the depth of the upper fluid, respec-
tively, in the case of presence (and absence) of the nor-
mal electric field force when there are surface charges at

(57)

the interface. We found that the effect of the normal
electric field is different for different regions or stability,
depending on the values of the density ratio p, the wave-
number k, the depths of the two fluids a and b, and the
electric field values V# and V3.

In the first and the third cases, whena’ = b"and a’ < &',
respectively, the stability diagrams when VE, V3i=0are
divided by three stable regions and three unstable re-
gions; and for small electric field values we found that
the electric field has a destabilizing effect in the first and
the third stability regions while it has a stabilizing influ-
ence in the second stable region. Two new regions ap-
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pear, one of them is stable and the other is unstable, and
they increase due to increase the electric field in the case
a’ = b’, while the new stable region decreases and the un-
stable region increased if a’ < b”. For a fixed value of V'{
and after a definite value of V%, the distribution of stable
and unstable regions in the first case @’ = b’ changes and
two more stable and unstable regions appear and in-
crease; while in the third case @’ < b’, only two more
stable and unstable regions appear and increase due to
increase the electric field.

In the second case a’ > b’, the stability diagram is di-
vided by four stable and four unstable regions, and the
effect of the electric field is destabilizing in the first stable
and the first part of the third stable region, and stabiliz-
ing in the second stable and the second part of the third
stable region. Two newly regions appear, one of them is
unstable and the other one is stable, and the electric field
increases the first new region and decreases the second
new one.

Appendix

The solutions of the third order problem are given by
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Thus the effect of the electric field is the same in all
the cases for small values of the electric field; and for a
fixed value of V7 and after a definite value of V3, the ef-
fect of the electric field is different from one case to an-
other, and it is stronger if a’ > b’. Therefore the normal
electric field, in the presence of surface charges at the
interface, creates some new regions of stability and in-
stability, which were hiden in the corresponding case
when there are no charges at the interface between the
two fluids [34].

We also recovered some previous work and limiting
cases corresponding to, e.g. the pure hydrodynamical
case, the case of two semi-infinite fluids, the case of cap-
illary waves, etc.; and the results of the linear theory are
confirmed. We treated our problem too in the case of
standing waves near the cut-off wavenumber, which is
governed also by a nonlinear Schrodinger equation with
the roles of time and space are interchanged. We finally
determined the nonlinear dispersion relation and the non-
linear effect on the cut-off wavenumber.

iy = _i(4a’+0,)9%A i(a’+o0y) ’A _;0A | _i01]109°A ;04
’ 4k> ax? k wax]at, ] o |eal A1)
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3 7 kcosha’ el 2%)
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where here and hereafter NSPT represents terms that do
not produce secular terms, and &3, BY" and B{ are real
functions of the slow scales x|, x,, #; and t, to be deter-
mined by considering the equations of higher orders.
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