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The general structure of thermodynamic equilibrium states for a class of quantum mechanical 
(multi-lattice) systems is elaborated, combining quantum statistical and thermodynamical methods. 
The quantum statistical formulation is performed in terms of recent operator algebraic concepts 
emphasizing the role of the permutation symmetry due to homogeneous coarse graining and 
employing the internal symmetries. The variational principle of the free energy functional is 
derived, which determines together with the symmetries the general form of the limiting Gibbs 
states in terms of their central decomposition. The limiting minimal free energy density and its 
possible equilibrium states are analyzed on various levels of the description by means of convex 
analysis, where the Fenchel transforms of the free energies provide entropy like potentials. On the 
thermodynamic level a modified entropy surface is obtained, which specifies only in combination 
with its concave envelope the regions of pure and mixed phase states. The symmetry properties 
of a certain model allow to specify the (non-) differentiability of the minimal free energy density. 
A characterization and classification of phase transitions in terms of quantum statistical equilibrium 
states is proposed, and the connection to the Landau theory is established demonstrating that the 
latter implies a (continuous) deformation of the sets of equilibrium states along a canonically given 
curve. 

1. Introduction 

The thermodynamical systems which are investi-
gated here consist each of a finite set of sublattices of 
equal size, the points of which are combined to certain 
cells. The observables of each cell constitute finite 
dimensional algebras, which together tensorize to a 
Glimm algebra [1] in the thermodynamic limit as the 
quasi-local algebra A. This type of algebra has a state 
space which contains overcountably many classes of 
macroscopically different (i.e., disjoint) states and is 
thus rich enough to frame a thermodynamical theory, 
in contrast to ordinary Hilbert space quantum statis-
tics [2], 

In order to derive a thermodynamic formalism from 
the microscopic set up a coarse graining procedure 
has to be introduced in some way or the other. For 
our quantum lattice systems we assume as the macro-
scopically accessible data the averages of the spin 
resp. particle number observables over the lattice. The 
expectations of these averaged one-cell quantities, 
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called mean-field observables here, exist only in suf-
ficiently homogeneous states. States with too large 
fluctuations "at infinity", that is at the asymptotic lat-
tice boundary, may produce oscillating values for the 
mean-field observables preventing convergence in the 
infinite-lattice limit. Since these observables have not 
well-defined expectations on the whole of the state 
space they cannot belong to the quasi-local algebra A. 
In fact, they belong to the weak closures of the basic 
lattice algebra in certain representations. 

Independently from any representation the values 
of the mean-field observables induce classes within 
the set of sufficiently homogeneous states. These 
classes are then candidates for the concept of macro-
states, a concept which is not confined to the equilib-
rium situation. For a simple analytical treatment we 
choose the completely homogeneous states, which are 
invariant against all finite permutations of the set of 
lattice cells, as the distinguished representatives of the 
macro-states. The following formalism is developed 
from the point of view of the homogeneous states, the 
set of which is denoted by S P (A) . 

For the selfconsistency of our theoretical frame 
the interaction between the lattice particles, tested in 
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states from 5P(J3), must also be considered as homo-
geneous on each sublattice, i.e., as invariant under the 
permutation of finitely many cells. The generaliza-
tion of the concept of homogenous n-body potentials 
leads then to the notion of approximately symmetric 
nets for the family of local Hamiltonians per vol-
ume [3]. The described permutation group represents 
the basic spatial symmetry of our model class. It re-
places in some sense the translation group of the more 
common lattice systems with decreasing interactions, 
subsumed here under the notion of short-range inter-
acting systems. 

For short-range quantum lattice systems the opera-
tor algebraic quantum statistics is well developed (cf., 
e.g., [4-6] and the references therein). Their equi-
librium states can be equivalently characterized as 
KMS-states of a C*-automorphic dynamics in the 
quasi-local (Glimm) algebra or as tangent function-
a l on the convex surface formed by the so-called 
pressure (negative free energy) in dependence on the 
interaction potentials. 

Our model class, however, requires many techni-
cal modifications and is less treated in the operator-
algebraic literature (c.f., e.g., [7-10]). The proofs 
for the existence of the specific free energy (and the 
more for the equilibrium states [11-13], and dynam-
ics [14]) in the thermodynamic limit [15, 16], were 
originally very involved. A unifying treatment mak-
ing systematic use of the permutation invariance and 
the variational principle of the free energy functional 
seems to have been first rigorously elaborated in the 
unpublished thesis of Fleig [17], Further develop-
ments in [3, 18, 19] have enlarged the model class 
enormously. 

In this up to now largest class of homogeneous 
models given by the above mentioned approximately 
symmetric nets of Hamiltonian densities, we elabo-
rate in the present work a unified treatment of quan-
tum statistical and thermodynamical aspects of equi-
librium states. Note that, e.g., pure phase states and 
phase transitions are to be introduced in different 
manners on the quantum statisitical and the thermo-
dynamical level, and that their logical interrelations 
are not without fine points. Since the thermodynamic 
equilibrium states constitute in general no simplex, 
it is not so trivial to decide by thermodynamic mea-
surements over the statistical pure phase components. 
Analogously, it is not so obvious how to consolidate 
the thermodynamic differentiability properties of the 
free energy at a phase transition of the second kind 

with the nondifferentiability of the statistical free en-
ergy functional at any phase transition. 

In order to make the formalism, covering several 
levels of desciption, not even more involved we have 
renounced of extending our considerations to weak 
perturbations of homogeneous interactions and states, 
what would have been possible without basically new 
ideas. 

In detail we proceed as follows. 
After having established in Sect. 3 the existence 

of the specific entropy and free energy in the ther-
modynamic limit as functionals of the permutation 
invariant states, some care is invested to introduce 
a finite dimensional parametrization of the extreme 
boundary of this w*-closed compact set in the state 
space because it is the direct link between micro- and 
macro-physics. The variational principle of the free 
energy functional, the self-consistency equations, and 
the symmetry properties can now be investigated in 
terms of these macroscopic parameters. The mini-
mal problem for the mean-field free energy gives 
valuable information on the central decomposition 
of the limiting Gibbs states. In contrast to [17] and 
to all investigations known to us, we include into 
our analysis the case, where the absolute minima of 
the free energy constitute more than one orbit of the 
broken internal symmetries. This gives us the tools 
for treating later on also phase transitions of the first 
kind. 

Section 4 contains four stages of the thermody-
namic formalism: 

The first stage is based on a free energy functional 
which depends on the temperature, the model interac-
tion, and the (possibly non-equilibrium) state. In ac-
cordance with our coarse graining strategy we vary the 
interactions over all approximately symmetric nets of 
Hamiltonian densities. That means, that we are out-
side of the largest Banach space of interactions used 
in [6]. The states are taken from the Bauer simplex 
S P ( A ) which is only a small part of the Poulsen sim-
plex of all translation invariant states. The equilibrium 
values of the free energy are given by the minimum 
over the admissible states for fixed temperature and 
interaction. This is nothing else but the Fenchel trans-
form [20, 21] of the absolute entropy density as an 
affine functional of the homogeneous states. Entropy 
and minimal free energy are equivalent in the sense 
of convex duality. We have tried hard to visualize in 
Figure 4.1, how an affine - and thus unstructured look-
ing - entropy functional is capable of describing in 
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terms of the extreme boundary of its graph the whole 
thermodynamics of a model class. 

The second stage is only a slight coarsening of the 
first one, but leads to a completely classical statis-
tical formalism. The basic linear duality is that of 
the continuous functions on the pure phase states 
of the homogeneous quantum lattice system, here 
parametrized by — the state space of a unit cell 
with observable algebra $ — and the (signed) mea-
sures on SCB). The entropy as an affine functional of 
the measures is the Fenchel transform of the minimal 
free energy as a functional of the (continuous) energy 
function on 5 ($ ) , associated with the approximately 
symmetric net of Hamiltonian densities. Beside other 
things this helps to clarify, in how far a homogeneous 
mean-field model (also often used in quantum field 
theory) is "classical" in spite of having a non-trivial 
quantum dynamics. 

The third stage is reached by the straightforward 
idea to reduce the variation of the interaction to that of 
the external fields. In spite of this quite natural ansatz 
for deriving the thermodynamic level, in which the 
states are now the tupels of the numerical densities, 
the role of the entropy is drastically modified. Since 
now only the linear field part of the interaction enters 
the basic linear duality with the density parameters, 
the Fenchel transform of the (minimal) free energy (as 
a function of the fields) is here the entropy minus the 
internal interaction, both as functions of the density 
parameters. This modified "entropy" is not concave, 
and one has need also for its concave envelope to 
characterize the pure and mixed equilibrium phases. 
This reminds us of the primitive and derived surface 
of the geometric van der Waals-Gibbs formalism. 

The fourth stage arises from the third by restricting 
the field parameters to certain subspaces, which are 
invariant under selected internal symmetries. This re-
duced thermodynamic formalism provides the basis 
for a refined analysis of the (non-) differentiability of 
the free energy function. 

As far as we know, there has been made no attempt 
to give a quite general definition of a phase transi-
tion in the framework of operator algebraic quantum 
statistics but only examples are treated [22]. We are 
incautious enough to propose such a definition in Sec-
tion 5, which seems at least appropriate for all model 
discussions we have encountered so far. For this and 
for the subdivision in phase transitions of the first and 
second kind we use the sets of equilibrium states as 
such. The non-differentiability of the minimal free 

energy function is related to a discontinuous change 
of the set of equilibrium states. These subtle implica-
tions are treated here in terms of the sub-formalism of 
the above mentioned fourth stage. This allows us, to 
discriminate between symmetric and non-symmetric 
subgradients. We finally show that Landau's scenario 
for phase transitions of the second kind may be sub-
sumed under our general definition. Especially, this 
type of phase transition retains differentiability prop-
erties in symmetric subspaces of the field parame-
ters. That in fact our greater generality is required by 
physics has been illustrated in terms of specific multi-
lattice models [23, 24] and will be recalled shortly in 
Section 6. 

Having emphasized the thermodynamical merits 
of long-range interacting models in the thermody-
namic limit let us say a word to the other extreme, 
to the short-range interacting lattice models. That are 
in many cases models with nearest and next-nearest 
neighbour interaction only, the thermodynamic prop-
erties of which seem to be calculable mostly with 
sophisticated numerical methods [25 - 28], Since in 
the latter case just the typical thermodynamical con-
cepts are hard to obtain, the here elaborated ther-
modynamics of the long-range models may serve as 
guiding lines. Just the method of the thermodynamic 
variational principles may be used to clarify further 
the connections between the equilibrium states and 
phase transitions of short- and long-range models, 
where the latter often are intended to approximate the 
former ones [6]. 

2. Homogeneous Interactions and Symmetries of 
Quantum Lattice Systems 

2.1. The Algebraic Structure of the Lattice System 

The thermo-statistical concepts to be developed 
in the following refer in principle to a multi-partite 
quantum lattice system. Its geometric structure enters 
our general considerations, however, merely in terms 
of the symmetry group. Thus we consider a lattice 
in a d-dimensional real vector space indicating every 
lattice point by a d-tupel of integers according to a 
chosen basis. The set of all lattice points is denoted 
by 1Z := 7LD and all finite subsets A C 7Z are elements 
of £:= {A C H | \A\ < oo}, where \A\ denotes the 
number of sites in A. L is a directed set by means 
of the inclusion relation. On each site of the lattice, 
there is a finite dimensional quantum system with 
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Fig. 2.1. Conventional unit cell of the face centered cubic 
(FCC) lattice (cf. e.g. [64]) with the primitive translation 
vectors e\, e2, e3 and the four simple cubic sublattices (the 
FCC lattice is the infinite periodic extension of the above 
cell in the directions of v \ , v i , v3). 

Hilbert space TL = ([" for some fixed n € IN and 
the corresponding observable algebra H is given by 
IM", the n x n matrices. If we consider e.g. a simple 
lattice of spin particles with spin s = 1, . . . we 
have H = (E2s+1 and if we discuss a system of n-level 
atoms, we have TL = (E". 

Depending on a given crystallographic lattice one 
can introduce additional sublattices in the following 
way: Add to the given lattice r — 1 copies of it and 
translate the original lattice by 

d 
= fa, 0 < < 1, k= l , . . . , r - 1, 

where {v; | i = 1 , . . . , d) is the chosen basis. Each 
of the r lattices gained in this way with the same 
translational properties is called a sublattice. A gen-
eralized parallelepiped spanned by the d basis vectors 
{vi I i = l , . . . , d } , called a cell, contains then r 
points each of them belonging to another sublattice. 
An example with d = 3, r = 4 and the sublattices hav-
ing simple cubic structure is shown in Fig. 2.1 and fur-
ther are treated in [23]. Obviously, the Hilbert space 
of a cell is given by H = <8>J=, (tn(<7), n(<?) G IN, and the 
observables for each cell constitute $ = <g)£=1 IM "(<?). 

In the next step we introduce the Hilbert space of a 
finite subsystem of the lattice. For each A EL we set 

TCa := ®ieATLl with Tix = H = <Ln. Corresponding 
to these finite dimensional Hilbert spaces we have the 
local observable algebras 

Aa •= ®ieA®i, with =<B= IMn. 

The usual standard construction of the algebra for the 
infinite lattice is the so-called C*-inductive limit [29] 

A 

where t)a',a '• %-a %-A' denotes the natural embed-
ding-isomorphism 

VA',A(A) :=A®TLa>\A • 

Here A G ÄA and \ A ' is the unit of Aa> for A! GX. 
Taking the limit A' —> oc (that is A' approaches the 
whole of 7v) we obtain the embedding-isomorphisms 
into the limit algebra 

VA A • 

A is commonly also denoted by 

* r r r - 1 1 ' 1 1 -sr"-» A = \JA A =• Ao 
AEL 

and called quasi-local algebra. Observe that a matrix 
A G A a gives after the embedding a bounded algebra 
element i]a(A) G A, which corresponds in a represen-
tation, however, not to a compact operator in virtue 
of the infinite dimensional unit element, which is ten-
sorized to A. In order to avoid an over-formalization, 
we neglect the embeddings tja and consider operators 
A G A a as elements in A and A a as a subalgebra of A. 

For the type of algebra we are going to consider the 
C*-inductive limit is also described in [1] and leads 
to the infinite C*-tensor product of the algebra $ of 
one lattice site (or cell in the case of a multi-lattice). 

Proposition 2.1 (Quasi-local Algebra) 

A=(g)<Bt=: 
ien 

is a Glimm algebra of rank {m(z), i G 7v }, m(z) = n 
for all i G 7Z, with the properties 

(i) A is a separable, simple C*-algebra with unit 
and has a unique tracial state r :A—> (t, 

(ii) A is antiliminary, 
(Hi) A has a trivial center. 
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PROOF: The C*-inductive limit is constructed in [1, 
Chapt. 6.4], (i) [ 1, Prop. 6.4.3], (ii) [ 1, Theorem 6.5.7], 
(iii) is obvious. 

The third statement in Prop. 2.1 indicates that A as 
the smallest algebra of the infinite lattice system con-
taining all local (quantum) observables has no non-
trivial classical observables. The property (ii) charac-
terizes a C*-Algebra, which has many inequivalent 
representations and, in connection with this, many 
macroscopically different states. Both is a prerequi-
site to obtain a nontrivial thermodynamics in the state 
space S(A) of A. (S(A) consists of all linear func-
t iona l ip E A*, which give positive expectation values 
(<P',A) > 0 for all positive elements A E A and which 
satisfy the normalization condition (ip ; 1) = 1.) 

Let us note that the above restriction to matrix alge-
bras IM n as observables of one lattice site is not neces-
sary but avoids technical difficulties in the following, 
comp. [3]. This frame suffices for the treatment of 
examples like usual spin-lattices or CAR-algebras. 

2.2. Local Hamiltonians and their Symmetries 

We start this subsection with the introduction of 
certain symmetry transformations which allow to de-
fine the model class in terms of invariant interactions. 
Two kinds of symmetries are considered: the per-
mutation of lattice sites (resp. cells if a multi-lattice 
is considered) which leads to a homogeneous long 
range interaction and the so-called internal symme-
tries acting on each lattice site (cell) independently. 
Because the main property of our model class will be 
the homogeneity of the interactions, we start with the 
definition of the permutation transformations. 

Definition 2.2 (Permutation Symmetry) 
For all A EL, set P(A) := {<J : 1Z -> 1Z | er bijec-

tive with o(i) = i for all i 0 A}. Then the permutation 
group P is given by P := \J^eL P(/l). P is implemented 
on A as a group of automorphisms Op C Aut(^l) by 
linear and continuous extension of 

ien ieu 

for all o E P, and 0 xx EA0. 
ien 

The model class will be introduced in terms of 
Hamiltonians HA for each finite subsystem A EL 
which are invariant with respect to P(A). In order to 

treat the thermodynamic limit it is necessary that these 
local Hamiltonians have "good" asymptotic proper-
ties for large local regions A. In [3] there were in-
troduced conditions on the local Hamiltonians, such 
that n-particle interactions with arbitrary n E IN are 
included as are those interactions, which are approxi-
mated in norm by the the former ones in the following 
sense: 

Definition 2.3 ((Approximately) Symmetric 
Nets [3]) 

Let Q,A EL with i? C A and jAn '•= pjjr H 
where the summation runs over all o E P(A). Let 
L3 A Xa be a net x with xA E Aa and xa = 
3aa%a for all A EL. Moreover, xa and xA' satisfy 
@ct(xa) = XA' for A, A! EL with \A\ = \A'\ and all 
o E P with o(A) = A', x is called 

(i) a symmetric net (x E y), if there exists ak E IN, 
such that for all A EL with | A\ > k, there is an ft EL, 
Q C A with |i?| = k and xA = Jaq^q. 

(ii) an approximately symmetric net (x E y), if for 
all e > 0, there exists ay E y and an E IN, such that 
for all A EL with |A| > n it holds: \\xA — Va\\ < 

Definition 2.4 (Local Hamiltonians of the 
Model Class) 

A net of local Hamiltonians L3 A —* H \ = H\ 
defines a model of the considered model class, if L3 
A HA '•= HA/\A\ is an approximately symmetric 
net. 

The intuitive meaning of a symmetric net of Hamil-
tonian densities is that for large A the Hamiltonians 
are obtained by symmetric embedding of a fixed k-
particle Hamiltonian. Let us have a look on two-
particle interactions in more detail: Let be n® := 
dim H = n 2 the dimension of $ considered as a vector 
space. With a corresponding basis e := ( e 1 , . . . , en'B) 
of self-adjoint elements of <B, e E IR'1®, w = (wpq) E 
cB(\Rn'B) symmetric we set: 

ieA ' ' i=/keA 

where we use the notation 
n s n® 

£ • ei e v e \ and ex • wek := e^wpqeq
k (2.2) 

P= l p,<j=i 

with ef as the embedding of ep at site i E l Z . l l 
is easy to check that L3 A —> HA/\A\ is a sym-
metric net in y. The main feature of this kind of 
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Hamiltonian is the site independent interaction which 
is also fulfilled for all Hamiltonians in the model 
class. Sometimes it is useful to express H \ in terms 
of density observables myx(x) for some x G $ given 
by mA{x) := jA{k}(xk) = ^ T,ieAxi f o r arbitrary 
k G A. Up to a deviation which is bounded in norm 
for large A, H A may be replaced by H \ 

Hyi := |A| (e • mA(e) + mA(e) • wmA(e)). (2.3) 

D u e to the d e v i a t i o n HA — HA, A —• HA/\A\ n o 
longer defines a symmetric net. Nevertheless, it is still 
an approximately symmetric one. 

A main feature of all approximately symmetric nets 
of Hamiltonian densities is their association with a 
continuous energy function on the set of all pure phase 
states, cf. Remark Often the local Hamiltonians are 
expressed in terms of another net of local selfadjoint 
operators ($x)xeL, the potential, such that 

H A = Y d * x - (2.4) 
X C.A 

The largest Banach space of translation invariant po-
tentials used in [6] is characterized by the finiteness 
of the norm ^ x b o ll^xll / l ^ l - I" [30] it is demon-
strated that the resulting Hamiltonian (2.4) from this 
potential class lead by symmetrization j A A ( H A ) to a 
mean-field model of our considered class. 

The structure of the set of equilibrium states of the 
infinite lattice system strongly depends on additional 
symmetries besides the homogeneity. Therefore, we 
introduce a group H of internal symmetries: 

Definition 2.5 (Internal Symmetries) 

An internal symmetry is defined by an element u of 
the compact group U(2J) of unitary and anti-unitary 
elements ofH acting as Adu — w h e r e 

. , f uxu* u unitary 
Ad u x = < * * . . 

[ ux u u anti-unitary 

U ((B) is implemented on A as a group of (anti-) au-
tomorphisms 0(-1 C Aut(J^) by linear and continuous 
extension of&u(®ienXi) := <g)ien Adu(xl) for all 
u G U (tyandf&j^Xi G Ao. 0u is called compatible 
with a given set of local Hamiltonians {Ha \ A G£}, 
if 

The set of all compatible transformations constitutes 
the internal symmetry group, which is simply denoted 
by H, when the reference to the model is evident. 

Remark 2.6 

The compact group H has a unique Haar mea-
sure p\-\ : C(H) —> C, which becomes relevant if we 
decompose H-symmetric thermodynamic equilibrium 
states. 

Each u G H has a representing matrix M(u) = 
{mkn(u)) with regard to the chosen basis e = 
( e i , . . . , e „ 9 ) defined by 

uenu = mkn(u)ek . (2.5) 
k=1 

M{u) has real matrix elements because e is self-
adjoint and one has M ( u \ u i ) = M ( u \ ) M ( u 2 ) for all 
U\,U2 G H. 

If we consider the above case of a two particle 
interaction Eqs. (2.1 )-(2.3), a given closed group H C 
U((B) is compatible with HA (or HA), A GX, if for all 
u G H holds: M(u)s = e and M(u)wM(u)T = w. 

The total symmetry group of a model from our 
considered class is then given by 

G := P x H and 

( ( T l , M ] ) O (ö"2 , U2) '•= {0\ O (72, U\ O U2) • 

The prescription 

Og : = Ou 0 0a = &a ° @u Vp = ( ( 7 , u) G G 

defines the implementation of G as a group of (anti-) 
automorphisms of A. 

From the general point of view another important 
symmetry group consists of the lattice translations. 
For every j G 7Ld one may define 

ctj( 0 Xi) := ( g ) xl+J1 V ( g ) ^ EAo 
left11 id7Ld i£7Ld 

and take the linear extension and norm closure to get 
a ^-automorphism G Aut(j^). This means that 
every observable Xi at the /-th site is translated by 
a lattice vector with the integer coordinates j G 2 ' ' . 
The translation invariant states 

0 u ( H A ) = Ha, for all A eL S\A) = W G S(A) \ o a3 = V j G Zd} 
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play a great role in the theory of lattice systems [4, 6, 
31]. Here we concentrate on the stronger permutation 
symmetry. 

In the multi-lattice model of [23] there are consid-
ered r equal sublattices (comp. Subsect. 2.1 above), 
which means 

n(q) =: n for all q E { 1 , . . . , r } 

and the group H represents the "restriction" of the 
usual space group of the considered 3-dimensional 
lattice "to one cell" (cf. Fig. 2.1). The space group, 
translating and rotating the lattice points in the usual 
way, induces permutations of the sublattice indices. 
Thus H will contain a subgroup of 

Us, = {un 7R G S r } 

with u n defined as 

r r 

(g)6i .—• (g)bm 

i=i i=i 

and the group of permutations of the sublattice indices 

S r = {IT : { 1 , . . . , r } —• { 1 , . . . , r } | 7r bijective}. 

Other typical examples for an internal symmetry 
are gauge transformations, spin rotations, and (anti-
unitary) spin inversions. 

2.3. Decomposition of G-Invariant States 

A direct method to get insight into the phase tran-
sitions and spontaneous symmetry breaking of our 
models is to construct the equilibrium or Gibbs states 
in the thermodynamic limit. Most important in this re-
spect is the variational principle for the limiting Gibbs 
states [3], see also [17, 18]. Nevertheless, the struc-
ture of these states has only been examined in detail 
for a small number of models, e.g. [13, 23, 24]. In 
contrast to the trivial phase structure of the finite sub-
systems we expect a rich nontrivial phase structure in 
the thermodynamic limit. 

For all ß > 0, the local Gibbs state uß
A E S(A) is 

given by 

( c 4 ; A ) := ( r ; e x p ( - ^ y l ) A ) / ( r ; e x p ( - ^ y l ) ) 

for all A EL and A EA, 

where r is the unique tracial state of Prop. 2.1. Note, 
that uja E S(A) is the unique /3-KMS-state of the 
dynamics arising from the local Hamiltonian H 
Each ^ - a c c u m u l a t i o n point ujß E S(A) of the net 
{uja, A EL} is called a limiting Gibbs state. 

Using the symmetries of our local Hamiltonians 
we find at once the symmetries of the local and the 
limiting Gibbs states: 

Lemma 2.7 

(i) w j o 0 a = ujß
A for all o G P(A) and all A EL, 

(ii) uja o 0U = uja for all u E H and all A EL, 
(Hi) Every limiting Gibbs state ujß is an element of 

5 G ( Ü ) := {uj G 5 ( A ) | u O 0g = uj for all g E G}. 

Note, that the H-symmetry of the local Hamiltoni-
ans Ha is not necessary to induce the G-invariance of 
the corresponding limiting Gibbs state. In [32] there 
are given criteria for the G-symmetry of the limiting 
Gibbs state which are approached by non-symmetric 
local Gibbs states. 

For further analysis one has to decompose the states 
in into easier accessible ones. Fortunately a 
theorem of convex decomposition theory tells us that 
on the subset 

SP(A) = {uj E S(A) | cj o ea - uj, Vcr G P} 

D SC(A) 

of the state space containing the limiting Gibbs states, 
there is a unique decomposition into classically pure 
(i.e. factorial) states. 

Let us recall here, that a state ip E S(A) is 
called a factor state, if in the GNS-representation 
(7^, Tip, f l^ ) (with representation Hilbert space H ^ , 
cyclic vector i?^ and representation morphism : 
A-t-HiH.^)) the von Neumann algebra := 7t^(A)u 

has a trivial center. This indicates, that in the statis-
tical ensemble given by </? the classical observables 
have fixed sharp values and p is classically pure. Two 
states p and ip are called macroscopically different if 
their von Neumann algebras ^ and fM^ contain dif-
ferent classical (central) observables. For every state 
p E S(A) there is a canonical decomposition into 
factor states, which are pairwise macroscopically dif-
ferent (disjoint), the so-called central decomposition 
by means of the so-called central measure. This de-
composition is very important for thermodynamics, 
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since the factor states of the central decomposition 
are interpreted — at least in the equilibrium case — 
as the pure phase states of the system [4, 7], It is a 
great advantage of the class of systems with permu-
tation symmetry, that we have here in any case only 
one decomposition into factor states, which is then 
identical to the central decomposition. A pure phase 
is thus to be identified with a permutation invariant 
factor state. 

Proposition 2.8 

(i) The convex, o(A*,A)-compact set is a 
Bauer simplex, i.e., every LO G SP(A) has a unique 
barycentric decomposition 

UJ= tpdp^tp), 

where the probability measure pu is supported by the 
extreme boundary deS P(A) of S P (A), and is 
w*-closed. 

(ii) For LO G SP(A) the following statements are 
equivalent: 

a) LO is extremal in 
b) LO is a factor state. 
c) LO is a product state: There exists a (j) G S('B) 

such that ui = <S>4>, i.e. 

(u ; ( g ) x^ = {(t> \Xi) , for ( g ) Xi EAo-
ieii ieiz ieiz 

(iii) The decomposition of (i) is the central decom-
position of LO. 

PROOF: [4, Chapt.4] and [33,34], or [ 17, Chapt. 1.3], 

Although the limiting Gibbs states ufi are elements 
o f 5 G ( ^ ) (cf. Lemma 2.7 iii) every tp in the support of 
puß is in general only an element of SG' (A) where G' 
is an (invariant) subgroup of G. That is, the pure phase 
states may have a lower symmetry than the limiting 
Gibbs states lo13, a phenomenon called spontaneous 
symmetry breaking. From Theorem 2.8 it follows, that 
all pure phase states are still in SP(A), giving the 
inclusion relation 

P C G ' C G 

for the symmetry group G' of the pure phases. Al-
though the set P does not intersect with the group of 
lattice translations (with the exception of the unit), ev-
ery state tp G 5P(A) is also translation invariant. The 
simplex of all translation invariant states S \ A ) is less 

well behaved than SP(A), since its extreme bound-
ary is even u>*-dense in SX(Ä), which is typical for a 
Poulsen simplex [35] and contradicts the closedness 
of the extreme boundary of a Bauer simplex. 

In the following sections we are concerned with 
the determination of the states in the support of the 
limiting Gibbs states uod. We close the present section 
with a result which under favourable circumstances 
even determines the central measure. We consider for 
this the mapping 

0*U:DESP(A)^DESP(A), 

{e*u(tp)-A) := fa;©«.(A)) 

for all u G H and A eßL, 

which is obviously a bijection on deS P (A) and define 
for some tp G deSP(A) the orbit 

OH(tp):={0*u(tp)\ueH}. (2.6) 

Proposition 2.9 
For LO G 5 G (A) the following statements are equiv-

alent: 
U)LO Ed e s c m 
(ii) There exists a tp £ deSP(Ä) such that the cen-

tral measure p^ ofuo is concentrated on Oy^(tp). 
If (i) or (ii) is valid, one has (using the Haar mea-

sure py\ of H) 

(Hi) UM) = [ f(Ol(tp))dpu(u) for all f G 
J H 

c u m . 
(iv)LO= f 0*u(tp)dpH(U). 

J H 
PROOF: We give an outline of the main ideas. 
(i)=Kii): If G SP(FT) the average over H 

M(tp):= [ 0*u(tp)dpH(u) 
J H 

leads to an element in SG(Ä). Since M(LO) = LO, the 
convex set 

K u \= { i P £ S P ( A ) \ M W ) = lo} 

is non-empty and can be shown to be w*-closed. 
Its non-void extreme boundary d e I \ ^ is contained 
in 3 e 5 p ( ^ ) . Choose a tp G n 3 e 5 p ( ^ ) . Then 
the Haar measure on 0\-\(tp) defines an orthogonal 
measure on S(A), which must be the central measure 
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in virtue of Theorem 2.8 (i). This implies also the 
relations (iii) and (iv) for the central measure. 
(ii)=Ki): If oj satisfies condition (ii) then the central 
decomposition is given by (iv) in which we may re-
place H by G. Then the ensemble average (UJ ; .4) may 
be replaced by an G-average, where G is norm asymp-
totic abelian. An argument from ergodic theory tells 
us then, that UJ must be extremal G-invariant. 

3. Limiting Gibbs States and Symmetry Breaking 

3.1. Free Energy Functional 

In this section we characterize the set of extremal 
states in SP(A) on which the probability measure Puß 
of each limiting Gibbs state is concentrated. This will 
be achieved by means of the density of the free en-
ergy, which is the appropriate thermodynamic poten-
tial when the temperature is a free adjustable param-
eter for the system in consideration [36]. There exist 
various approaches to determine the support of the 
measure p^ß, the most important ones are described 
in [10, 18] (see also [17]), [37], and especially [3] for 
the large model class we are working with. 

Because the local Hilbert spaces are finite dimen-
sional, the restriction of every ip G S (A) to the local 
algebra AA may be written as 

187 

Proposition 3.2 

F o r all UJ G SP(A) a n D H E Y it ho lds : T h e l im-
its in Def. 3.1 exist and define w*-continuous and 
a f f ine f u n c t i o n a l on SP(A). F o r all UJ G SP(A), 
h —> u(h,uj) is linear and h —• f(ß,h,uj) is affine 
on y . 

SKETCH OF THE PROOF: We will only sketch the 
proof of the convergence of the density functionals 
and refer for details to [3] and [18]. 

(i) At first we look at a factorial state 0 0 G 
deSP(A) with 0 ejCB) and a family of local Hamil-
tonians densities h given by an arbitrary but fixed 
polynomial Q in the densities ra^e1),..., mA(en,s) 
(comp. (2.3)). Then one finds immediately that 

= lim ( 0 0 ; Q(mA(el),..., mA(en*))) 

= Q((0;e1 ) , . . . , (0;e"*)) . 

If we use an arbitrary UJ G SP(A), it follows with 
Theorem 2.8 (i) that 

(<P; A) = t r a ( ^ A ) , for all A eA A, 

where G$ (7iA)is the corresponding density oper-
ator and trA is the usual trace on the Hilbert space JiA. 

Definition 3.1 (Thermodynamic Functionals) 

Given the quasi-local algebra A, its state space 
S(A), and the local Hamiltonians HA, A EL. Denote 
h '•= ( h A ) A e h A = HA/\A\. For all <p G S(A) and 
ß > 0 we define the density of the 

(i) internal energy: u(h, ip) := lim^ (p ; HA) = 
limyi (ip; hA), 

(ii) entropy: s(ip) := lim^ l n ( ^ ) ) , 

(iii) free energy: / ( / ? , h, (p) := u(h, p) - ^s(<p), 
if the corresponding limits* exist. 

On S p (A), a subset of the state space S (A) contain-
ing the equilibrium states and their central support for 
our model class, the thermodynamic functionals are 
well-defined: 

u(h, UJ) = lim ( 0 0 ; 777^ = / u(h, (p) dp^tp). 
A N \A\' JdESP{A) 

Using that such a polynomial Hamiltonian is defined 
up to a term vanishing in norm for large A G£ (com-
pare the remarks before (2.3)) by a symmetric net in 
.y and that the symmetric nets approximate the ap-
proximately symmetric ones in norm we find that the 
stated limit exists for the whole model class. The w*-
continuity and the affinity on SP(A) is obvious. The 
linearity of h —> u(h, UJ) follows from Definition 3.1. 

(ii) In [37, 38], a similar result is obtained for 
the relative entropy which corresponds to s(p), p G 
SP(A), up to an constant if the trace state r is cho-
sen as reference. Here we follow [18, 17], and set 
SA(U) := -\IA{QU

A l n ( ^ ) ) f o r UJ G S(A) a n d A GX. 
Using the subadditivity [4, Prop. 6.2.24] 

S/iußM < Sa(uj) + Sn(uj) 

"By lim^ we denote the net limit for A for A, i? GX , with A D J? = 0 
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and 5yi(u;) = 5fT(yi)(u;) for u> G S P(A) and a G P, one 
can prove the pointwise existence of 

for all u G SP(Ä). 

The affinity of SP(A) s(u>) directly follows 
from the convex and a concave-like behaviour of the 
local entropy SA [4, Prop. 6.2.25]. 

For a factor state G (we identify a 
state (j) G 5 ( $ ) with the corresponding density matrix 
Qcf,) it holds 

S(®ß) = lim T T T ^ C ^ ) = lim — ^ S { k}(®g)) 
' ' ' ' keA 

= - t r®(ß ln(ß) ) =: Sq(q) 

and we find S(cj) = f d s p w Sy ig) d p ^ i ^ g ) . Then 5 

is u>*-continuous because S$(g) is so and SP(A) —> 
M{(5 i—» pu is weakly continuous, where 
M{ are the positive normed Radon measures ([39, 
Theorem II.4.1] using SP(A) is a Bauer simplex). 

Remark 3.3 

In [3] it is elaborated, that y is a vector space 
and | |x|| := l i m , ||2"/i|| defines a seminorm on y. The 
function 

j -.y —+c(sm,(i), 

X — • [ j ( x ) m := lim ; xA), V0 € 5 ( 0 ) 
A 

maps y isometrically onto C(SCB), I ) , the continuous 
functions on SCB). The seminorm defines an equiva-
lence relation on y and the corresponding quotient 
space is isomorphic to C(5 (®), ([). 

If we look at a given model h E y with local Hamil-
tonians HA we find that [j(h)]((fi) = u(h, ®</>) for 
all <S>4> G 3 e 5 P ( -#) . Thus, for each continuous func-
tion 5($) 3 ( f ) —> u((&(f>), there exists a mean-field 
model h in our model class y, such that u becomes its 
functional of the internal energy u{h, •) on the pure 
phase states. 

The main information on the limiting Gibbs states 
uo^ is obtained by a variational principle for the free 

energy density which determines the maximal possi-
ble central support of p^o . 

Theorem 3.4 (Principle of Minimal Free Energy 
Density) 

For a model in our model class with h G y , 
we set f(j3M := i n f { / G M , w ) I ^ € SP(A)} = 
i n f { / ( / ? , | <g>0 G 3 e 5 P W ) . Each w*-
accumulation point cu13 of \ A EL} is an element 
of the w*-compact face 

Siß,h) := {uj G SP(A) | /(/?, h,io) = f(ß,h)}, 

which here is also a Bauer simplex. The correspond-
ing central measure p^ß is concentrated on the set 

deS(ß, h) := {<g>0 G a e 5 P ( ^ ) | / ( /?, K ¥>) = /( /?, h)} 

and coincides with the unique Choquet decomposition 
in S(ß,h). 

PROOF: The minimum principle of the free energy 
density for the limiting Gibbs states is proved for 
our model class in [3]. Cf. also [18] for a more ex-
plicit argumentation which may be adapted to the 
used model class. The proof essentially uses that the 
local Gibbs states u/ij are given by a minimum prin-
ciple for the local free energies (densities), see e.g. 
[4, Chapt. 5.3]. The infimum /(/?, h) is attained in the 
extreme boundary 9 e 5 p ( J3 ) due to Bauer's maximum 
principle [4], which is applicable here since /(/?, /?, •) 
is u^-cont inuous and affine (and thus convex). 

3.2. Selfconsistency-Equations and Limiting 
Gibbs States 

The minimum principle of the free energy den-
sity allows to determine the pure phase set deS(ß, h) 
which is also a prerequisite to calculate limiting Gibbs 
states as shown in Section 2.3. Nevertheless, one 
should keep in mind that a free energy density func-
tional gives a coarsened description of the underlying 
microscopically defined model. For example, there 
exist (not at all pathological) models with the same 
free energy density functional but totally different 
(even disjoint) limiting Gibbs states [3, 40, 32, 41]. 
In the following we will look for additional condi-
tions to determine the states <g>0 in the central sup-
port deS(ß,h) of the limiting Gibbs states u13 and 
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conditions for uniqueness of the latter in terms of 
internal symmetries. 

Let us fix in this subsection the model interaction 
h and drop the symbol h. 

As stated in Theorem 2.8 (ii), the states <g)0 G 
5 e 5 p ( ^ ) are parametrized by SCB). Moreover, SCB) 
can be parametrized by a compact convex subset M 
of IRn® as the expectation values for the basis e of S 
chosen in Sect. 2.2: Set 

v : 5 ( « ) IR71®, Q i—• v(g) := t r y ( g e ) =: m (3.1) 

with v(SCS))= : M , (3.2) 

which is an affine, continuous map with the convex 
closed image M. To prove the injectivity of v we in-
troduce the contragradient basis e of 'S which satisfies 
t r ^ e ^ e ' ) = 6ki for 1 < k j < For given m G M 
we find that m • e := m i ^ > s th e unique inverse 
v~l(m)ofv on M. Obviously M C IRn® is also a con-
tinuous parametrization of DESP(A) and M contains 
all vectors M G IR'1® for which there is a UJ G SP(A) 
(not only in PC#)) with limyi (UJ ; M A ( E ) ) = m. 

We are now able to give a necessary condition for 
a state <p G 9 e 5 p ( ^ ) to have minimal free energy 
density. We use the M-parametrization of 3 e 5 P C # ) 
and write for m G M 

u(m) := w(®v-1(m)), s(m) := s(®v~{(m)), 
(3.3) 

f<ß,m) := f(ß,®v-\m)) 

instead of u((%><f>), and /(/?, <g>0) for 0 G 5(®). 

Proposition 3.5 (Pure Phase 
Selfconsistency-Equation) 

IfM 3 m —> u{m) is a continuously differentiate 
function on M, it holds the following necessary con-
dition for an extremal permutation invariant state in 
deS(ß): For each in deS(ß) (we identify a state 
(j) G S(rB) with its corresponding density matrix p0) 
it must be satisfied: 

= exp (-ßh(g)) 
Q tr(exp (-ßh(Q))Y 

n, d u (3.4) 
withh(Q) ^ ^ ^ M q ) ) ? -

i=l 1 

SKETCH OF THE PROOF: The selfconsistency con-
dition is a consequence of the necessary extremal 
condition for minimizers q of /(/?, <g>g) under the 

constraints that m G M , i.e. g positive and tr(£») = 1 
[18, 3J. 

A short calculation using Prop. 3.5 shows that every 
extremal permutation invariant state ®g with minimal 
free energy density is locally given by 

(®g-,A) =trA(gAA), A eA A 

with the density matrix 

w H e r e ^ B M , ) ] . 

is an effective Hamiltonian, in which the original in-
teraction is substituted by the sum of interactions of 
each particle with an effective field ( d u / d m l ) ( v ( g ) ) . 

It should be emphasized that the fixpoint equation 
(3.4) is a direct implication of the principle of minimal 
free energy involving the local Hamiltonians in their 
exact form. The same result may be also derived indi-
rectly by the combination of [10] with [9]. In the usual 
way of handling our model class (3.4) is introduced as 
an ansatz to be solved selfconsistently — which is the 
reason for calling (3.4) a selfconsistency-equation — 
involving only mean-field Hamiltonians. Note, that 
not all solutions g of (3.4) define equilibrium states 
in 3 e S ( ß ) , because there are also solutions for saddle 
points and maxima of the free energy density. Nev-
ertheless, all solutions of (3.5) — at least for models 
with symmetric nets of local Hamiltonian densities 
— are KMS-states of a corresponding limiting dy-
namics as is seen by inspection, cf. e.g. [42]. Thus 
not all KMS-states have a microscopic foundation in 
terms of the thermodynamic limit of local equilibrium 
states. 

In the sequel we will convert the matrix equation 
(3.4) into an equivalent system of coupled scalar equa-
tions for the expectation values v(g) G IRn® which is 
more appropriate for a numerical treatment. 

Definition 3.6 (Selfconsistency-Equation 
on the Parameter Space) 

Let be ß > 0 and u : M —• IR'1® continuously 
differentiable. Then set y(m) := [gradw](ra) G IRn® 
form G M C IR'1®. We introduce the following quan-
tities: 

(i) Molecular-field partition function: 

Zß : IRn® —» IR. 

x —> Zp(x) := tr.„(exp(-ß x • e)), 
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(ii) Vector-valuedfixpoint function: 

Fß : M — > IR, 

m 
1 

Fß(m) := - - grad(ln Zß)(y(m)), 

(iii) Extremal free energy density (values of /(/?, •) 
for solutions of (3.4)): 

/ ( / ? , . ) : M — > I R , m — > J(ß,m), 

f ( ß , m) := u(m) - y(m) • m - i In Zß(y(m)), 

(iv) Sets of fixpoints of Fß: 

L(ß) := { M G M \ m = Fß{m)}, 

M(ß) := {m G L(ß) \ f(ß,m) = inf{/(/?, ro') 

| m ' G £ ( / ? ) } } . 

At this point we come back to our example of (2.1), 
(2.3): Here the internal energy density is given by 
u(m) = e • m + m • wm and thus we have 

y(m) = £ + 2 w m, 

/(/?, m) = —m • wm 

— - In ^tr® (exp (—/?(£ • e + 2 m • we 

These are the expressions for the minimal free energy 
usually used in mean-field approximations for models 
with two particle interaction. 

With the minimum principle, Theorem 3.4, and the 
fixpoint condition (3.4), the equivalence of the sets 
deS(ß) and Miß) follows: 

Proposition 3.7 (Equivalence of Statistical and 
Thermodynamical Selfconsistency) 

For all ®q G 3 E 5 P ( ^ ) the two statements 
(i) q is a solution of (3.4), 
(ii) v(g)eLiß), 

are equivalent, and the two statements 
(iii) ®Q G deS(ß), 
(iv) v(e) € M(ß), 

are also equivalent. Each state obeying one of these 
four conditions fulfills 

and it holds 

inf{/(/?, <8><p) | G 3 E 5 P ( ^ ) } 

= M{fiß1m)\m£Liß)}. 
(3.6) 

PROOF: Applying v to (3.4) shows that q being a 
solution of (3.4) is equivalent to v(g) being in Liß). 
Thus (3.4) and the parametrization v of 5 ( $ ) implies 
(i)<^(ii) as well as (3.5) and (3.6). From this (iii)<^> 
(iv) follows. 

The determination of the support of the limiting 
Gibbs states is now reduced to the problem of finding 
the minimal solutions Miß) of the coupled set 

rri Fßim) 

of nonlinear equations which can be determined at 
least numerically. If one finds Miß) to be an orbit 

Ou(m) := {M(u*)T m | u G H } (3.7) 

for some m G Miß), then there is only one accu-
mulation point of the net {cjß

A | A G X } , the unique 
limiting Gibbs state: 

Proposition 3.8 

(i) With the bijective mapping v : Si/B) 
holds 

M it 

- l o M(u*Y = Ad* o v~\ V W G H . ( 3 . 8 ) 

Thus we have for m G M: (g)v~l(M(u*)Tm) = 
0*u(®v-\m)) and ®v~l (Oh(V(^)>) = 0H{®e) for 
®Q G 3 E 5 P ( ^ ) . The following statements are equiv-
alent: 

(a) There exists am € M(ß) with Miß) = ö\\ (m). 
(b) There exists a p e deSiß) with deSiß) = 

Ou^l 
(ii) If one statement in (i) is valid, then there exists 

the net limit 

J H 
®Qßu d^-H(w)-

Here the product states ®ßß G deSP(A) are defined 
by 

f(ß,®e) = f(ß,viQ)) (3.5) J3 — . - 1 , iMiu*)Tm) = 0*u(®v~lim)) 
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for some m € M(ß). The density matrix gß = 
v~\M(u*)Tm) is given explicitly by 

ß = exp (-ßy(M(u*)Tm)»e) 
Q u tr®(exp (~ßy(M(u*)Tm)* e))' 

For y(m), see Definition 3.6. 
PROOF: (i) Equation (3.8) follows by direct inspec-
tion (use (2.5), (2.6), and (3.7)) and implies the equiv-
alence of m £ M(ß) = ÖH(m) and (g>v_1(m) £ 
deS(ß) = 0H(®v-1(m)). 

(ii) Because S(A) is compact the net {u/j, A ££} 
has at least one accumulation point uj13 £ 5GC#), 
Lemma 2.7 (ii). The assumption M(ß) = öy\ (m) 
resp. deS(ß) = 0^\(^>v~x(m)) implies together with 
Theorem 3.4 and Prop. 2.9 that each limiting Gibbs 
state has the same central decomposition and {u j^ \ 
A £ £ } has only one accumulation point 

a / 3 := u ^ - l i m i ^ . 

The central decomposition is given by the Haar mea-
sure on 

UJ = / J H (<g>v l(m)) dpuiu). 

It remains to determine <9* 1 (m)). With Def. 3.6 
and Prop. 3.7 we have: 

o: ' ( m ) ) = au(<g> — — ) 
tr®(exp ( - ß y ( m ) » e ) ) 

u exp (—ß y(m) • e) u* 
: 0 

t r®(exp(—ßy(m) • e) u*u) 

exp (—ß y(m) • ueu*) 
t r 3 (exp (—ß y(m) • ueu*)) 

. 7 e x p ( - / ? ( M ( u ) y ( m ) ) » e ) 
tr® (exp ( — ( M ( u ) y ( m ) ) • e)) 

. exp {—ß (y(M(u*)Tm)) • e) 
tTrg(exp [—ß(y(M(u*)Tm)) • e ) ) ' 

where we used that y(m) = [grad(w)](ra) is the gradi-
ent of the internal energy y. Due to the H-symmetry 
of all H \ we also have u(m) = u(M(v*)Tm) for all 
m £ M and v £ H. 

By Prop. 3.8 (i) each orbit in deS(ß) may be 
mapped onto an orbit in M(ß) and vice versa. In 

the general case deS(ß) may contain more than one 
H-orbit. The general form of the limiting Gibbs states 
is then more complicated. 

Proposition 3.9 
(i) Each limiting Gibbs state has the general form 

UT = [ [ f e:(Vrp)dpH(u)]dvW) 
JdesGw) 7H 

where v is a probability measure on 
uniquely determined by , and every tp^ is in 
dcSP(A) and uniquely determined up to a transfor-
mation (9* for some u £ H. 

(ii) The energy and entropy densities decompose 
in a non-trivial way only over deSG(A) and have the 
form 

u(ujß) = / 
J a 

u(ip) dv(ip) 
deS°W 

and 

s(iüß)= I s(tp)du(tp). 
>dtS°W 

They are constant on every H-orbit. 
PROOF: (i) Since the permutation group P is a sub-
group of G, also G acts in a norm asymptotic manner 
in A. Thus 5G (^l ) is a Choquet simplex [4, Chap-
ter 4.3]. Since every limiting Gibbs state is in S G (Ä) 
there is a unique decomposition of the form 

UJ' •L Tp du(ip) , 
>dtScW 

where we have restricted the decomposing measure 
from S(A) to d eSG(A). In virtue of Prop. 2.9 (iv) 
every ip £ 3 e5G(-3) has a central decomposition of 
the form 

0*u(p,p)dpH(u) 
J H 

for some ip^ £ 5 e5PC#). Any other ip'̂  £ (A) 
giving this unique decomposition must be an element 
of ÖHOPV)-

(ii) Restricted to 3 e 5 p ( ^ ) both u(tp) and s(tp) are 
invariant under the (^-transformations for all u £ H 
(cf. Def. 3.1 and Def. 2.5). Since u(p) and s(ip) are 
affine and w*-continuous, they may be taken into the 
integral of an orthogonal decomposition. 

From Prop. 3.9 we see that a limiting Gibbs state is 
uniquely specified by the measure v on 8 e5G(-#) and 
the family | ip £ supp u} of pure phase states. 
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In [23, 24], there are given examples, where suppz/ 
consists of two G-invariant states, which in turn have 
non-trivial decompositions into extremal permutation 
invariant states. To the best of our knowledge, such 
a case with several non-trivial orbits has not been 
discussed before (in rigorous terms). 

In general however, there is no method to deduce 
from the minimal set S ( ß ) of the free energy the com-
plete form of the limiting Gibbs states. Thus one does 
not know, whether all elements of deS(ß) appear as 
pure phase states in the central decompositions of 
the limiting Gibbs states. This would be desirable, 
since all physical features of infinite systems should 
be approximable by the properties of finite systems. 
On the other hand, one may argue that all states in 
the minimal set S(ß) are stable configurations of the 
macroscopic system under consideration and should 
be realizable equilibrium states at the temperature ß. 
As a working hypothesis for our subsequent investi-
gations we shall assume this point of view. 

4. Thermodynamic Formalism for Functionals 
and Functions 

In the preceding investigations we have consid-
ered the thermodynamic potentials, i.e., the densities 
of energy, entropy and free energy as (affine, w*-
continuous) functionals on SP(A). Especially, the free 
energy density is of interest due to the minimum prin-
ciple of the free energy density for limiting Gibbs 
states, Theorem 3.4. Moreover, this minimum value 
is the thermodynamic limit of the local free energy 
densities in equilibrium: 

Proposition 4.1 

Let be f ( ß , h) the minimal free energy of Theo-
rem 3.4 for the family of local Hamiltonians HA, 
A e L. It holds 

f(ßM = Y i m ^ ^ ß
A - H A ) 

+^tTA(e~u~ßHA \n(e~u~ßHA))^ 

= - l i m - ^ IntrA(e~ßHA). 
a \A\ ß 

PROOF: Choose an arbitrary increasing sequence of 
local regions An with U;*-limN^00C<;/ITI = uj G SP{A). 
Due to an c / 3 argument lim^ 4 r (UJa ; HA) = u(h, UJ) 

holds. A similar asymptotic behaviour holds for the 
entropy. Let be 5 > 0. For k = k(e) and sufficiently 
large n we have 

- r ^ t T A ( e ~ U n ~ 0 H a » l n ( e " ^ » ~ P H a " )) 
M n I 

\Äk\ 

(see e.g. the proof of Lemma 4.2 in [18]). These con-
vergence relations allow to adopt the arguments in the 
proof of [18, Theorem 4.3] to our model class. See 
also [3]. 

In the following we formulate a variational prin-
ciple for the free energy as a functional of the net 
L3 A —> HA/\A\, which assumes for the mean-field 
models under consideration a very concise form. 

4.1. Variational Principles for Mean-Field 
Interactions 

In Def. 3.1 and Prop. 3.2 the internal energy, the 
entropy, and the free energy density have been intro-
duced. Now let HA, A £L, be a net of finite volume 
Hamiltonians with densities hA := HA/\A\ and de-
note the net (hA)Ae£ by h. In Remark 3.3 we have in-
troduced the surjective mapping j : y —> C(5(®), C) 
with 

[j(hm) = u(h,®Q)=:h(Q), (4.1) 

for all ®p G 8 e5P(-#) . In this sense, the internal en-
ergy u(h, •) is a continuous functional of the pure 
phase states of the system (parametrized by 5(20). 
Since j is not injective, u gives a coarsened descrip-
tion of the model which does not consider micro-
scopic details. Since we are interested in this section 
mainly in the thermodynamic properties of the sys-
tem, we assume that a certain model at the thermo-
statistical stage is characterized by a continuous func-
tion h G C(S(<B), IR) instead of the net h of local 
Hamiltonian densities. In correspondence to the prop-
erties of the original internal energy, we define for 
given h G C(5(®), IR) and u G SP(A): 

u(h,uj):= [ h{Q) dpM), (4.2) 
Jsm 

where P^ is the central measure of UJ, parametrized 
in terms of SCB). With the equivalence of the 
positive normed regular Borel measures M{(5(#)) 
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a n d 5 ( C ( 5 ( ® ) J R ) ) , w e d e f i n e u on the w h o l e of 
O S ( ® ) , IR)* by 

u:C(S(<B), IR) x C(SCS), IR)*, 

(h,a)—> (a;h) := h(<p) dpa 
JSCB) 

(4.3) 

the sense of [21, Chapter 3], (Note that we use in this 
subsection the notation C(5(®), IR) x C(5(®), IR)* 3 
(h , a ) —• (a; h) which arises from the duality re-
lation on A. In contrast to [21], the positions of h 
and a are exchanged.) Now (4.6) directly implies that 
f ( ß , h) is the concave conjugate function of ^ s: 

[1 * 
— 5 (h) . in an a n a i u g u u s way wc i i i u u u u i c an ß ^ 

entropy density as a u?*-upper semicontinuous func-
tional on C(5(«),IR)*: 

s : C ( 5 ( 3 ) . I R ) 

-L sm 

— 0 0 

—• IR U -00, 

tr<b(q In g)dßa(ß) 

for q € 5 (C(5(®), IR)), 
otherwise, 

(4.4) 

which is consistent with Definition 3.1 because of 
Proposition 3.2. That is: 5(q) = -s(u;), when a is the 
central measure of UJ E S (A). Then the free en-
ergy density is introduced such that it corresponds to 
/(/?, H, UJ) in Section 3.1: 

f(ß,;-):C(sm,\R)xC(sm,\Ry 

(h,a) —> f(ß,h,a): 

IR U +00, 

(4.5) 

= u(h, a) - -s(a) = (a; h) - ~jS(a). 

With this transcription the equilibrium free energy is: 

f(ß,j(h)) := inf'{/(/?, a ) \ a G C(5(0) , IR)*} 

= i n f { f ( ß j ( h \ i ü ) | u G 5 ( C ( 5 ( ® ) , IR))}. (4 .6) 

As above, (4.5) and (4.6) are consistent with Def. 3.1 
and Theorem 3.4, i.e. it holds with Prop. 3.2 and 
(4.1): / C M , a ) = f(ß,j(h),a) = H ß X " ) if a 
is the central measure of UJ G 5 (A) and thus 
f(ß,h) = f ( ß j ( h ) ) = f ( ß , h). The set of states 
w ES (C(5(0),IR)) with f(ßJ(h),uj) = f ( ß j ( h ) ) 
obviously corresponds to S(ß, h) and the variational 
problems in Theorem 3.4 and (6.6) characterize the 
same states. The analysis of the consequences of the 
minimum principle will be performed by using meth-
ods of convex analysis [20, 21, 43]. 

C(5 (# ) , IR) with the norm topology and 
C(SCB), IR)* with the w*-topology are a pairing in 

= inf { ( < * ; & ) - y ( a ) \ a G C(5(0) , £)*} . 

The convex or concave conjugate of a function is 
a generalization of the Legendre transformation and 
sometimes called Fenchel transform. The biconjugate 

s]** of ^ s is obtained by a second conjugation, 
leading to [21, Theorem 5] 

[/(/?, • ) ] » 
= inf {(a;h)~ /(/?, h)\h E C(5(®), IR)} 

r i ' 

r . 
(a ) = cl(co ^ s ) (a) 

for all a E C(5(®), IR)*. co is the concave hull of a 
function and cl coincides in our case with the w*-
upper semicontinuous hull (since we are dealing with 
proper concave functions, i.e. oo > f ( ß , h), ^s(uj) ^ 

— oc). Moreover, is an affine w*-upper semicon-
tinuous functional, (4.4), and thus cl(co ^ s ) (a) = 
-j 5(q), which leads to a consistent thermodynamic 
formalism: 

Theorem 4.2 

The minimal free energy is a concave upper semi-
continuous functional on C(5(®), IR) and the entropy 
onC(S{15), IR)* is an affine w* -upper semicontinuous 
functional on M}(5(®)) and it holds 

/</?,•) = and s = /?[/(/?,-)]*• 

We see that the entropy and the free energy con-
tain the same amount of thermodynamic information. 
This quality is also expressed by their differentiability 
properties, leading to a geometrical characterization 
of the set 

5 ( 0 , h) := {a E C ( 5 ( « ) , IR)" I H ß , K <*) = /(/?, h)}. 
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For some fixed h G C(S(B). IR), S(ß,h) corresponds 
to the set S (/?, h) of states with minimal free energy as 
introduced in Theorem 3.4. For u; G5 (/?,/?) it holds 

/(/?, h) = {u\h)-±j s(u;) = {u;h-ti) + /(/?, h',u>) 

> (u;h-h')+f(ßtti). (4.7) 

This is exactly the defining relation for UJ being an 
element of the subgradient set d f ( ß , h) of the concave 
function f ( ß , h) at h (as in [20] we use for simplicity 
the term subgradient instead of the more appropriate 
one supergradient). 

Proposition 4.3 
For all h G C(SCB). IR) it holds 

S(ß,h) = df(ß,h). 

Thus the subgradient d f ( ß , h) of /(/?, h) uniquely 
determines the set S{ß, h) of states with minimal free 
energy density for the model with internal energy h G 
C(5(«).IR). 
PROOF: In (4.7) we have shown that S(ß,h) C 
d f ( ß , h). Now assume that a G d/(/?, h). It holds 
[21, Theorem 12, Corollary 12 A] 

h G d ( i a(w)) <=> UJ G d f i ß , h), (4.8) 

thus we have h G s(a) and it follows for all a' G 

C(5(S), IR)* 

f(ß,h,a) = {a\h)-^a(a) 

This is exactly the minimum condition which implies 
Q to be an element of S(ß, h). 

The above Theorem 4.2 and Proposition 4.3 show 
that the chosen model class (Definition 2.3) gives in-
deed a consistent thermodynamic formalism. Propo-
sition 4.2 is the mean-field analog to [6, Theo-
rem II.3.4], Similar duality principles can be found 
in [44, 45] in the context of perturbed KMS-states. 
The connection to large deviation principles is dis-
cussed in [30]. Related discussions are also performed 
in [22]. 

In Figure 4.1 we have sketched the convex dual-
ity between 4 s ( a ) and f ( ß , h) in the case that SCB) 

Fig. 4.1. Convex duality between ^ s and f ( ß , •)• 

has three points, represented by the corners of the 
upper triangle in the 0-plane. The affine function 
5 ( C ( 5 ( ® ) , IR)) 3 u) ±s(uj) is v i s u a l i z e d by the 
oblique triangle. This whole triangle is Fenchel trans-
formed into the corner, which is in the middle of the 
minimal free energy density surface of the lower di-
agram. The corresponding normalized interaction is 
Hq) = — jjS(Q), Q ̂  SCB), giving the free energy the 
value zero, which has all states a; GJ> (C(SCB), IR))as 
subgradient. (In the lower diagram each point in the 
0-plane corresponds to a class [h] := {h + c \ c G IR} 
of continuous functions for some suitably chosen nor-
malized h G C(SCB). IR). Since the continuous func-
tions over three points are IR3, their classes are IR .) 
The upper one-dimensional edges are transformed 
into the lower one-dimensional edges. That means, 
that any interaction of the lower edge has the upper 
edge as the set of equilibrium states, and all these in-
teractions are physically equivalent in the sense of [6]. 
In the same sense all interactions in the lower flat 
surface parts are physically equivalent with just one 
common equilibrium state given by a corner of the 
upper entropy triangle. Moreover, we have illustrated 
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for a certain ho E C(5(2?)JR) the subgradient and 
the corresponding set S(ß, ho) of states with minimal 
free energy (comp. Proposition 4.3). 

In reality 5 ( 3 ) is a continuum and constitutes the 
extremal points of the infinite dimensional simplex 
5 (C(5($ ) , IR)). Nevertheless, our oversimplified dia-
gram may give an idea, how a whole thermodynamic 
theory may be described in terms of the boundary 
structure of an affine entropy functional. 

4.2. Variation of Densities and External Field 
Parameters 

For thermodynamic applications it is more appro-
priate to convert the thermodynamic functionals into 
functions of a finite set of relevant macroscopic state 
variables. Here we choose the temperature ß and an 
n®-tupel of external field variables £ as state vari-
ables (comp. £ in the examples (2.1), (2.3)). These 
so-called contact variables [36] vary in the range 

E := IR+\{0} x IRns 9 (/?,£). 

In many special applications E will only vary in a hy-
perplane of IR'1*, a case which will be treated in Sec-
tion 4.3. Our thermodynamical system E is specified 
by a set of interactions WA, A EL, with A —> ap-
proximately symmetric, and the corresponding con-
tinuous function w := j((j^)AeL) G C(5(S), IR). In 
order to make explicit the ^-dependence we write in-
s t ead o f HJi the s y m b o l Ha(E) := J^IEA £ * 

el + WA 

for a local Hamiltonian with given interaction. This 
leads to the symbols hA(s) = HA(e)/\A\, h(e) = 
(HA(E))AEL, and j(h(E)) = h(e) E C(SCB). IR). S tar t -
ing from the non-equilibrium free energy functional 
/(/?, h, a ) from (4.5), we insert first h(e) for h and 
restrict the variability of h by varying E E IRrt*, 
only. For states to E C(S(%). IR)* we want to use 
the ra-parametrization introduced by the mapping 
v : 5(®) -> M C IRn* of (3.1) and restrict, therefore, 
u to the point measures on M which we identify with 
the points in M. Thus we define the non-equilibrium 
free energy function 

/ ( / ? , - , - ) : I R ^ x M — > I R , 

(e, m) —> /(/?, e, m) := /(/?, He), a) (4.9) 

with the the free energy functional from (4.5) on the 
right hand side and the point measure A on 5 {(B) local-
ized at v~\m) (for the compatibility of the notation, 
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see also (3.3)). Varying m in M gives all (possibly 
non-equilibrium) pure phase states ®v~x(m), resp. 
their free energy values in (4.9). The equilibrium free 
energy value may, therefore, be obtained by 

f ( ß , e) := /(/?, h(e)) = inf {/(/?, e, m) \ m E M} 

(from (4.6)). (4.10) 

In the above manner we identify the various free en-
ergy expressions by their respective arguments. 

With M as a subset of IRNJ! we introduce a natural 
dua l i ty re la t ion o n I R N * b y 

n 3 

(e ; m) := (v~\m) ;e • e) = ^ Ei (v~\m); e) 
2=1 

ri'j, 
= ^ J E i m l . (4.11) 

i= 1 

We need further the potential function 

wim) := mj^-)AeL)](v-\rn)), m E M (4.12) 

and the function 

a(ß, m) := -w(m) + s(m), m E M , (4.13) 

where the entropy is given by 

s(m) := s(a), m £ M , (4.14) 

with 5(a) from (4.4) and the point measure a on 5(®) 
localized at v~{(m) E S((B) (the compatibility with 
s(m) from (3.3) is still guaranteed). 

We are now going to analyze the properties and the 
informational contents of the statistically derived free 
energy function /(/?, e, m). 

Proposition 4.4 

The minimal free energy e —> f(ß, e) is a 
continuous concave function in e, which increases 
monotonously in Ek G IR, if the basis element ek E% 
k E {1,..., n® }, is a positive operator. 

P R O O F : C o n c a v i t y : Le t b e i E2 E I R N * a n d 0 < 
A < 1. With Theorem 3.4 and the parametrization of 
3 e 5 p ( J l ) by 5(®) resp. M and (3.3) we have 
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/(/?, A£1+(l-A)£2) 
= inf | (Aei + (1 - X)e2 ; rn) - a(ß, m) \ m G m | 

> A / ( / ? , £ i ) + ( 1 - A ) / ( / ? , £ 2 ) . 

Continuity: The following inequality is valid (see 
e.g. [6]): 

- - \ntrA(e-ßHA{£))+- lntr^e"'3"^) 
\J \J 

<\\HA(£)-HA{E')W = \\Y,(e-e')*el 

ieA 

< const|/l | |£ - e ' | . 

Using the convergence of the finite volume free en-
ergy density (Proposition 4.1 it follows 

< const \e — e ' l . 

Monotony: For > £*. and E\ = EI for I k we have 

-ßHA(e') < -ßHA(e). 

The monotony of /(/?, e) follows with the monotony 
of AA 3 A = A* —• lntryi(eA) and Proposition 4.1. 

From the arguments in Sect. 4.1 it follows that also 
the function IR"'® 3 e —> / ( /? ,£) is in general not 
differentiable. For a thermodynamic formalism at the 
level of functions we need thus again the Fenchel 
transform instead of the Legendre transformation. In 
order to allow a compact formulation of the transfor-
mations of /(/?, £) and cr(/?, m ) we extend the con-
tinuous functions M 3 m —• cr(ß,m), / ( / ? ,£ , m ) to 
semi-continuous functions on IRn® by setting 

/(/?, e , rn) := oo and 

<j(/?, m) := - o o fo r m € I R n ® \ M . 

(4.15) 

With this choice of the extension it is guaranteed that 
the statistical information is still contained in their 
values on M although they are considered in the fol-
lowing as functions on IRn®. Then we rewrite the free 
energy function (4.9) 

f ( ß , £, m) = (e ; m) — a(ß, m) (4.16) 

= ^£lml - a(ß,m), m G IR"®. 

The minimal relation (4.10) shows then that /(/?, £) is 
the Fenchel transform of a(ß, m) and not of ^ s(m): 

/( /?, £) = inf {/(/?, £,m)\m e M} 

= inf { / ( /? ,£ , m) | m G IRn®} 

= inf { (e ; m) - o(ß, m ) | m G M} 

= inf { {E ; M) - m) | M G IRn®} , 

(4.17) 

or short /(/?, •) = [cr(/?, •)]*. The reason is, of course, 
that the natural duality relation at the level of ther-
modynamic functions uses only part of the energy 
expectation value. Now <r(/?, m) is not concave in m 
and has in general plaits in its graph. 

For given £ G IR"® the corresponding equilibrium 
values of m are 

M(ß, E) := {m G IRn® 

Using (4.17) we find 

/ ( / ? , £ , m ) = / ( / ? , £ ) } C M . 

(4.18) 

1 
<t(/?, m) = -w(m) + -5(m) < (e;m) - /(/?,e), 

V£ G IRn®, V m G IRn®. (4 .19) 

Equality holds in (4.19), iff M G M(3,e). In order 
to get a general variational principle from (4.19), we 
introduce the concave upper semicontinuous envelope 
function 

&(ß, • ) : IR"® IR, (4.20) 

&(ß, m) := inf { (e ; m) + c | £ G IR71®, c G IR wi th 

[ e ; m ) + c > o(ß, m ' ) , V m ' G IR"®} 

= inf { (e ; m ) + c | £ G IRn®, c G IR wi th 

(£ ; m ) + c > a(ß, m ' ) , V m ' G M } . 

Using [20, Theorem 12.1], we have fr(ß,-) = 
cl(co cr(ß, •)) (comp. Section 4.1). Moreover, o(ß, M) 
is continuous in M°, the relative interior of M [20, 
Theorem 10.1] and v~\M°) are the faithful states 
on 

Proposition 4.5 
For all rn G IRn® it holds: 

inf { ( e ; m) - f ( ß , e) \ e G IRn®} = &(ß, m ) , 

i.e. <r(/?, •) = [/(/?, •)]* and especially o(ß, M) = - o o 
/ o r m G IR"®\M. 
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PROOF: Although Prop. 4.5 can be reduced to stan-
dard results in convex analysis [20, 21, 43], we give 
here an elementary proof in order to reformulate some 
typical arguments within our context. 

First we consider m G M : With (4.19) and (4.20) 
we have for all m G M : 

&(ß, m) < inf {(e ; m) - / ( 0 , e) \ e G IRn*} . 

Define the subgraph 

r := { ( m ' , y ' ) G M x IR | y' < &(ß,m')}. 

Due to (4.20), r is a convex closed set in IRn® x IR 
[20, Part II]. For the given m G M choose an arbitrary 
y G IR with <r(0, m) < y, i.e., (m, y) g T. According 
to the Hahn-Banach Theorem [4, Theorem 2.3.22C] 
there is a $ G (IRn* x IR)* with 

$(m,y) > s u p { $ ( m ' , y ' ) | ( m ' , y ' ) G T}. 

Since (IRn* x IR)* is isomorphic to (IRn® x IR) there is a 
tupel(—a, a) which corresponds to where a G IR"® 
and a may be chosen equal to 1 (use that m G M) . 
Then 

— (a;m) + y > s u p { - ( a ; m ' ) + y' | ( m ' , y ' ) G T } 

= s u p { — ( q ; m') + <r(/?, rri) \ m G M ) 

= - inf{ (a ; m') - &(ß, m) | m G M] 

> - inf{ (a ; m') — a{ß, m') \ rri G M} 

= - inf {(a ; m') + w(m') - -^s(m') | m' G M) 

= - f ( ß , a ) . 

Thus y > (a ; m) — f ( ß , a ) > a(ß, m), which proves 
the infimum property of a(ß, m) since y is an arbitrary 
constant greater than &(ß, m). 

Now consider the case m G IRri®\M. Equa-
tion (4.20) implies <r(0, m) = - o o for m G IR n *\M. 
Assume that 

inf { ( e ; m ) - / ( / ? , e ) | £ G IRn*} = C\ > - o o . 

Then we have for all £ G IR71* 

Ci < ( e ; m > - / ( / ? , £ ) 

= (e ;m> - in f{ (e ;m , > - <r(/?,m') | m ' G A/} 

< (E;m) — inf {(£ ; ra ' ) | m ' G M } + C 2 

because the entropy s and the interaction w are finite 
on M . Again using the Hahn-Banach Theorem, we 
find some £i G IRn* such that 

(£, ; m ) - (£i ; m ' ) > C 3 > 0, Vm' G M . 

Now choose £ = — A£I with A > . It follows 

(e ; M ) - inf {(£ ; M ' ) | M ' G A F } 

= s u p { ( - A £ t ; m ) - ( - A e i ; m ' ) | m G M } 

< - A C 3 < - | C , - C 2 | . 

Thus Ci cannot be finite. 
The variational relation in Prop. 4.5 shows that 

<r(0, ra) is the Fenchel transform of / ( 0 , £ ) which 
is appropriate to treat not necessarily differentiable 
concave functions. From the general argument, that 
the double Fenchel transform is the original function 
for an upper semicontinuous proper concave function 
[20, Sect. 12] it follows: 

Corollary 4.6 

For all £ G IR"1* it holds 

/(/?, £) = inf {(£ ; m) - a(ß, m) | m G IR"*} 

= inf {(£ ; m ) - o(ß,m) \ m £ M} 

= inf {(£ ; m) - a(ß, m)\m£ IRn*} 

= inf {(£ ; m ) - o(ß,m) | m G M} , 

i.e. /(/?, •) = [a{ß, •)]* = [&(ß, Ol* = [ / ( f t •)]**• 
Comparing this with Theorem 3.4, one may have 

the impression, that not only m —» cr(0, m) but also 
its concave envelope m —» a(ß, m) alone contains 
the full thermodynamic information of the considered 
system. The following investigation shows, however, 
that this is not quite correct. 

Before elaborating this, let us remark that the pure 
phase state entropy density s(m) which is also equal to 
—trs (v~1 (m) ln(v~1 (m)))) from (3.3) is a strictly con-
cave continuous bounded function on M , see e.g. [44], 
Moreover, s(m) is infinitely differentiable in the inte-
rior M ° of M (which corresponds to the faithful states 
on 3 ) as can be seen immediately with the contragra-
dient basis e, giving s(m) = — tr®(m • eln(m • e)). 
With the cyclic permutation property of t r s one cal-
culates by power series expansion that 

ds(m) 
— = -tr® (e/(ln(m • e) + 1)) 

ami 
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and 

dns(m) ( - D 
n— 1 

dmi....dmin (n - 2)! 
tr® (ei, e Z n ( m « e r n + 1 ) 

(4.21) 

for n > 2 and 1 < l \ , . . . l n < rc®, whenever the right 
hand sides are well defined. This is the case, if m • e 
is invertible, i.e. is the density matrix of a faithful 
state on (B. By continuity of the affine bijection v this 
holds for m e M°. Thus if the interaction term w is 
differentiate, a(ß:m) is d i f ferent ia te in m e M ° . 
The differentiability of a(ß, m) is in general not given 
for all m e M°, but only in a dense subset. The set of 
points m e M° where &(ß, m) is not different ia te 
has zero measure [20, Theorem 25.5]. 

Definition 4.7 
The set 

Mp(ß):= (J M(ß,e) 
eelRn® 

gives all pure phase minimal m-values for a fixed 
ß > 0. The absolute concavity region of o(ß, •) is 
defined as 

Mc(ß) := {me M \ a(ß,m) = ö(ß,m)}. 

A subgradient m e d f ( ß , e ) C \Rn* of the function 
e —> /(/?, e) at £ e IR'1® is defined by 

/(/?,e') < f(ß,e) + {e'-e;m), Ve' € IR"®.(4.22) 

The set of subgradients of the free energy for fixed 3 
is given for unspecified e by 

M9(ß):= (J df<ß,e). 
eelR"® 

The set Mp(ß) is defined by means of / ( /? ,£ , m) 
via (4.18) in a way that it lifts to the statistical level 
and parametrizes all statistical pure phase states of 
the system for a given interaction and varying exter-
nal fields. M9(ß) is according to (4.22) defined by 
means of the equilibrium function £ —• /(/?, E) alone 
and is a union of the convex subsets d f ( ß , e) C IRn®. 
It is a natural notion for the thermodynamics with 
functions, but has no direct connection with the statis-
tical level. Finally Mc(ß) is defined with the possibly 
non-concave function a(ß, m) alone. We study the 
relations between these sets. 

Theorem 4.8 
With the notations of Definition 4.7 it holds 
(i) Mc(ß) n M° c Mc(ß) n M9(ß) C Mp(ß) c 

Mc(ß), 
(i)) if the interaction w is continuously differen-

tiate on M we have 

Mc(ß) n M° = Mc(ß) H M9(ß) = Mp(ß). 

PROOF: (i) Let be m € Mc(ß) n M°. Since 
o(ß, m) = cr(ß, m) is subdifferentiable [20, Theo-
rem 23.4] we have £ e d&(ß, m) for some E e IR"®. 
Thus m e df(ß,£) [20, Theorem 23.5] and m e 
M9(ß) n Mc(ß). 

If m e M9(ß), there is some £ € IR"® such that 
m e d f ( ß , e). Then it holds 

a(ß, m) = {E ; m) - /(/?, e) < {E' ; m ) - f<ß, E'\ 

We' e IR"®. 

If additionally m e Mc(ß) it follows 

inf {/(/?, £, m') | m e M} 

= inf {(e ; m) - a(ß, m) \ m e M) 

= f (ß,£) = (£•,m)-(T(ß,m) 

and we have m € M(ß, e) C Mp(ß). 
If m e Mp(ß), there is some £ such that 

/(/?, £) = /(/?, £, m) = (£ ; m) - o(ß, m) 

= inf { (E ; m) - <r(/?, m) \ m e M} 

= inf {(£ ; m') - &(ß,m') \ m e M) 

= (E ; m) — o(ß, m). 

Thus a(ß, m) = a(ß, m) and m e Mc(ß). 
(ii) We only have to show Mp(ß) C M°. The 

rest follows with (i). Now let be m e Mp, i.e. there 
is some £ such that m e M(ß,£). Then we have 
m e L(ß,e) (Def. 3.6 and Prop. 3.7). Thus v~\m) 
is a solution of (3.4) which obviously is faithful on $ , 
and m e M° follows. 

For fixed £ e IRN® we find quite similar results as 
in Theorem 4.8: 

Proposition 4.9 
With the notations of Def. 4.7 it holds for a contin-

uously differentiable interaction w: 
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(i) convM(0, e) = 3 / ( 0 , e) = m(S(ß, e», 
with m(uj) := {UJ ; et) = \imA ^ (uj ; J^keA h ) 

for io £ S (A) and some arbitrary I £ 7Z. 
(U) a e [ a / ( 0 , e ) ] c M ( 0 , £ ) . 

PROOF: (i) convM(0, e) = ra(5(0, e)) follows from 
the Bauer-simplex property of 5(0, e) (Theorem 3.4), 
the affinity of SP(A) 3 UJ ^ f(ß,E,w), and the 
affinity of v. 

Now we show convM(0,e) = 3 / ( 0 , E) n M°: If 
m £ M ( 0 , e), it follows 

( £ ' ; m ) - / ( 0 , e ' ) > <£ r ; m) - / ( 0 , e ' , m) = o(ß, m) 

= (e; m ) - / ( 0 , e , m ) = ( e ; m> - / ( 0 , e ) , 

i.e. m G 3 / (0 , e). With the solutions L(0, e) of (3.4) 
in M it follows that m £ M°. Since 3 / ( 0 , e) is con-
vex [20, Theorem 23.2], we have convM(0, e) C 
3 / (0 , e) n M°. 

The other way round let be m £ 3 / ( 0 , e) n M°. 
In this case we have C1M(COM / (0 ,£ ,m) ) = COM 
/ (0 , £, m), since m £ M° [20, Theorem 7.4], Here 
COM (CIM) denotes the convex hull (closure) of 
/ ( 0 , e, •) : M -> IR on M. For m £ 3 / (0 , e) it is 
£ G 3<T(0, m) [20, Theorem 23.5] and 

c l M ( c o M / ( 0 , e , m ' ) ) = ( e ; m ' ) - <j(0, rn') 

> ( e ;m) - a (0 , m) = c l M ( c o M / ( 0 , e ,m)) , 

for all m ' G M. 

T h u s w e have C1M(COM/(0 , E, = inf{CLM(COM 
/ ( 0 , £ , m ' ) ) | m ' G M} . Moreover, it i s m G M ° , i.e. 
c o M / ( 0 , £ , m ) = i n f { c l M ( c o M / ( 0 , e , m ' ) ) | m ' G M } 
= / ( 0 , £ ) , and m £ M m i n := { m ' G M | c l M ( c o M 

/ ( 0 , £, m')) = / ( 0 , £)}. It remains to show that m £ 
Mmin implies m G convM. But 

n 

C O M / ( 0 , M , £) = inf | ^ A J ( 0 , £, M Z ) 
i=i 

0 < A j < 1,2 = 1, . . . , n, for some 
n n 

n £ IN and ^ Aj = 1, ^ Ajm^ = m | 
2=1 X— 1 

and m £ conv M ( 0 , e). 
Finally, use [20, Corollary 6.5.2]: Since 3 / ( 0 , e) C 

M and 3 / (0 , e) n M ° 4 0, the relative interior of 
3 / (0 , £) is a non-empty subset of M ° [20, Theo-
rem 6.2], With [20, Theorem 6.5] we find 

conv M(0 , £) = 3 / (0 , £) n M ° = cl(3/(0, e) n M°) 

= c l ( 3 / ( 0 , £)) n cl ( M ° ) = 3 / ( 0 , £) n M = 3 / ( 0 , £). 

(ii) Directly follows from convM(0, e) = 3 / ( 0 , £) 
in (i). 

By means of Theorem 4.8 and Proposition 4.9 we 
have a characterization of pure phase states of the 
system at a given finite temperature 0 > 0: Take an 
interior point m £ M° which also belongs to the 
absolute concavity region M c ( 0 ) of cr(0, m). Then 
you can find a field-tupel £ = £(m), such that m £ 
M(0,£) . Thus Q = (g>i;-1(m) G 3 e 5(0 ,£) , and all 
pure phase states arise in this way. In contrast, if 
m 0 M c ( 0 ) it is according to Theorem 4.8 (ii) not 
in Mp(ß) and cannot parametrize a pure phase state 
with minimal free energy. Especially, if <7 is affine on 
a convex subset M' C M with tr(0, m) > <r(0, m) 
for all m £ M', such m are candidates for expectation 
values of e in states UJ from the interior of 5 (0 , £), that 
are mixed phase states. 

Concerning the differentiability of / ( 0 , £) and the 
connection to limiting Gibbs states with non-trivial 
central decompositions we introduce the notion of a 
tangent state, comp. [6]: 

Definition 4.10 
A state UJ £ SP(A) is called a tangent state 

of / (0 , £) at £ with gradient m(uj) := (co\ei) = 
limyi rjq (UJ ; YhkeA ^k) for an arbitrary I £ 1Z ifm(uj) 
is a subgradient of / (0 , £) at £. 

Observe that the gradient of a tangent state fulfills 

{e ' ; m(w)> > 1/(0, £ + Xe') - / ( 0 , e)]/X 
and 

(£'; m(uj)) < [ / ( 0 , £ - XE') - / ( 0 , £ ) ] / ( - A ) 

for all A > 0. Consequently, (e' ; m(uj)) has the 
unique value (E' ; V £ / ( 0 , £)), if the latter exists. 

Proposition 4.11 
If UJ € 5 ( 0 , £), UJ is a tangent state on / ( 0 , E) 

at £. 
PROOF: From the minimal principle at £ + E' we 
obtain for UJ G5 (0, e) and all e' G IRn5t 

/ ( 0 , £ + £ ' ) < / ( 0 , £ + e', w) = (e ' ; m(uj)) + / ( 0 , e). 

Here / ( 0 , £ + is the free energy density from 
Def. 3.1 (iii) of the model with local Hamiltonians 
Ha(e + e') in the state UJ. 
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Thus if S(ß,e) contains more than one state, the 
free energy is not d i f ferent ia te at e. A special sit-
uation may be described in terms of limiting Gibbs 
states. 

Corollary 4.12 

If there are more than one limiting Gibbs states or 
there is a non-factorial limiting Gibbs state of the 
model with local Hamiltonians H\(e), A (EL, then 
/(/?, e) is not differentiate at £. 

PROOF: Since all limiting Gibbs states together with 
their components of the central decomposition are 
in S(ß, £), both assumptions of the corollary lead to 
more than one element in S(ß, £)• 

We see, that the free energy function f ( ß , •) : 
|Rn® —>• |R contains the complete information on all 
possible m-values , which may arise in thermody-
namic equilibrium at the temperature ß, since they 
appear as (generalized) gradients. For the discrimina-
tion between pure phase and mixed phase m-values 
one needs however the function o(ß, •) : M —> IR. 
One is reminded on the primitive surface (here given 
by o(ß, m)) and the derived or ruled surface (here 
given by a ( ß , m)) of the geometric thermodynamics 
of Gibbs [46, 47]. Observe, however, that the correct 
thermodynamic potentials /( /?, •) : IRn® —> IR and 
s : M —> IR have no unstable parts! Instead of o(ß, •) 
we could have used, of course, the combination 

f ( ß , e, m) = (e ; m) — o(ß, m), m G M. 

This non-equilibrium free energy contains also the 
complete thermodynamic information. 

Finally let us mention, that the operator-algebraic 
pure phase concept as extremal states in S (ß,£) is 
completely confirmed by the foregoing discussion of 
the thermodynamic functions in the sense, that it leads 
to a commonly accepted point of view in phenomeno-
logical thermodynamics. 

4.3. Variation of H-Symmetric Field Parameters 

Corollary 4.12 tells us that the function /( /? ,•) : 
IRa* —> IR is not d i f ferent ia te if and only if there 
is more than one pure phase state with minimal free 
energy density. This is the situation for low temper-
atures in the case where a phase transition has taken 
place. For later applications we choose here £ such 
that Hy[(e) is always H-symmetric and we expect that 
the minimal free energy remains di f ferent ia te in this 

subspace also if a second order phase transition takes 
place. Moreover, we determine the concave conjugate 
of /(/?, £), restricted to the subspace of H-symmetric 
fields. 

In Definition 2.5 and Remark 2.6 we have intro-
duced the internal symmetries H on B and A. Now 
we consider the action of H on the parametrization M 
of SCB): Let be vl(<p) the z-th component of v(ip) for 
some p G SCB). Then we find for arbitrary u G H 

Vi(Ad» = (Ad>;e*) = (<p;Adu.el) (4.23) 
71 J! 

= ^mkl(u*)vk(p) = (M(u~l)Tv(v))i, 
k= 1 

and M ( w ( _ 1 ) ) r m G M for all m e M and u G H. 
Now consider the free energy density / ( /? ,£ , m) 

for a H-invariant interaction w and H-invariant fields 
£, i.e. we have w o M(u)T = w and M(u)e = e for all 
u G H. Obviously, the set £'(H) of H-invariant fields 
£ G IRn® is a linear subspace of IRn*. We find 

f ( ß , M(u)Tm) (4.24) 

m 

= (M(u)Tm ;e) + w(M(u)Tm) - - s(M(u)rm) 

= /(/?,£, m). 

Thus m f ( ß , e, m ) is invariant under the transfor-
mations M(u)7 for all u G H and m G M. 

Proposition 4.13 

Let H be the group of internal symmetries with 
action on B according to (2.5). Then we define the 
symmetrization operator JH M(u) dp^](u) on IR'1® by 

J^M(u)dpH(u)£y= J^{m-,M(u)£) dpH(u), 

Vm,£ G IRa®. 

It satisfies 

( J M(u) dpH(u)) = J^ M(u)dpH(u) 

andE(H)= [/H M(u)dpH(u)] IR'!®. 
PROOF: Obviously, fH M(u) dpH(u) is well defined. 
The properties of J H M(u) dp\-\(u) follow by standard 
argumentation. 

Remark 4.14 

In general the H-symmetrization /H M(u)dpy\(u) 
is not selfadjoint. Nevertheless, one can choose a 
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basis e' of (B such that the symmetrization becomes / ( 0 , £) = / ( 0 , Py\(£ + £X)) 
an orthogonal projection in this representation. Thus p 
we assume that the basis e is chosen such that 
JH M(u) d//(-|(w) becomes self adjoint and constitutes 
the orthogonal projection 

> / f(ß,M(uXe + e±))dpH(v) 
J H 

= f(ß,£ + £±)>f(ß,£), 

Ph -L M(u)dpH(u). 

We denote the restriction of / ( 0 , •) : IRn® — » 
IR to E(H) by /H(0 , •)• I n Proposition 4.5 we have 
determined the concave conjugate of the minimal free 
energy density on IRn®. Here we repeat this calculation 
on E(H) and define for all m in IRn* 

<7^(0, •) : IRn* — * IR U - o o , (4.26) 

m - o°H(ß, m) := inf{ (m; e) - / H ( 0 , £) | £ G E( H)}, 

< 7 H ( 0 , ) : £ ( H ) — > IR U —oo, (4.27) 

m - <7H(0, m) := inf{ ( m ; e) - / H ( 0 , e) | e € E(H)}. 

It holds 

<7(^0,M(w)Tm) 

= in f{ (M(w) T r a ; e ) - / H ( 0 , £ ) I £ € £ ( H ) } 

= &°H(ß,m), 

(4 25) which is not possible. 
In Proposition 4.17 we prove a corresponding result 

for <7(0, m) . 

Lemma 4.16 
Let be ß > 0. It holds 
(i) (7^(0, m ) = cl (sup{<7(0, m — m 1 ) | mx G 

^ ( H ) - L } ) / o r a / / m € IR71®, 
(ii) <th(0, m ) = m ) = <7(0, m ) / o r all m G 

£(H) . 
PROOF: (i) cr° (0, m ) = inf{(m ; e> - / H ( 0 , e) \e€ 
E'(H)} writes with the indicator function bw(%) '•= 
r 0 x e w 

oo x & W 
for an arbitrary subset W of IRn* as 

( 0 , m) = inf { ( m ; e) - / ( 0 , £ ) + ÄE (H)(e) I £ G IR"*} 

= [f(ß,-)-6E(H)]\rn). 

/ ( 0 5 •) = [a(ß , •)]* is a closed proper concave func-
tion. Since E(H) is a linear subspace of IR"*, — 
is also closed and proper concave. Then we find with 

i.e. <7|^(/9,m) is invariant under the transformations Theorem 16.4]. 
which arise from H. In the next steps we clarify the 
re la t ion b e t w e e n <7̂ (0, m) a n d <7(0, m). 

Lemma 4.15 

< 7 ° ( 0 , m ) = cl ( [ / ( 0 , - ) ] * n [ - ^ ( H ) ] + ) ( m ) 

= cl ( < T ( 0 , - P [ - ^ ( H ) ] * ) ( m ) , 
(4.29) 

Let be ß > 0 and £ G E( H). Then we have for all 
E± G E(H)1-

f(ß,E + £ ± ) < f ( ß , £ ) = Mß,£). (4.28) 

PROOF: For all u G H we have / ( 0 , £ ) = 
/ ( 0 , M(u)e) and 

f ( ß , £ + £L) = i n f { { M ( u ) T m ; £ + £X) 

+ w(M(u)Tm) - - i s(M(u)Tm) \ m G M } 
r 

= f(ß,E + M(lL)£±). 

where • denotes the infimal convolution. The con-
jugation of -<5£(H) is given by M £ ( H ) r ( m ) = 
—^ ( H)x(m) and we find with (4.29) 

a f l ( / ? ,m) = c l ( s u p { < 7 ( 0 , m - m x ) | m ± G ^ ( H ) ± } ) . 

(ii) Let be m G E(H). With Lemma 4.15 we cal-
culate <7(0, m): 

<7(0, m) > i n f { ( P H m ; £ + e l ) - /(/?, e) \ 

£ G £ ( H ) , £ x G E(H)-1} 

= i n f { ( m ; e ) - / H ( 0 , e ) I £ G E(H)} = aH(ß,m). 

Assume, that there is a e1- G E(H)1- with / ( 0 , £ + Due to its definition we have <7(0, m) < <5"H(0, tn) 
£ ) > / ( 0 , £). Due to P H £ = 0 it holds and thus equality holds for all m G £(H) . 
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Lemma 4.17 

For all ß > 0 it holds 
(i) m) = [ / H ( 0 , - W i m ) for all m G £(H), 
(ii) M ß , e ) = [&H(ß, •)]*(£) for alle G P(H). 
Moreover, for all m G £ ( H ) m x G -E(H)1- it 

is ö(ß, m + rn-1) < o(ß, m). 

PROOF: (i) is valid according to the Definition of 
O H ( ß , m ) in (4.26), and (ii) follows from f\-\(ß, •) = 
[/H(/?, •)]** which holds since fy\(ß,e) is finite on 
E(H) [20, Corollary 7.4.2], The inequality follows 
from Lemma 4.16, because for all m G P(H) it is 

&(ß,m) = &H(ß,m) 

= cl (sup{a(ß, m + mL) \ m± G £ ' (H) ± }) 

> sup{£(/?, m + m 1 ) | mL G E(H)x} 

> o(ß, m + m~L), Vm1 G E(H)-1 . 

Let us emphasize that the concave conjugate func-
tions O H ( ß , m ) and f\-\(ß, e) on E(H) are restric-
tions of the concave conjugate functions o(ß, m) and 
/ ( / ? ,£ ) on IR"3'. Especially, the full information on 
v(ß->')\£(H) may be obtained by experimental data 
from /(/?, -)|E(H)- Consequently, the subgradient set 
of /H(/?,£) still contains information on the pure 
phase equilibrium states of the system: 

Lemma 4.18 

Let be ß > 0 and /H(/?,£), PH as above. For all 
e G E(H) it holds 

PHdf(ß,£) = dfH(ß,£). 
Especially, it holds Py^convM(ß, s) = d f ^ i ß , £). 
PROOF: Let be £ G E(H) and m G 9 / ( 0 , e). Then 
we have for all e' G E(H) 

/ H ( 0 , £ + e') = f<ß, £ + £')< ( m ; e') + /(/?, e) 

= (PHm-,£')+Mß,£), 

i.e. Py\m G 5/HC$,£). The other way round, let be 
m £ 3 /H(# ,£ ) . With Lemma 4.15 it holds for arbi-
trary e' G E(H) and £ x G £ ( H ) X 

f { ß , £ + £ ' + e-L) < £ + £ ' } < ( m ; £ ' ) + f ( ß , £ ) 

= ( m ; P H ( £ ' + £ ± ) > + / ( A £ ) 

= ( P H m ; £ ' + £ ± ) + / ( /? ,£) 

= ( m ; £ , + £ ± ) + / ( / ? , £ ) . 

Thus m G d f ( ß , e ) and with P^m = m we have 

As a consequence of the variation of external field 
parameters with given symmetry we find differentia-
bility properties of the minimal free energy density — 
even if there is more than one pure phase equilibrium 
state (comp. Corollary 4.12): 

Corollary 4.19 

Let be £ G E(H) and deS(ß,e) = üH(®tp) for 
some ip G5 Then the subgradient of the free energy 
/h(/3, £) is a one point set 

dMß,£) = {Pnv(p)} 
and £) is differentiate in e. 
PROOF: According to Prop. 3.8 there exists a 
m G M(ß, £) such that M(ß,e) = Ö H ( m ) . 
Now use Prop. 4.18, P H 9 / ( / ? , e ) = d M ß , e ) , and 
c o n v M ( ß , £ ) = c o n \ { M ( u ) T m \ u G H}. With 
Prop. 4.9 (i) and Prop. 4.18 it follows 3 / H ( / ? ,£ ) = 
P(- |Conv{A/(u)Tm \ u G H}. We find PHM(u)Tm = 
P^m for all u G H, and consequently it is 

a / H ( / ? , £ ) = P H c o n v { M ( w ) T m | u G H} 

= conv {PHm} = { P H m } = {PHv(p)}. 

A consequence of Corollary 4.19 is the specifica-
tion of the directions where f ( ß , e) may be not differ-
e n t i a t e . In the above case where we have one orbit 
of pure phase states with minimal free energy den-
sity, the restriction £ ( H ) 3 £ -> / H ( /? , e) = /( /?, e) is 
still d i f fe ren t ia te . Thus the non-differentiability ac-
cording to Corollary 4.12 is related to the variation of 
fields such that the internal symmetry H of the local 
Hamiltonians Ha(e) is lost and the orbital-structure 
of M(ß, E) destroyed. Further conclusions from this 
property will be discussed in the next section, where 
the relation to phase transitions is elaborated. 

5. Phase Transitions 

We propose here a definition of phase transitions, 
which seems to be appropriate at least for the discus-
sion of our considered class of models. The general 
idea is that a phase transition occurs, if the equilib-
rium properties of a thermodynamic system undergo 
a "qualitative change". The equilibrium properties are 
here given by the sets S(ß, £) in dependence on the pa-
rameters (ß, £). The structure of these sets may even 
be better characterized by their extreme boundaries 
deS(ß, E), the sets of all statistical pure phase states. 
Two such sets are certainly qualitatively different, 
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if the number of connected components and/or the 
dimensions of the connected components are differ-
ent. For quantum lattice models a qualitative change 
is usually made manifest by a change of the (internal) 
symmetry group of the pure phase states, that is the set 
of all symmetry transformations, under which the pure 
phase state is invariant. This may be accompanied by 
the change of the topological invariants, but must not 
necessarily be so. In our frame all features can be 
seen as well in terms of the parameter sets M(ß,e) 
for the pure phase states. Usually the symmetry group 
decreases with decreasing absolute temperature and 
the degree of order increases correspondingly. 

Definition 5.1 
For a given quantum lattice model we say that two 

pure phase states are of the same type, if they have 
the same symmetry group. A phase transition is then 
a continuous curve of the form 

1 = { m \ m ) \ t e i 1 c \ R } c E : 

on which a qualitative change of the sets M(ß, e) 
(pure phase equilibrium values of the density ob-
servable s) occurs, that is, the topological invariants 
and/or the type of the pure phases undergo a change. A 
point y(to) = (ßo, £o). which has both kinds of equilib-
rium sets in every neighbourhood, is called transition 
point. 

In contradistinction to Ehrenfest's notion of the 
order of a phase transition, which may assume in 
principle arbitrary natural numbers as values (and to 
which we return at the end of our discussion) many 
authors have introduced a division of all phase tran-
sitions into two kinds (cf., e.g., [36, 48 - 50], and also 
Wightman in the Introduction of [6]). The basic idea 
is that some relevant quantity may behave discontinu-
ously or continuously at the transition point. We shall 
try to reformulate this in terms of our pure phase sets 
M(ß, e). For this we introduce 

Definition 5.2 

7(^o) = (A), £0) is called a continuity point of the 
curve 7 in Def. 5.1, if for all E > 0 there exists a 
6 > 0 such that for all t € /7 with |t0 — t\ < 6 the 
sets M{y(t)) are contained in the E-neighbourhood of 
M(j(to)) and M(7(^o)) is in the E-neighbourhoods of 
M(y(t)). Otherwise (A), £0) is called a discontinuity 
point of 7. (An E-neighbourhood of M(7(t)) is here 
the union of all E-neighbourhoods of the points in 
Mm)).) 

Definition 5.3 
A phase transition 7 is called to be of first or second 

kind if the transition point is not or is a continuity 
point. The transition points of phase transitions of the 
second kind are called critical points. An equilibrium 
state is called a coexistence state if it is a mixture of 
phases with varying types (in contradistinction to a 
mixture of pure phase states of the same type, which 
only signifies statistically the non-accurateness of the 
preparation method). 

An other alternative of the definition of a transition 
of the first kind which emphasizes the role of the latent 
heat would be the following one: A phase transition 
7 is called to be of the first kind if the set function 

t {s e IR I 3m <E M ( 7 ( 0 ) with 5 = s(m)} 

=: s(M(-ym 

is discontinuous at the transition point y(to). Since 
s(m) is a continuous function on M (see before 
Def. 4.7) the set function t M(j(t)) must be dis-
continuous in this case and implies a transition of the 
first kind according to Definition 5.3. The other way 
round this alternative definition would not be the logi-
cal complement of a second kind transition according 
to Definition 5.3. Nevertheless, in applications the 
discontinuous change of M(y(t)) at to in general im-
plies a discontinuous behaviour of s(M(^y(t))). Thus 
we work in the following with Definition 5.3 for the 
kind of a transition. 

We start with a necessary condition for the pos-
sibility of a phase transition. Intuitively one expects 
that the interaction w has to be attractive in order to 
create a non-trivial equilibrium phase structure. This 
is expressed in terms of convexity properties of w: 

Proposition 5.4 
If for a given system E the interaction w is a con-

vex continuously differentiable function on M, then 
M(ß,e) contains only one point for all (/?,£) G E, 
f ( ß : E) is differentiable in E at all E E IR"® and the 
system does not exhibit a phase transition. For every 
(ß, E) E E the system has a unique limiting Gibbs 
state. 

PROOF: Since m —• s(m) is strictly concave, m —• 
w(m) is convex, and m —• (E ; m) is affine, it follows 
that 

f(ß, £, m) = (E ; m) + w(m) —- s(m) 
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is strictly convex. A strictly convex function on 
the compact convex set M has a unique minimal 
p o i n t ra(0,£) [20] , i .e. M ( 0 , £ ) = { r a ( 0 , £ ) } . D u e 
to Prop. 4.9 (i) the subgradient 3 / ( 0 , e) consists of 
exactly one point for all £ £ IR'1* and e —>• f(ß,e) 
is differentiable. If M(ß,e) = {m(0,£)}, we have 
5 ( 0 , £) = { < g w _ 1 m ( 0 , £ ) } = 3 e 5 ( 0 , £ ) a n d all l im-
iting Gibbs states are unique. Of course, the single-
ton sets M ( 0 , e) do not change qualitatively for each 
(0, e) € E, and no phase transition according to Def-
inition 5.1 is possible. 

At any transition point, the "size" of the sets 
M(7( t ) ) changes. Usually, the amount of pure phase 
equilibrium states increases with decreasing tempera-
ture, i.e. for 0 > 0o; but there are interesting examples 
for the reverse case [51]. In general one finds: 

Proposition 5.5 

Let w be a continuous interaction and 7 a contin-
uous curx'e. For all t £ /7 and t' —> t it holds 

lim M ( 7 ( 0 ) C M(7(*)) D lim M(rf(t')). 
t'/t t'\t 

PROOF: M ( 0 , £) is defined as M ( 0 , e) = {m e M \ 
/ ( 0 , e, m) = / ( 0 , £)} and ( 0 , e) / ( 0 , £, m) is con-
tinuous on E. Since 7 is continuous, it follows that 
t' —• i n f { f ( ß ( t ' ) , £ ( t ' ) , m ) I m € M } is continuous. 
Thus the inclusion relations follow. 

Corollary 5.6 
Let w be a continuous interaction. At the transition 

point 7(^0) = (0o, £0) of a phase transition of the first 
kind 7, the number of orbits in M("f(t)) is increased 
at least by one orbit of H for t /* to or t \ to-
PROOF: Since 7(^0) = (0O, £0) is the transition point 
of a phase transition of the first kind, we have with 
Definition 5.3: 

l i m M ( 7 ( 0 ) ^ M ( 7 ( * o ) ) or 
t y t 0 

l i m M ( 7 « ) ) ^ M ( 7 « 0 ) ) . 
t\to 

Thus at least one of the inclusions in Prop. 5.5 is 
proper, and at least one orbit is added. 

Next we have a look on the differentiability of the 
free energy density / |_ |(0,e) as introduced in Sec-
tion 4.3. 

Proposition 5.7 
(i) Let be / H ( 0 O , ) not differentiable in £0 G E(H) 

and differentiable in a neighbourhood /\{so}- If 

7 i t ) = (0o, £(t)) is a continuous curve (with constant 
inverse temperature ß(t) = ßo) through (0q, £0). then 
there is a phase transition of the first kind at (0o, £0) 
in the sense of Definition 5.1 and 5.3. 

(ii) Let be 7 (t) = (0o, £(t)) a phase transition of the 
second kind (at constant inverse temperature ß(t) = 
0o) with critical point -y(to) = (0o,£o)- !f M ( t ) ) 
consists for all t < to of one H-orbit, then £ —> 
/ h ( 0 o , £) is differentiable at £o-

PROOF: (i) We have with Corollary 4.19: 3 / H ( 0 , e) = 
{P H convM(0 ,£ )} . Since E(H) 9 £ / H ( 0 0 , e ) is 
differentiable in / \ {eo} , 3 /H(0, E) changes discontin-
uously at £0 and the number of H-Orbits in M ( 0 , e) 
increases discontinuously at ( 0 o , £ 0 ) . 

(ii) Since M(y( t ) ) consists of one H-orbit for all 
t < to, PtfConvMi'yit)) is a singleton and / H ( 0 O , £ ) 

is differentiable for all £(t), t < to- Now 7(^0) is 
the critical point of a phase transition of the second 
kind and thus P H C O N V ^ ( 7 ( * O ) ) = ^ / H ( 0 O , £0) is also 
a singleton, i.e. £ —• / H ( 0 O , £ ) is even differentiable 
at £0. 

Let us end our investigation with an incorporation 
of certain ideas of the Landau theory into our scheme. 
As is well known, Landau [52] based his analysis of 
structural phase transitions on an expansion of a cer-
tain thermodynamic potential i f ) into powers of 
the so-called order parameter 77. (We restrict our dis-
cussion to the simple case of a scalar order parameter 
as it is presented in [48], For a review of more com-
plicated applications cf., e.g., [53].) First we have to 
clarify, which potential in our treatment would cor-
respond to that of Landau. It must be a potential in 
which the temperature 0 and the external field vari-
ables £ are fixed, but which nevertheless depends on 
some non-equilibrium features, which Landau com-
pressed into the notion of an order parameter. 

In Def. 3.6 we introduced a mean-field free en-
ergy / ( 0 , m ) , which also depends (via y(m)) on £ 
and varies in our applications over m G L(ß) C IR"®, 
the set of self-consistency values. It is very important 
to note, that firstly, we have already added a correc-
tion term with respect to the strict mean-field free 
energy — ^ Zßiy(m)) (where the partition function 
is evaluated with the mean-field Hamiltonian), and 
that secondly any extension of the domain of defi-
nition beyond L(ß) is no longer in coincidence with 
the microscopic theory. In our opinion the free en-
ergy / ( 0 , £, m), which we introduced in Def. 3.1 (see 
also (3.3)) and used in Sect. 4.2 gives the correct free 
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energy value for any pure phase non-equil ibrium state 
with density observables m G M C IR"* , and may be 
restricted to Landau's potential In the case of a o n e -
dimensional order parameter one then varies m along 
a one-parametric curve k := (772(77) G M | 77 E IR } , 
here chosen without loss in generality as a straight line 
in M-space. Since this analysis of phase transitions 
depends on the series expansion of / ( /? , m ) in m 
we assume the interaction function w to be analytic. 

Proposition 5.8 

Let w be an analytic interaction, and n(q) = m ° + 
rjm' with m° G M°, m' G IRN®, and 77 G IK C 
IR such that k(t]) G M°. Then the non-equilibrium 

free energy along k has an asymptotic expansion in 
positive integer powers of the curve parameter q at 
q = 0 (we use the coefficient symbols of [48]): 

<£(/?, £,77) / ( / ? ,£ , 

~ /(/?, e, k(0)) + aq + Ar? + Bq3 + Crf + • - • 

where 
n<B 

a = a(ß, £) = ~ m 0 ) ) ^ , 
i= 1 

l,J=l J 

n 1 V - ^(P*™0) , , , 
B = B(ß) = -6 E a ^ ^ w . 

n 1 V"" m ° ) , , , , C = C ( / i ) = — > - — — m m m f c m , . 24 V f dm1dm1dmkdmi 1 3 k 1 
i,j,k,l=\ J 

PROOF: The assertion follows from the fact, that the 
internal energy and the entropy are infinitely differ-
e n t i a t e functions on M° and by differentiation of 
f(ß,e,m) along k. 

In the frequently used case of a quadratic interac-
tion as in (2.3) the derivatives in the coefficients B 
and C reduce to the differentials of the pure phase 
state entropy density s(m) f rom (4.21). 

The main point of the Landau theory is to combine 
the asymptotic expansion of q —> <P(ß, e, q) with sym-
metry arguments [54, Chapt. VII, Second Order Phase 
Transitions, 64] in order to get an analytic treatment of 
phase transitions of the second kind. For this one spec-
ifies a curve IR D / 7 9 t -y(t) = (/?(<), e(t)) G E 

on which the critical point 7 ( t c ) should be situated. 
For each t G / 7 one selects a curve IR D IK 3 77 —• 
nl(q) = m°(t) + 77m' G M° in the space of n o n -
equilibrium density variables, such that for 77 = 0 one 
has an equilibrium value m°(t) with minimal free en-
ergy for t < tc. For t > tc m°(t) is changed into 
a local maximal (or saddle) point of the free energy. 
Usually rather restricted assumptions are formulated 
to obtain this scenario: 

(i) a ( 7 ( 0 ) = 0 for all t G / 7 , 
(ii) A(ß(t)) > 0 for t < tc, and A(ß(t)) < 0 

for t > tc (implying A(ß(tc)) = 0), 
(iii) B(ß(tc)) = 0 and C(ß(tc)) > 0. 

For the treatments of special models these assump-
tions have proven to be very useful. From the clas-
sificatory point of view they are at the one hand too 
restricted and on the other hand not strong enough. 
We propose the following modification, making use 
of our above developed conceptual frame and appeal-
ing to the internal symmetry group H: 

Observation 5.9 (Generalized Landau Scenario) 

Using the notions of Proposition 5.8 and the sub-
sequent discussion we postulate 

(i) /7 9 t -> m{\t) is a continuous curve in M°, 
(ii) for all t G / 7 q = 0 is a stationary point of 

77 <£(7(t), 77), 
(iii) {k^O)} = M ( 7 (t)) (= set of equilibrium val-

ues) for t < tc, 
(iv) m°(t) = M(u)Tm°(t) for all u G H, t G / 7 , 

and m' 4 M(u')Tm' for a u' G H, 
(v) for t > tc the absolute minimum of 77 —> 

<?(7 (£), 77) is obtained for q(t) y 0, and 

M(7«)) = {M(u)TK\ri(t)) I u G H } . (5 .1) 

Then 7(tc) is a critical point (i.e. the transition 
point of a phase transition of the second kind along 7 ) . 

PROOF: For t > tc M(u')Tn(rj(t)) 4 K(rj(t)) and 
M ( 7 ( 0 ) has more than one element in contrast to 
M{^(t')), for t' < tc, and 7 ( t c ) is a transition point 
of a phase transition along 7 . 

Using Prop. 5.5 it follows from (iii) for small 
t — tc that M ( 7 ( 0 ) consists of one H-orbit only. Since 
q —> # ( 7 ( t ) , 77) and all its derivatives are continuous 
and depend continuously on f G the minimiz-
ing order parameter t —> q(t) is continuous with 
l i m ^ t ( , q(t) = 0. Then we have l i m j ^ t c ^(qit)) = 
l i m t - , t r ( m ° ( t ) + q(t)m') = m°(tc). Since M(u)T is 
bounded on IR'1* and leaves m°(t) invariant, it follows 
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as well \imt^tcM(u)TKt(r](t)) = l i m t ^ t c ( m ° ( t ) + 
r](t)M(u)Tm') '= m°(tc). Thus M(>y(t)) is continu-
ously deformed from a one point set into a non-trivial 
H-orbit while passing t c . 

The preceding Observation 5.9 may be extended 
straightforwardly to the case when there are n H-
orbits in M(7it)) for t > tc. Then we have to consider 
n curves 77 —> k^ij) = m°(t) + r/m[ with active direc-
tions m^ for i = 1 , . . . , n, where we assume for i 4 
that m\ 4 c M r ( u ) m ^ for all c G IR and u £ H. Con-
dition (iv) must be satisfied for all m[, i = 1 , . . . , n, 
i.e. there is some u' £ H such that m'l 4 M{u')Tm\. 
The absolute minima of the Landau potential along 
the curves k\ are attained for i^it) 4 0 for t > tc and 

M ( 7 ( 0 ) = {M{u)TK^t)) I u E H, i = 1 , . . . , n } . 
(5.2) 

Then 7( t c ) is a critical point. This extension allows to 
include the possibility of higher order critical points 
(intersections of critical lines) into our formulation. 

6. Remarks on Model Discussions 

One can find the general structures presented in this 
paper in a number of rigorously treated models. Most 
of them have a quadratic interaction as in (2.1)—(2.3) 
or an asymptotic behaviour which leads to this form 
in the thermodynamic limit. One of the most popular 
examples is the BCS-model [55 - 57]. Very similar in 
their pure phase state structure are homogenizations 
of the Hubbard model [58, 59]. In the notation of 
Sect. 2 these are models with only one sublattice, i.e. 
r = 1. More general sublattice structures — leading 
to complex phase diagrams — can be found in spin 
lattice models (e.g. of an FCC-lattice with r = 4, 
Fig. 2.1 [23]) or lattice dependent symmetrizations of 
Hubbard models (r = 2) [24,60], which are discussed 
in connection with models of bipolaronic interactions 
[61, 62], for high-T c superconductors [63]. 

The latter models reveal in a rigorous reformulation 
a relationship to short range interactions and their 
systematic treatment in terms of a microscopic mean-
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