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The structure of zinc chloride complexes with different ratios of chloride to zinc, formed in 
concentrated ZnCl2 aqueous solutions, were determined f rom large-angle X-ray scattering using 
concentrations of the chloride complexes estimated by complementary Raman spectroscopic mea-
surements. The highest chloro complex, [ZnCl4]2~, is tetrahedral with a Zn-Cl bond length of 
2.294(4) Ä. The trichloro complex, [ZnCl3]~, which coordinates one water molecule, is pyramidal 
with the Cl-Zn-Cl angle 111°. The Zn-Cl and the Z n - H 2 0 bonds are 2.282(4) and 1.9 A, respec-
tively. The two lower complexes, [ZnCl2] and [ZnCl] + , cannot be separated by Raman spectra.oThe 
average Zn-Cl distance in these complexes is 2.24 Ä, and the average Z n - H 2 Ö distance is 1.9 A. In 
[ Z n ( H 2 0 ) 6 ] 2 + the Z n - H 2 0 distance is 2.15 Ä. 

Key words: X-ray diffraction; Raman spectra; IR spectra; structures of zinc (II) chloride complexes; 
structure of hydrated non-complexed zinc (II) ion. 

1. Introduction 

X-ray structure determinations of zinc ( I I ) chloride 
complexes in strong aqueous solutions have been car-
ried out by several investigators, and recently, their 
results have been summarized by Johansson [1], I n 
view of the results, the highest complex is [ Z n C l 4 ] 2 " , 
which has surely a tetrahedral structure. On the con-
trary, it appears that since, as stabil ity constants sug-
gest, the existence range of the complexes may over-
lap, the structures of the intermediate complexes, 
[ Z n X n ] ( 2 - n ) + (n= 1, 2, 3) have not been yet unambigu-
ously determined. I n these cases, it i s essential to esti-
mate the relative concentrations of the species which 
coexist with each other in sample solutions so that a 
more reliable knowledge of the structures of the com-
plexes can be obtained. 

Thus , in previous X- ray diffraction studies on zinc 
bromide and iodide complexes in aqueous solut ions 
[2, 3], we have applied Raman and I R spectroscopies 
to the halide solutions to estimate the concentrations 
of the halide complexes in those solutions. According 
to the experimental results, in the hydrated Z n 2 + ion 
the coordination is octahedral with the Z n - H 2 0 
distance of 2.10 Ä. The dibromozinc(I I ) complex, 
[ Z n B r J , has a bent structure with the B r - Z n - B r angle 
115° and the Z n - B r distance of 2.38 Ä, and the tr ibro-
mozincate(II) ion is pyramidal with almost the same 
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angle and distance as those for the dibromo complex. 
The highest bromide complex, [ Z n B r 4 ] 2 _ , i s tetrahe-
dral with Z n - B r bond length of 2.405 Ä, which is a 
l itt le longer than those for the di- and tr ibromo com-
plexes. Water molecules are probably coordinated to 
Z n in the di- and tr ibromo complexes, resulting in 
approximately tetrahedral structures, but unambigu-
ous evidence for this could not be obtained. No struc-
tural information was obtained for the lowest bromide 
complex, [ Z n B r ] + . As for the zinc iodide system, the 
first iodide complex, [ Z n l ] + , is octahedral, but is 
changed into tetrahedral in the higher complexes, 
[ Z n I 2 ( H 2 0 ) 2 ], [ Z n I 3 ( H 2 0 ) ] ~ , and [ Z n l 4 ] 2 " . The Z n - I 
bond length is 2.635 Ä in the [ Z n l 4 ] ion and sl ightly 
shorter, 2.592 Ä in the two lower tetrahedral com-
plexes. I n the octahedral complex [ Z n I ( H 2 0 ) 5 ] + the 
Z n - I bond length is 2.90 Ä, much longer than those for 
the three higher complexes. The i r Z n - H 2 0 bond dis-
tances in the iodide complexes are approximately the 
same as that in the hexaaquazinc(II) ion, 2.10 Ä. 

I n the present work a s imi lar investigation of the 
zinc chloride system was carried out. As was the case 
in the zinc bromide and iodide systems, Raman spec-
tra were obtained for the zinc chloride solutions with 
approximately the same composition as that of the 
solutions for X- ray diffraction measurements so that 
the concentrations of the chloro complexes formed in 
each sample solution were estimated using the Raman 
bands corresponding to their symmetric stretching vi-
brations. I R spectra were also obtained for some zinc 
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chloride solutions with the purpose of deducing 
whether the tr ichlorozincate(II) ion is trigonal planar 
or pyramidal. 

2. Experimental 

Preparation of Sample Solutions 

Analytical grade zinc chloride and l i th ium chloride, 
the latter having been recrystallized twice from water, 
were dissolved in distil led water, and the solution was 
analyzed for Z n by complexometric titration and for 
CI by gravimetry as AgCl. The composition ( X A i and 
X B i ) of the solutions for X- ray diffraction measure-
ments is given in Table 1, and that for Raman and I R 
measurements ( R A R L ) in Table 2. 

X-Ray Scattering Measurements 

The X- ray scattering from the free surface of the 
solution was measured with M o K radiation in a 9-9 

Table 1. Composit ion of the sample solutions for X-ray dif-
fraction measurements. 

X A I XA2 XA3 XB2 XB3 

Zn2 +(moldm 3) 7.488 5.010 2.867 1.618 0.9735 
c r 14.98 15.02 14.04 4.977 4.428 

- 5.00 8.30 1.74 2.48 
H , 0 38.82 36.65 37.83 49.94 50.26 
V("Ä3) 110.90 110.50 118.27 333.64 374.96 
Zn(atoms:'V) 0.50 0.33 0.20 0.33 0.22 
CI 1.00 1.00 1.00 1.00 1.00 
L i 0.33 0.59 0.35 0.56 
H , 0 2.60 2.44 2.70 10.00 11.40 
C l - Z n ratio 2.00 3.00 4.90 3.01 4.55 

Table 2. Composit ion of the sample solutions for Raman 
spectroscopic measurements (in mol d m - 3 ) . 

Zn 2 + c r Li + C104" C P Zn 2 + 

ratio 

RA 3.13 1.73 _ 4.52 0.55 
RB 4.60 5.88 3.30 1.28 
RC 2.64 5.18 0.10 1.96 
RD 1.54 4.57 1.58 0.10 3.01 
RE 1.09 4.60 2.52 0.10 4.22 
RF 7.53 15.0 - 0.10 1.99 
RG 5.02 14.9 4.92 0.10 2.97 
RH 2.93 14.1 8.33 0.10 4.81 
RI 2.06 14.8 10.8 0.10 7.18 
RJ - 5.03 5.03 - -

RK - 9.17 9.17 - -

RL - 12.7 12.7 - -

diffractometer according to the analogous procedures 
to those described in [4], A focusing L i F single crystal 
monochromater was positioned between the sample 
and the scinti l lation counter. The scattered intensity 
was measured at discrete points at ^-intervals of 0.1° 
for l ° - 2 0 c and 0.25° for 20° -70° . Intensities below 
0 = 1 ° could not be determined experimentally and 
were obtained by extrapolation to zero. Three differ-
ent s l i t widths, 1/12°, 1/4°, and 1° were used to cover 
the complete range. F o r each point, 100000 counts 
were taken, and each sample solution was scanned 
twice. The intensities for each s l i t combination were 
corrected for background radiation, which was deter-
mined by placing a lead plate jus t behind the receiving 
sl it , and were normalized to the intensities measured 
with the 1° width s l i t from the data of overlapping 
regions. 

Raman Measurements 

F o r Raman spectroscopy, excitation was accom-
plished by using a single line of 514.5 nm wavelength 
from an Ar ion laser (NEC-GLG3200) . The incident 
power was about 200 m W at the sample point. The 
sample solutions were contained in a cylindrical 
quartz cell with optically flat top and bottom. The 
Raman-scattered light was detected by a triple type 
monochromator (JASCO R - 8 0 0 T ) equipped with a 
photomultiplier (Hamamatsu R-464) and a photon 
counter. The band path width of the monochromator 
was about 2 cm" 

Far-IR Measurements 

Infrared spectra were measured in the range of 50 to 
500 c m " 1 with a J E O L J I R - 1 0 0 F T - I R spectrometer 
using a 6 mm Mylar beam splitter and a polystyrene 
windowed T D S detector. P lat inum gauzes were used 
to contain the sample solutions. One hundred scanns 
at a resolution of 2 cm - 1 were accumulated for each 
solution. 

3. Data Treatment 

Raman Data 

The Raman spectra of R A to R I were brought to a 
flat base by substraction of spectra of RJ, R K and R L 
(RA, RC, R D , R E - RJ; R B - R K ; R F , RG, R H , R I -
R L ) . The peak positions and areas under the peaks 
corresponding to the symmetric stretching vibra-
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Fig. 1. R a m a n spectrum of the solution RA (cf. Table 2), together with resolved bands based on the hor izontal background . 

t ion frequencies of the aqua and chloro complexes 
of zinc ( I I ) were estimated by curve f i t t ing us ing 
Gauss-Lorentz ian curve forms. An example i s i l l u s -
trated in F igure 1. T h e Raman bands having their 
maxima at 277, 283, 300, and 385 cm - 1 were assigned 
to [ Z n C l 4 ] 2 ~ , [ Z n C l 3 ] ~ , [ Z n C l 2 ] + [ Z n C l ] + , and 
[ Z n ( H 2 0 ) 6 ] 2 + , respectively, based on the available 
Raman data for Z n C l 2 aqueous so lut ions [ 5 - 7 ] , T h e 
bands for [ Z n C l 2 ] and [ Z n C l ] + could not be dist in-
guished f rom each other. T h e polarized Raman band 
at 230 cm - \ attributed to the presence of polynuclear 
aggregates [8, 9], was not observed in the present solu-
tions. On ly the [ Z n C l 4 ] 2 - complex was formed in R I 
solut ion, and the [ Z n C l 3 ] ~ species was predominant 
in R E . A few complexes co-occurred in the other solu-
tions. T h e areas under the peaks were normal ized by 
using the v ^ C l O ^ ) symmetr ic stretching band at 
about 934 c m - 1 as an internal standard. 

T h e calculations of the concentrations of the aqua-
and chloro-complexes in those solut ions were carried 
out according to the procedures described in [2] by 
assuming the concentration of each species to be pro-
port ional to the normalized area of i t s corresponding 
Z n - C l or Z n - H 2 0 stretching band. T h e concentra-
t ions of the complexes thus calculated in R A to R I 
so lut ions are tabulated in Table 3. 

Table 3. Concen t ra t ions of aqua and chloro complexes of 
zinc(II) in the sample solutions for Raman spectroscopic 
measurements (in mol d m - 3 ) 

c([Zn(H20)6]2 +) c([ZnCl] + 

+ [ZnCl2]) 
c([ ZnClJ") c([ZnCl4]2-) 

RA 2.26 0.57 0.31 _ 
RB 2.33 1.13 1.13 -

R C 1.27 0.51 0.80 -

R D 0.30 0.38 0.82 -

RE - 0.12 0.93 -

R F 2.25 2.40 2.61 -

R G - 1.59 3.37 -

R H - - 0.80 2.08 
RI - - - 2.01 

I t i s understood that R F , R G , R H , R D , and R E 
correspond approximately to X A 1 , X A 2 , X A 3 , X B 2 , 
and X B 3 , respectively, in so lut ion composition. T h u s 
i t was assumed in the calculation of the concentra-
t ions of the complexes in the X A 1 to X B 3 so lut ions 
that the formation percentage of each complex i s the 
same in the so lut ions for Raman- and X-ray-measure-
ments corresponding wi th each other, and that the 
sum of the concentrations of the Z n ( I I ) complexes i s 
equal to the total concentration of zinc. T h e concen-
t rat ions of the complexes thus estimated in the solu-
t ions for X - r a y measurements are given in Table 4. 
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Table 4. Concentrations of chloro and aqua complexes of 
zinc(II) in the sample solutions for X-ray diffraction mea-
surements (in mol d m - 3 ) 

XA1 XA2 XA3 XB2 XB3 

c([ZnCl4] ) - - 2.07 _ -

c([ Z n C l 3 p 
c([ZnCl] ) + 

2.69 3.41 0.79 0.88 0.86 c([ Z n C l 3 p 
c([ZnCl] ) + 
c([ZnCl2]) 2.48 1.60 - 0.41 0.11 
c([Zn(H 2 0) 6 ] ) 2.32 - - 0.33 -

IR Data 

The peak at 283 cm - 1 observed by the Raman mea-
surements in solutions R E and RG, where the 
[ZnCl 3 ]~ complex is predominant, occurred also in 
the I R spectra. T h i s fact suggests a non-planar (pyra-
midal) symmetry for [ZnCl 3 ]~ . 

Diffraction Data 

The X-ray scattering data were treated by means of 
the K U R V L R program [10] on a N E C PC-9801 D A 
personal computer. The measured intensities were 
corrected for polarization in the sample and 
monochromator, and for the absorption of the sample 
to give /obs(s), where s = (4 TT/A) sinö. The reduced in-
tensities, i(s), were then calculated as 

/(s) = K / o b s ( s ) - Z " i • {/ i(s)2 + del(s) • //ncoh(s)}. (1) 
i 

K is a normalization constant chosen to refer all inten-
sities to a stoichiometric volume containing one CI 
atom in solutions, n, is the number of atom " f in the 
stoichiometric volume. The normalization was carried 
out by comparing observed intensity values in the 
high-angle part of the intensity curve ( 6 > 50°) with the 
calculated sum of independent coherent and incoher-
ent scattering. Scattering factors, / ;(s), for neutral 
atoms were used with corrections for anomalous dis-
persion [11]. Values for incoherent scattering [11, 12] 
were corrected for the Breit-Dirac factors. The del(s) 
function is the fraction of the incoherent radiation 
reaching the counter, which was experimentally ob-
tained. 

The reduced intensities i(s) thus calculated are 
shown in Fig. 2 after being multiplied by s. 

The radial distribution functions D(r) were calcu-
lated from 

s m a x 

D(r) = 4nr2 g0 + 2r/n j s • i(s) • Af(s) • s in ( r s ) ds, (2) 
o 

where g0 = ( X ni Z , ) 2 /F , with Z , the atomic number of 
i 

i and V the stoichiometric unit of volume. The modi-
fication function M(s ) was chosen to be /Zn(0)//zn(s) 
exp( —0.005 s2). The calculated radial distribution 
curves showed small spurious peaks in the range 
< 1 Ä, which can not be related to any interatomic 
distance. Thus , the reduced intensities were corrected 
for spurious peaks by means of the Fourier inversion 
of the radial distr ibution curve below 1 Ä by taking 
into account the contributions from O - H interac-
tions within H 2 0 . 

The theoretical intensities due to interatomic inter-
actions were calculated from 

i(s)ca.c = I I n J t ( s ) f j ( s ) — ( ^ e x p ( ~ b i j S
2 ) , (3) 

' j rij S 

where rtj and b{j represent the distance and the temper-
ature factor of the interaction between any atoms i 
and j , respectively. 

Least-squares refinements of parameter values in 
the assumed structural model were made by minimiz-
ing the expression 

Z5 2 [ / ( s ) e x p - i ( s ) t h e o r ] 2 (4) 

summed over the experimental 5 values. 

4. Results and Discussion 

The radial distr ibution functions ( R D F ) are shown 
in Figure 3. The small peaks around 1.8 Ä may result 
from interactions between L i + and H 2 0 and also 
from those between Z n 2 + and H 2 0 within the chloro 
complexes. The distinct peaks at about 2.3 Ä are at-
tributed to Z n - C l bonds within the chloro complexes, 
and to Z n - O H 2 bonds within the aqua-complex ac-
cording to the previous X-ray investigations of 
aqueous zinc ( I I ) solutions. The third peaks at 3.8 Ä 
which appear in the X A solutions may be due to C I - C I 
interactions within the chloro complexes. The broad 
peaks in the X B solutions appear in the region 3 - 4 Ä, 
which may correspond to both the distance between 
the chloride ions and neighboring water molecules, 
and the C I - C I distances within the chloro complexes. 

The intramolecular distances ( r s ) and correspond-
ing temperature factors (b's) for [ Z n C l J 2 - and 
[ZnCl 3 ]~ were determined by least squares refine-
ments of the high-angle parts of the intensity curves 
using values for the concentrations as estimated from 
the Raman spectra. A too low cut-off l imit for the 
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Fig. 2. Comparison between observed (dotted line) and cal-
culated (solid line) s • i(s) for the atom pairs concerned, using 
their parameter values indicated in the text. For XAi and XBi 
cf. Table 1. 
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range of s values used in a refinement wi l l increase 
contributions from unknown intermolecular interac-
tions and result in systematic errors in the parameters 
obtained. A too high cut-off l imit, on the other hand, 
w i l l lead to larger uncertainties in the results because 
of too few experimental data. The least squares refine-
ments were, therefore, carried out using different val-
ues for the lower s l imit, and the results were checked 
for constancy in the parameter values obtained. 

F o r [ Z n C l 4 ] 2 ~ , the parameter values were deter-
mined from the X A 3 solution in which [ Z n C l 4 ] 2 - i s 
assumed to be the predominant complex. Intensity 
data for the X A 2 and X B 3 solutions were used for 
the structure determinatioin of [ZnCl 3 ]~ . I n the first 
series of refinements, minor complexes present were 
ignored but were included in successive refinements, 
when their structures became known. The intramolec-
ular distances and temperature factors for [ Z n C l 4 ] 2 -

thus determined were 

rZn_cl/Ä = 2.294(2), bZn_cl/A2 = -0.0003(2); 
r c l _ c l /Ä = 3.69(2), ba_a/A2 = 0.015(2), 

Fig. 3. Radial distribution curves, D(r) — 4nr2 g0. 

and those for [ ZnC l 3 ] were 

r Z n _ a / A = 2.282(2), bZn_cl/A2 = 0.0001 (2); 

' c i -c i / A =3.76(1), bcx_cx/k2= 0.007(1), 

from X A 2 and 
rZ n - c , / Ä = 2.281 (5), bZn _ C 1 / Ä 2 = - 0.0001 (2); 
r c l _ c l / Ä = 3.76(3), ba_a/A2 = 0.009(2) 

from X B 3 . The results for [ ZnC l 4 ] 2 ~ showed that the 
ratio between the Z n - C l and the C I - C I distances did 
not differ significantly from that expected for a tetra-
hedral structure. F o r [ ZnC l 3 ]~ , the Z n - C l and the 
C I - C I distances determined from the X A 2 and the 
X B 3 solutions, respectively, were the same within the 
standard deviations. The Z n - C l bond is s l ightly 
shorter and the C I - Z n - C l bonding angle (1110) is 
s l ightly larger than those in the tetrahedral [ ZnC l 4 ] 2 ~ 
complex. These results are analogous to those found 
previously for other zinc halide complexes [2, 3]. 

The structure of the hydrated non-complexed Z n 2 + 

ion was determined by taking the difference between 
the R D F ' s for the X A 1 solution in which the hydrated 
non-complexed Z n 2 + ions are predominant, and the 
X A 2 solution after subtracting the [ZnCl 3 ]~ contribu-
tions (see Figure 4). I n the resulting difference curve 
(solid line) the Z n - H 2 0 distances should give a dom-
inant peak, which is in close agreement with a calcu-
lated peak for s ix Z n - H 2 0 interactions at 2.15 Ä (see 
the broken curve obtained by subtraction of the 
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Fig. 4. The difference curve (solid line) between the D(r)'s for 
the XA1 and XA2 solutions obtained after subtracting the 
[ZnCl3]~ contributions. The curve (broken line) is obtained 
by subtracting the [ Z n ( H 2 0 ) 6 ] 2 + contributions from the dif-
ference curve (solid line). 

Fig. 5. The difference curve (dotted line) obtained by sub-
tracting the contributions (broken line) due to Z n - C l and 
Z n - O H 2 interactions within [ZnCl3]~ and [ Z n ( H 2 0 ) 6 ] 2 + , 
respectively, from the D(r) — 4 n r2 g0 (solid line) curve for 
XA1. 

[ Z n ( H 2 0 ) 6 ] 2 + contributions from the difference curve 
(solid line) in F igure 4). The distance obtained in the 
present system is within 2.08-2.17 Ä determined by 
X- ray diffraction of aqueous solutions of various 
zinc ( I I ) salts [1]. 

The X A 1 and X B 2 solutions contain the largest 
relative concentrations of the lower complexes 
[ Z n C l 2 ] and [ZnCl ] + . F o r a derivation of their struc-
tures the contributions due to Z n - C l and Z n - O H 2 

interactions with in [ZnCl 3 ]~ and [ Z n ( H 2 0 ) 6 ] 2 + , re-
spectively, (contributions from aqua L i + ions which 
were assumed to have a tetrahedral coordination with 
L i + - H 2 0 distances of 1.9 Ä being also subtracted 
from the R D F for the X B 2 solution) were subtracted 
from the D( r ) ' s for X A 1 and X B 2 . I n the resulting 
difference curves (see the dotted curve in Fig. 5 for 
X A 1 ) peaks occur at 2.25 Ä and 1.9 Ä. The f i rst peak 
stems obviously from a Z n - C l bond, which is s l ightly 
shorter than those in the higher complexes. The sec-
ond peak is interpreted to correspond to Z n - H 2 0 
distances with in the complexes including [ ZnC l 3 ]~ . 
The Z n - H 2 0 bonds within the complexes are shorter 
than those (2.08-2.17 Ä) within the hydrated non-
complexed Z n 2 + ion, [ Z n ( H 2 0 ) 6 ] 2 + . T h i s tendency is 
also observed in crystals. That is, a discrete tetrahe-
dral complex [ Z n C l 3 ( H 2 0 ) ] ~ has been found in crys-

tals of K Z n C l 3 ( H 2 0 ) 2 , in which the Z n - O H 2 bond 
distance is 2.02 Ä [13]. The Z n ( I I ) ion in crystal hy-
drates has a regular octahedral structure, and the Z n -
O H 2 distances are in the range of 2 .08-2 .14 Ä [14], 
There is no clear indication of any longer Z n - C l 
bond, which would be expected, as is the case for 
octahedral [ Z n I ( H 2 0 ) 5 ] + complex in aqueous solu-
tion [3] and octahedral [ Z n C l 2 ( H 2 0 ) 4 ] complex in 
crystals of Z n C l 2 1 1 / 3 H 2 0 [15], i f an octahedral [Zn-
Cl ( H 2 0 ) 5 ] + complex rather than a tetrahedral one 
were present. Since the Raman spectra can not be used 
to separate the concentrations of [ ZnC l ] + and 
[ ZnC l 2 ] , no definite conclusion about the coordina-
tion in [ ZnC l ] + can be made. The four-coordination 
may be retained in the [ ZnC l ] + complex, or i ts concen-
tration may be too low to give sufficient contributions 
to the diffraction data. 

I n F ig. 2 the observed s i (s) values are compared 
with those calculated for the atom pairs concerned 
using their parameter values. The agreement is good 
especially for X A solutions, in which the concentra-
tions of the complexes are much higher than those in 
X B solutions, except at low s regions where various 
interactions including intermolecular interactions, 
which are not taken into account in the present calcu-
lations, significantly contribute to the s • i(s) values. 
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