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Pure rotat ional spectra of 1,1-Difluoroethylene (1,1-DFE) in the vibrational ground state (GS) 
and in excited vibrational states (EVSs) have been investigated by double resonance modulat ion 
( D R M ) microwave spectroscopy in the range f rom 12 GHz to 40 GHz, and by millimeterwave 
spectroscopy in the range f rom 90 to 260 GHz. 

In addition to the GS spectrum, rotational transitions have been observed for the EVSs v10 = l , 
and 2, v1 2 = l , v6 = l , v n = l , v4 = l , and v9 = l . Along with other IR bands up to 1 4 0 0 c m " 1 , 
the fundamenta l vibrational band v1 0 = l <-0 has been observed by FT-IR spectroscopy and has 
been analysed to yield v°0 = 436.8851 c m - 1 . 

Rotational constants and quartic distortion constants were deduced for all observed states. In 
addition, sextic distortion constants were obtained for the GS and for the EVSs v1 0 = l , 2, v6 = l , 
and v 1 2 = l by computer fits of combined microwave and millimeterwave data to Watson's A-re-
duced Hamil tonian in Ir representation. The S-reduced Hamiltonian in III r representation may be 
considered more appropr ia te for the calculation or the fitting of the transitions because 1,1-DFE 
is a near oblate asymmetric top. Thus, for comparison, results are given for both the A- and the 
S-reduction. 

Key words: 1,1-Difluoroethylene, Molecular Spectroscopy, Microwave Spectroscopy, FT-IR Spec-
troscopy, Excited Vibration States. 

1. Introduction 

1,1-Difluoroethylene, F 2 C = C H 2 (vinylidene fluo-
ride or 1,1-difluoroethene), here abbreviated as 1,1-
D F E , has been the subject of numerous spectroscopic 
studies. F o r convenience, these may be grouped into - , 
f i rst ly, work concerning all vibrational bands by low-
resolution infrared ( I R ) and Raman spectroscopy and 
of specific bands by the high-resolution techniques of 
recent years, secondly, studies pertaining to the pure 
rotational spectrum of the vibrational ground state 
(GS) by microwave-, mill imeterwave- and laser Stark 
spectroscopy and, thi rdly, investigations of the pure 
rotational spectra due to molecules in excited vibra-
tional states ( E V S s ) of 1 , 1 - D F E . The present study by 
double resonance modulation ( D R M ) microwave 
spectroscopy (Bangor) and by millimeterwave spec-
troscopy (K ie l ) reports data and results pertaining to 
the G S spectrum, rotational parameters of E V S s , and 
it presents the analysis of the lowest normal vibration 
as observed by F T - I R spectroscopy (at Bruker , Ana-
lytische Meßtechnik, Rheinstetten). 

Purely vibrational asepcts of 1 , 1 - D F E have at-
tracted the interest of scientists since 1945 [1] and were 
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studied by a number of researchers [ 2 - 7 ] with the 
low-resolution I R - and Raman-techniques of the pe-
riod unti l 1975. By that time, the vibration frequencies 
and the description of the twelve fundamental modes 
of 1 , 1 - D F E were conclusively established, and dis-
agreement between different workers was confined to 
the frequency of the IR-inactive A 2 torsional mode v6 

[2-4] , I n 1981 Lafferty et al. [8] reported the investi-
gation of the modes v4 and v6 by high-resolution 
diode laser technique, and by heterodyning their 
diode laser against C 0 2 laser lines they were able to 
measure the rovibrational I R transit ions to better 
than ± 6 M H z ( ± 0.0002 cm" 1 ) . They derived the G S 
constants necessary for the analysis of the two bands 
from 128 known [14 -19 ] rotational transit ions and 
10 G S combination differences from their own work. 
The advent of the high-resolution F T - I R technique in 
the late 1980s prompted detailed investigations of fur-
ther selected vibrational bands of 1 , 1 - D F E [ 9 - 1 2 ] in 
recent years. Unfortunately, the latter workers [ 9 - 1 2 ] 
chose to disregard the large body of high-precision 
data on the G S and on rotationally analysed E V S s , 
which had been established by techniques other than 
F T - I R by 1990. - The present work adds to the infor-
mation on E V S s of 1 , 1 - D F E the rovibrational analy-
s is of the lowest fundamental, v1 0 = 1, carried out un-
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der inclusion of all rotational information on the G S 
and of the rotational data on v1 0 = l itself. 

The G S rotational spectrum of 1 , 1 - D F E was f i rst 
investigated by Edgell et al. [13] in 1957, and Laurie 
and Pence [14] subsequently reported the G S spectra 
of four isotopomers and deduced the restructure of 
1 ,1 -DFE . The i r work was extended in several studies 
by Chauffoureaux [15] in the 1960s. Dur ing the same 
period Thomas [16], in an attempt to clarify centrifu-
gal distort ion effects, extended the Q-branch assign-
ments in the G S spectrum to J = 50 and obtained the 
f i rst millimeterwave transit ion frequencies of 1 , 1 - D F E 
from Cook [16]. Flygare and L o [17] deduced mag-
netic parameters of 1 , 1 - D F E from the spl itt ing of G S 
rotational transit ions in an applied magnetic field, and 
their study added the frequency of seven Q-branch 
lines in the range 3 - 6 G H z to the body of rotational 
data on the GS. A refinement in accuracy of four 
transit ion frequencies was reported by Casleton et al. 
[18] from a molecular beam experiment in 1976. I n the 
same year, Baskakov et al. [19] reported a fresh inves-
tigation of the G S spectrum and they fitted 150 transi-
tions (which remain unpublished) with frequencies up 
to 650 G H z to Watson's Hamiltonian [20] in I I I 1 re-
presentation. The deduced G S constants allowed them 
to assign a transit ion of 1 , 1 - D F E , which had earlier 
been found [21] to coincide closely with the 337 pm 
H C N laser line and which had subsequently been 
measured accurately [22] as 890759.60 + 0.08 M H z 
= 5330 .23 523 0 22 • The latest extensions of accurate 
data on the G S of 1 , 1 - D F E arose from a laser Stark 
study of Johnston et al. [23] in 1987. They examined 
three high-J R-branch transit ions accessible with the 
H C N laser and they reinvestigated the G S spectrum 
in the range from 8 - 8 0 G H z . - The present work adds 
to the described body of G S data rotational transi-
tions in the millimeterwave range from 9 0 - 2 6 0 G H z . 

Although Thomas [16] and Chauffoureaux [15 c] 
had identified purely rotational transit ions due to 
molecules in the very lowest E V S s of 1 , 1 - D F E , the 
systematic study of vibrational satellites in the rota-
tional spectrum first became of importance in connec-
tion with the development of laser Stark spectroscopy 
in the mid-1970s. T h u s , Ewart and Cox [24] studied by 
conventional microwave techniques the E V S spectra 
of 1 , 1 - D F E up to vibrational energies of 1 1 0 0 c m - 1 in 
order to help the interpretation of the experimental 
findings of Duxbury and Herman [25], who then suc-
ceeded in deducing the precise ( + 0.001 c m - 1 ) vibra-
tional frequencies and the rotational constants of the 

I R bands v4 and v9 by combination of the experimen-
tal data from their C 0 2 laser Stark experiment with 
the microwave data [24], -Unaware of details or the 
extent of the work by Ewart [24], which is not pub-
lished in the formal literature, one of us (O. L . S.) took 
up the systematic investigation of vibrational satellites 
in the microwave spectrum of 1 , 1 - D F E by the double 
resonance modulation ( D R M ) technique in 1983. T h i s 
work [26] readily yielded the complete rotational as-
signments up to J = 39 of the spectra of 18 E V S s up to 
energies of more than 1300 c m - 1 , and included eight 
of the twelve fundamental vibrational levels, three first 
and one second overtone level, and s ix vibrational 
combination levels of 1 , 1 - D F E . Du r ing the following 
years (1985-1989) we were able to determine the pre-
cise centres of the IR-active bands through the analy-
sis, under inclusion of purely rotational information 
on the G S and on E V S s , of the F T - I R spectra as 
obtained init ial ly on the B ruker I S F 113 v instrument 
and later under higher resolution on the B ruker I F S 
120 H R spectrometer. 

2. Experimental and Computational Aspects 

a) Experimental 

The sample of 1 , 1 - D F E was supplied by the Aldrich 
Chemical Company, Inc., with a quoted purity of 
9 9 % . I t was used without further purification. 

Measurements by D R M microwave spectroscopy 
[27] were carried out between 12.3 G H z and 40.0 G H z 
on an instrument with a U-shaped, 'empty' K-band 
absorption cell of 20 m length. O K I k lys t rons pro-
vided the sources for both pump- and signal-radia-
tion. The frequencies of double resonance signals were 
measured to + 50 k H z in a dual trace oscilloscope 
presentation. The frequencies of D R pump transit ions 
were measured on the D R M instrument to an accu-
racy of + 300 k H z , and these transit ions were remea-
sured, i f detectable, under Stark effect modulation 
( S E M ) on a conventional S E M spectrometer [28], The 
sample pressures in all these experiments ranged from 
5 - 3 0 mTor r . 

F o r the millimeterwave measurements the sample 
was contained in a free space glass cell of 250 cm 
length and at a pressure of 30 m T o r r . The fundamen-
tal radiation was supplied by Okaya and Varian 
k lyst rons and multiplied by Oh l type mult ipl iers [29], 
The fundamental frequencies were controlled by a fre-
quency standard ( D C F 77, Mainfl ingen, Germany) 
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and line measurements are estimated to be accurate to 
± 10 kHz . The recording of spectra and data acquisi-
tion was carried out with the computer controlled 
system described previously [30]. 

Infrared measurements of fundamentals up to 
1350 c m - 1 were conducted at the Bruker company 
with the F T - I R instrument I F S 120 H R . Fo r the com-
paratively weak v10-band, a multipath absorption cell 
(White cell) was attached to the instrument. I t was set 
to an effective pathlength of 340 cm and contained the 
1 ,1 -DFE vapour at a pressure of 3 mbar. A mercury 
arc lamp provided the I R radiation, which was de-
tected by a Ge-bolometer. The interferogram was 
built up from 256 scans and the nominal resolution 
was 0.0039 cm" 1 . The wavenumber scale of the instru-
ment was calibrated against accurately known [31] 
absorptions of H 2 0 , which was contained in the sam-
ple as an impurity. 

b) Computational 

The frequencies or wavenumber values of assigned 
rotational and/or rovibrational transitions were fitted 
with the help of computer programs [32, 33] to Wat-
son's A-reduced Hamiltonian [20] in I r representation 
((x, y, z) = (b, c, a)) 

J f ( a s ) = \{B + C)P 2 

+ [A-±{B + C)] P 2 -AjP*- AJKP2 P 2 

- AK Pa
4 + P6 + <PJK P 4 P 2 + <PKJ P 2 Pa

4 

+ <PKP6
a + ( I ( B - C) - 2<5jP2 + 2 0 , P 4 ) 

• ( P b
2 - P c

2 ) + [ ( - ^ P f l
2 + ^ x P 2 P f l

2 

+ <PKPt), ( P 2 - P 2 ) ] + . 
Here, A, B, C are the rotational constants, A and <5 are 
the quartic, and 4> and (p are the sextic distortion 
constants. As usual, P = (P f l , P f t , Pc) is the angular 
momentum operator and P ± = Pfc ± i P c are the step 
operators. The symbol [,]+ denotes the anticommuta-
tor between the two parts of the square bracket [20]. 

In view of the near-oblate character of 1 ,1 -DFE, 
rotational spectra were also fitted [33] to Watson's 
S-reduced Hamiltonian [20] in the I I I r representation 
((x, y, z) = (a, b, c)) 

J f ( s ) = AP2
a + ß P 2 + C P 2 - D 7 ( P 2 ) 2 - DjkP2 P2 

- D k P 4 + d i P 2 ( P 2
+ + P2_) + d 2 (P 4

+ + P4_) 

+ Hj(P2)3 + Hjk (P2)2 P 2 + Hkj (P2) P 4 

+ HkP* + hl(P2)2(P2
+ +P2_) 

+ h2 P 2 ( P 4 +P 4_) + ^3(P6
+ +P 6 _) , 

(P ± = P a ± i P b ) . 

The main effect in the fits to the S-reduced Hamilto-
nian is a sometimes lower standard error of the 
parameters and a more acceptable matrix of correla-
tion coefficients. 

3. Results 

1 ,1 -DFE is a small planar molecule and belongs to 
the symmetry point group C 2 v . I t s inertial properties 
make it a slightly asymmetric oblate top. Ray's asym-
metry parameter is K ~ 0.797 in the G S and does not 
change significantly in EVSs . I t s G S dipole moment is 
pa = 1.382(3) D [23], and on that account absorption 
lines of the GS can be observed in all frequency ranges. 
Weak rotational transitions of the higher excited vi-
brational states in the close vicinity of G S transitions 
could not always be resolved from the latter, and over-
lapping transitions from different E V S s sometimes 
gave rise to erroneous frequency measurements in the 
MMW-range. As a result, the number of fitted rota-
tional transitions for each E V S is significantly smaller 
than for the GS. Nevertheless, for the four excited 
states v10 = l , 2 , v6 = l , and v1 2 = l sufficient data 
could be established to allow a determination of sextic 
distortion constants, while for the states v u = 1, v4 = 1, 
and v9 = 1 only rotational and quartic distortion con-
stants could be derived. - Figure 1 attempts to 
provide an overview of the E V S s which are the topics 
of the present study. 
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1/4=1 l/g = 1 

v n = 1 

"5 = 1 

GS 

mm S e x t i c d i s t o r t i o n c o n s t a n t s determined, 

Dnly q u a r t i c d i s t o r t i o n c o n s t a n t s determined. 

Fig. 1. Vibrational energy levels of 1,1-DFE below 
1000 cm" 1 . 
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3.1. The Ground State Parameters1 

By combination of the G S transit ion frequencies 
f i rst measured by Thomas [16] and those added by 
other workers [17 -19 , 22, 23] with our own mi-
crowave ( M W ) and millimeterwave ( M M W ) data, a 
satisfactory fit, including the sextic distort ion con-
stants, of some 550 G S transit ions was obtained. T h i s 
fit included 430 Q-branch transit ions up to J = 58, of 
which 87 are Ka degenerate doublets. Whi le the 
M M W data extended the R-branch assignments up to 
J = 2 3 « - 2 2 , the frequencies of the three R-branch 
lines reported in the H C N laser range with 
J = 47 <- 46 [23] and J = 5 3 ^ 5 2 [19, 22] agreed very 
well indeed with expectations based on the large body 
of M W and M M W data. Thus , from the three differ-
ent experimental techniques 125 R-branch transit ions 
were available, of which 28 represented Ka degenerate 
doublets. After removal of one component of the de-
generate pairs, there remained 97 R-branch and 343 
Q-branch lines in the L S Q fit. 

I n an attempt to fill the gap in the R-branch from 
J ~ 25 to J ~ 50, for which no rotational data are 
available, we turned to our earlier F T - I R work and 
extracted all G S combination differences (Co'Dis) in 
the range 35 < J < 50 from the six fundamental I R -
bands which we had analysed by 1989. As was to be 
expected on the basis of an estimated uncertainty of 
up to ± 1 5 M H z (±0 .0005 c m - 1 ) on rovibrational 
F T - I R data, particular G S Co'D i s deviated by up to 
± 3 0 M H z from each other when derived from differ-
ent fundamental bands. F o r that resaon, the over-
whelming portion of the IR-derived Co'D i s was con-
sidered unsuitable for inclusion with the 100 times 
more accurate data from rotational spectroscopy, and 
it was therefore discarded. A small fraction (98 Co'Dis) 
of IR-derived differences, most of them weighted 
down by 10 ~4 , was retained, however, on the ground 
that these Co'D i s agreed with the data from rotational 
techniques to better than ± 6 M H z (±0 .0002 cm" x ) . 

The final rotational parameters of the G S were 
derived by a fit of the described data with the com-
puter routine by Gambi et al. [32]. They are collected 
in Table 1 a, where they are given in both wavenum-
ber- and frequency units. The correlation matrix of the 
fit is included at the bottom of the table. 

The program [33] at our disposal (at K ie l ) for the 
S-reduction [20] of the data is designed for the fit of 
observed rotational transit ions only. Accordingly, it is 
restricted by the well-known dipole selection rules and 
therefore unsuitable for the fit of the Co'Dis . However, 
a slight modification of the program permitted the 
inclusion of 79 Co'D i s with \AJ\ = l,2, AKa = 0 and 
| AKC | = 0, 1, 2 in the final L S Q fit of 519 data. - In 
Table 1 b (S-reduction) the uncertainties of all rota-
tional parameters are seen to be very comparable with 
those from the A-reduction (Table 1 a), while the asso-
ciated correlation matrix may be considered to indi-
cate a larger degree of interdependence of deduced 
parameters. 

3.2. The Vibration State v10 = 1 

The state v1 0 = 1 is the lowest E V S of 1 , 1 - D F E and 
belongs to the C 2 v symmetry species B t . I t i s qualita-
tively described as the in-plane rocking motion of the 
CF 2 -group (see F igure 2). W i t h a vibrational fre-
quency of ~ 437 c m - 1 [6] the rotational transit ions 
within this state have a nominal intensity on account 
of the Boltzmann law of ~ 11.7% of their counter-
parts in the G S spectrum at room temperature 
(293 K). Due to the effects of nuclear spin statistics [34] 
this intensity is modified to ~ 7 .0% of the G S lines for 
satellite transit ions with even values of Ka, and to 
~ 19.5% of the G S counterparts for odd values of Ka. 
In either case, these vibrational satellite transit ions in 
the rotation spectrum are easily detected. Accord-
ingly, ten transit ions of this spectrum with very low 
values of J were identified by Thomas [16] in 1965. H i s 
work was extended (by O. L . S.) to 50 transit ions in the 
M W range, comprising the five strongest low J - R -
branch lines and 45 Q-branch lines up to J = 38. The 
investigation in the M M W range readily added a fur-
ther 43 R-branch transit ions up to J = 14 « - 1 3 in-
cluding 10 degenerate transit ions and 154 Q-branch 
lines up to J = 35 including 38 degenerate transit ions. 

A complete list of lines can be obtained from the authors or 
the Central Library of the University of Kiel under number 
TNA 34. Adress: Universitätsbibliothek Kiel. Zentralbiblio-
thek. Olshausenstr. 40. D-24098 Kiel/Germany. 

Fig. 2. Displacement vectors in the Bj mode v10 = 1 (vectors 
are drawn 10 times larger than calculated). 



Table 1 a. Results of the L S Q fit of c o m b i n e d M W , M M W , a n d IR d a t a for the G r o u n d Sta te of 1 ,1 -DFE with p a r a m e t e r s 
fitted to Watson ' s A- reduced H a m i l t o n i a n in I r - represen ta t ion . Uncer ta in t ies a re one s t a n d a r d e r ro r a n d are given in uni ts 
of the last q u o t e d digit. 

Ro ta t iona l C o n s t a n t s 
A 0 .367005 884(7) cm " 
B 0.347 873 582(7) cm " 
C 0.178 302611(8) cm 

Q u a r t i c Dis to r t ion C o n s t a n t s 

Sextic Dis to r t ion C o n s t a n t s 
11 002.5596(3)1 M H z 
10428.9876(2) M H z 

5 345.3778(3) M H z 

i j 0.160620(8) x 1 0 " 6 cm 
i J K 0.050904(16) x 10 
i K 0.259989(25) x 1 0 " D cm 
~)j 0.067104(3) x 10 ~ 6 cm 
)K 0.188181(7) x 10 " 6 cm 

D cm 
- 6 - 1 

4.815 25(26) k H z 
1.52605(56) k H z 
7.79429(73) k H z 
2.01174(10) k H z 
5.641 53(21) k H z 

0.322(2) x 10" 1 2 cm" 
— 0.103(16) x 1 0 " 1 2 cm 
— 0.360(59) x 1 0 " 1 2 cm 

0.938(67) x 1 0 " 1 2 cm 
0.183(1) x 1 0 " 1 2 cm" 
0.345(7) x 1 0 " 1 2 cm" 
2.573(14) x 1 0 " 1 2 cm" 

9.64(10) x 1 0 " 3 H z 
- 3 . 1 0 ( 4 0 ) x 1 0 " 3 H z 

- 1 0 . 8 ( 1 8 ) x 1 0 " 3 H z 
28.1(19) x 1 0 " 3 H z 

5.49(3) x 1 0 " 3 H z 
10.34(20) x 1 0 " 3 H z 
77.14(41) x 1 0 " 3 H z 

S t a n d a r d Devia t ions 
a 1.10 x 1 0 " 6 c m " 1 33 k H z 

Fi t ted Transi t ions: NTM + NRN. n i = 440 + 98 = 538 = iVT„„, 

1 Conve r s ion fac to r c = 2 9 9 7 9 2 4 9 8 m • s " 1 . 

Co r r e l a t i on mat r ix of LSQ-f i t of G S in A- reduc t ion 

A-B B Aj Ajk Ak <t>j <PJK <PKJ <PK B-C ÖJ ÖK 4>j <t)JK <pK 

A-B 1.0000 -0.1496 -0.4089 0.3450 0.0987 -0.4217 -0.3810 0.3685 -0.1952 0.8007 0.7687 -0.1462 0.7353 0.3799 -0.4315 
B 1.0000 0.7001 -0.0829 -0.0404 0.5553 0.2240 -0.1967 0.1062 -0.0803 -0.1694 0.1363 -0.1989 -0.1508 0.2267 

1.0000 -0.4136 0.0964 0.9592 0.5643 -0.6043 0.4098 -0.3638 -0.5994 0.4217 -0.5757 -0.5239 0.6106 
AJK 1.0000 -0.8537 -0.5480 0.1010 0.4762 -0.6291 0.4965 0.6096 -0.3345 0.4972 0.4234 -0.1093 

1.0000 0.2354 -0.4200 -0.2393 0.5498 -0.1466 -0.1794 0.0483 -0.0534 -0.2482 -0.2404 
f j 1.0000 0.4755 -0.6605 0.5286 -0.4143 -0.6042 0.4692 -0.5831 -0.5348 0.5538 
*JK 1.0000 -0.6678 0.2742 -0.2633 -0.4051 0.2014 -0.4289 -0.6665 0.8383 

1.0000 -0.8953 0.4249 0.5639 -0.2059 0.4483 0.8677 -0.4650 
<*>K 1.0000 -0.3473 -0.4312 0.0835 -0.2631 -0.7451 0.0803 
B-C 1.0000 0.8998 -0.1018 0.8232 0.4563 -0.3048 

1.0000 -0.2844 0.9604 0.5628 -0.4683 
<5* 1.0000 -0.2903 0.1120 0.4153 
4>J 1.0000 0.4724 -0.5002 
<PjK 1.0000 -0.5225 
<T>K 1.0000 

Table 1 b. Resul ts of the L S Q fit of c o m b i n e d M W , M M W , a n d IR d a t a for the G r o u n d Sta te of 1 , 1 -DFE with p a r a m e t e r s 
fitted to Watson ' s S - reduced H a m i l t o n i a n in I IF - rep resen ta t ion . Uncer ta in t ies are one s t a n d a r d e r ro r a n d are given in uni ts 
of the last q u o t e d digit. 

A 11.0025680(3) G H z 
B 10.4289770(3) G H z 
C 5.3453792(3) G H z 

Dj 
D J f 
Dk 
dj 
dr 

11.7955(5) k H z 
- 2 0 . 3 4 2 3 ( 7 ) k H z 

9.3375(4) k H z 
- 1 . 3 2 4 3 ( 1 ) k H z 

0.15427(7) k H z 

H, 0.0283(2) H z 
h j k - 0 . 1 1 3 6 ( 8 ) Hz 
h k j 0.1394(15) Hz 
hk - 0 . 0 5 5 8 ( 9 ) Hz 
hr 0.0030(2) Hz 
hlk - 0 . 0 0 3 0 ( 2 ) Hz 
K - 0 . 0 0 2 0 8 ( 5 ) H z 

S t a n d a r d Devia t ion : a 39 k H z 

F i t t ed Trans i t ions 
Wrot + N C o , D i = 440 + 79 = 519 = iVTotaI 

Cor re l a t i on mat r ix of LSQ-f i t of G S in S -Reduc t ion . 

A B C DJ DJK DK dx d 2 HJ HJK HKJ "K K h2 H3 

A 1.000 
B 0.944 1.000 
C 0.418 0.490 1.000 
DJ 0.814 0.788 0.216 1.000 
DJK -0 .537 -0 .430 0.284 -0 .669 1.000 
Dk 0.041 -0 .020 0.140 0.127 -0 .473 1.000 
di -0 .163 0.043 0.097 0.191 0.494 -0 .437 1.000 
d 2 -0 .045 0.085 0.040 -0 .096 0.341 -0 .384 0.947 1.000 
HJ 0.613 0.550 0.166 0.862 -0 .679 0.337 -0 .460 -0 .396 1.000 
HJK -0 .404 -0 .334 -0 .126 -0 .655 0.623 -0 .524 0.525 0.481 -0 .933 1.000 
HKJ 0.284 0.270 0.344 0.551 -0 .285 0.487 -0 .294 -0 .304 0.790 -0 .885 1.000 
"K -0 .247 -0 .258 -0 .391 -0 .509 0.132 -0 .373 0.157 0.185 -0 .691 0.770 -0 .975 1.000 
K 0.208 0.092 0.079 0.354 -0 .422 0.432 -0 .748 - 0 . 7 47 0.752 -0 .858 0.712 -0 .584 1.000 
K 0.194 0.093 0.099 0.342 -0 .374 0.397 -0 .701 -0 .716 0.741 -0 .845 0.719 -0 .601 0.996 1.000 
H3 

0.241 0.161 0.151 0.414 -0 .346 0.358 -0 .564 -0 .574 0.780 -0 .872 0.790 -0 .691 0.960 0.977 1.000 
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3.2 a. Rovibrational Analysis 
of the IR Fundamental v10 

The rotational parameters derivable from the M W 
and M M W rotational transitions within v10 = 1 to-
gether with those of the vibrational G S (Table 1, 
above) provided an ideal basis for the analysis of the 
B type I R band v 1 0 , as init ial ly observed on the I F S 
113 v (Fig. 3) and later on the I F S 120 H R Bruker 
F T - I R instruments. F rom the purely rotational infor-
mation on the G S and on v10 = 1 the rovibrational 
structure of this I R band could be predicted with con-
fidence, leaving merely the band origin v°0 undeter-
mined within + 1 cm - x . As would be expected in such 
favourable circumstances, detailed assignment of some 
1000 rovibrational peaks between 4 1 0 - 4 7 0 c m - 1 and 
comprising the P-, Q-, and R-branch of the I R band 
followed readily up to J' = 60. 

I n the final L S Q fit of the I R band, which was 
carried out with the computer routine of Gambi 
et al. [32], 961 F T - I R peaks, from which /^-degene-
rate transitions had been removed, were combined 
with 92 Co'Dis for v10 = 1. The latter has been ex-

tracted from the I R data for the range 30 < J < 53 and 
were subjected to the same compatibility l imit of 
± 0.0005 c m - 1 ( + 15 M H z ) as the wavenumber val-
ues of the directly observed I R peaks. The wheightiest 
contribution to the fit is represented by the rotational 
data on v10 = 1, as established by M W and M M W 
spectroscopy. Wi th degenerate pairs of transitions 
counted only once, the 199 observed frequencies were 
given a 104 times larger weight than the F T - I R data, 
since their precision is estimated to be at least 100 
times higher than that of the I R data. 

The rotational parameters of the E V S v10 = 1, 
which resulted from the described data, are collected 
in Table 2 a and are given in the same format as 
adopted for Table 1 a. The apparently rather high pre-
cision of the results arises from the inclusion in the fit 
of M W and M M W data. T h i s may be seen from a 
comparison of the molecular parameters with their 
counterparts (given in italics in Table 2 a) which 
emerge from a fit of the I R data alone. In the latter 
case, all uncertainties are seen to be about ten times 
larger than under inclusion of M W and M M W data. 
The statistical uncertainty in the band origin v%, fi-
nally, is in reality completely 'swamped' by the 100 
times larger uncertainty associated with the calibra-
tion of the wavenumber scale of the I R instrument. 

For comparison with the simultaneous fit of rovi-
brational F T - I R lines, I R combination differences and 
purely rotational M W and M M W lines for v10 = 1, as 
given in Table 2 a, the 247 rotational transitions in 
that state were also subjected to LSQ- f i t s in both the 
A- and S-reduction. The resulting parameters are col-
lected in Table 2 b. The table of correlation coefficients 
shows for the S-reduction five correlation coefficients 
larger than 0.9 between: A and B, A and Ds, B and Dj, 
D j and H j and D K and H K . Fo r the A-reduction we 
found 36 correlation coefficients > 0.9 from the fit of 
rotational transitions alone, while the fit of rotational 
and vibrational information indicates merely two cor-
relation coefficients of such magnitude. 

3.3. The Excited Vibration States v12 = 1, v6 = 1, 
and v 1 0 = 2 

Infrared spectroscopy provides relatively little in-
formation on these three states: while the A2 mode v6 

at ^ 7 1 3 c m " 1 is IR-inactive, the B , mode v12 at 
- 609 c m " 1 produces only a small absorption (pre-
sumably the Q-branch of this C-type band) and the Ay 

overtone band v10 = 2 <- 0 at ~ 869 c m " 1 is also too 
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Table 2a . Results of the LSQ fit of combined IR-, M W - and M M W - d a t a and of IR-data alone for the state v ] 0 = 1 of 
1,1-DFE. Parameters are fitted to Watson's A-reduced Hamil tonian in I r-representation. Uncertainties are one s tandard error 
and are given in units of the last quoted digit Conversion factor c = 299 792 498 m • s " 1 ) . 

Rotational Cons tan t s 
A 0.367395818(34) c m " 1 

0.367396380(264) 
B 0.347583074(31) c m - 1 

0.347582035(304) 
C 0.177788990(24) c m " 1 

0.177789136(88) 

Sextic Distort ion Cons tan t s 
<t>j 0.236(13) • 1 0 " 1 2 cm 

0.086(205) 
0.072(84) • 1 0 " 1 2 cm 
0.183(1940) 

- 1 . 5 4 4 ( 2 2 0 ) • 1 0 " 1 2 cm 
-0.339(3394) 

2.102(136) • 1 0 " 1 2 cm 
1.261(1722) 
0.147(7) • 1 0 " 1 2 cm 
0.056(103) 
0.050(38) • 1 0 " 1 2 cm 
0.025(667) 
2.967(53) • 1 0 " 1 2 cm 
3.232(539) 

11014 .2495(H) 1 M H z 

10420.2784(9) M H z 

5 329.9798(8) M H z 

7.08(39) • 1 0 " 3 Hz 

2.2(25) 1 0 " 3 Hz 

- 4 6 . 3 ( 6 6 ) • 1 0 " 3 Hz 

63.0(41) • 1 0 " 3 Hz 

4.41(21) • 10~ 3 Hz 

1 . 5 ( 1 1 ) - 1 0 " 3 Hz 

89.0(17) • 1 0 " 3 Hz 

Quart ic Distort ion Constants 
Aj 0.160098(34) • 1 0 " 6 c m ' 

0.159709(322) 
AJK 0.038809(111) • 1 0 " 6 c m ' 

0.039308(1588) 
Ak 0.277052(165) • 1 0 " 6 c m ' 

0.277929(1307) 
Öj 0.067343(17) • 1 0 " 6 c m ' 

0.067079(165) 
6 k 0.190287(49) • 1 0 " 6 cm 

0.190294(418) 

Standard Deciation 
a 5 . 6 2 - 1 0 " 6 cm 

2.36 -10-* 
Band Origin v°0 

4.7996(10) kHz 

1.1635(33) kHz 

8.3254(46) k H z 

2.0189(5) kHz 

5.7047(15) k H z 

187 kHz 

436.885147(2) c m " 1 

436.885141(26) 
Fitted Transitions: 
^.R + ^Co'Di + ^MW + MMW = 9 6 1 + 9 2 + 1 9 9 

= 1252 = JVt„,„ 

Correlat ion matr ix (of LSQ-fit of 1252 da ta for the state v1 0 = l in A-reduction). 

A-B B Aj Ajk Ak <PJ <Pjk <Pkj <Pk B-C SJ dK (f>, ct>]K 4>k v° 

A B 1.0000 -0.0039 -0.0007 0.2130 0.2644 -0.0479 0.0718 0.0987 0.0304 0.3283 0.2147 0.0427 0.0974 -0.0425 0.2623 -0.0361 
B 1.0000 0.8442 0.0008 0.0039 0.5843 0.0197 -0.0947 0.1589 0.2913 0.3101 0.0387 0.2796 -0.0003 0.1166 -0.0802 
AJ 1.0000 -0.1235 0.0612 0.8815 -0.0033 -0.1872 0.3162 0.4942 0.5034 0.2956 0.5333 0.1578 0.2483 -0.0280 
AJK 1.0000 -0.8272 -0.1906 0.7789 -0.5193 0.2232 0.0708 0.3096 -0.1047 0.1855 0.2586 -0.3049 0.0091 
AK 1.0000 0.0688 -0.7999 0.6881 -0.2967 0.0098 -0.1793 -0.1538 -0.1495 -0.4766 0.3965 0.0089 
<PJ 1.0000 -0.1288 -0.0936 0.2014 0.5623 0.6004 0.4417 0.7201 0.3941 0.1480 -0.0095 
<PJK 1.0000 -0.9002 0.6418 0.0752 0.1901 0.2901 0.1299 0.3232 0.0420 0.0023 
<PKJ 1.0000 -0.8670 -0.1806 -0.2560 -0.4353 -0.2432 -0.3383 -0.1276 0.0028 
<Pk 1.0000 0.2784 0.3227 0.3339 0.3015 0.0804 0.3065 0.0028 
B-C 1.0000 0.8580 0.2525 0.7781 0.1751 0.2152 0.0232 
SJ 1.0000 0.0824 0.9451 0.1645 0.1097 0.0200 
SK 1.0000 0.2275 0.7575 0.2797 0.0007 
<F>J 1.0000 0.2817 0.1298 0.0152 
4>JK 1.0000 -0.3193 -0.0012 
4>k 1.0000 0.0100 
v° 1.0000 

Table 2 b. Molecular parameters of the state v 1 0 = 1 derived from 247 rotat ional transit ions (including 48 degeneracies) alone 
in both A- and S-reduction. Uncertaint ies are one s tandard error and are given in units of last quoted digit. 

A-reduction in I r S-reduction in III*" 

A 11.014252(1) G H z A 11.014261(1) G H z 
B 10.420281(1) G H z 4>j 0.010(15) Hz B 10.420270(1) G H z 
C 5.329981(1) G H z *JK 0.073(43) Hz C 5.329983(1) G H z 

* J 4.803(1) kHz 4>KJ 

A 

-0 .133(62) Hz 
0.089(28) Hz 
0.012(4) Hz 

-0 .023(18) Hz 
0.105(13) Hz 

Dj 11.8138(91) kHz 
a J K 1.18(1) k H z 

4>KJ 

A 

-0 .133(62) Hz 
0.089(28) Hz 
0.012(4) Hz 

-0 .023(18) Hz 
0.105(13) Hz 

DJK -20.6130(22) kHz 

<5, 
8.291(8) 
2.022(2) 

kHz 
kHz 

<VJ 
(L>JK 
RH 

-0 .133(62) Hz 
0.089(28) Hz 
0.012(4) Hz 

-0 .023(18) Hz 
0.105(13) Hz 

DK 
DT 

9.5588(67) kHz 
-1 .3571(5) kHz 

<5* 5.703(4) kHz VK 

-0 .133(62) Hz 
0.089(28) Hz 
0.012(4) Hz 

-0 .023(18) Hz 
0.105(13) Hz 

D2 0.1267(2) kHz 

Hj 0.041(19) Hz 
H J K -0 .115(2) Hz 
HKJ 0.152(5) Hz 
HK -0 .093(18) Hz 
K 0.0031(4) Hz 
h2 0.0026(3) Hz 
h3 0.0019(1) Hz 

Standard Deviation: 34 kHz 34 kHz 
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>09 v, / A 3 ~ 7 1 3 c n 

Fig. 4. Displacements in the modes v12 and v6 of 1,1-DFE. 

»•{^©ZHEESGKHY--

802,070 cn"1 925.772 er 953.805 erf 

Fig. 5. Displacements in the modes v n , v4 and v9 of 1,1-
D F E . 

Table 3 a. Rotational and centrifugal distort ion constants 
from rotat ional t ransi t ions a lone of the states v1 2 = l , v6 = l 
and v1 0 = 2 using Watson's A-reduction in representat ion Ir. 
S tandard errors are given in units of last quoted digit. 

2 = 1 
609 cm 

v „ = l 
713 cm" 

v i o = 2 
~ 8 6 9 c m " 1 

A 10.997043(1) 10.999454(1) 11.025346(2) G H z 
B 10.445253(1) 10.407325(1) 10.411696(2) G H z 
C 5.350152(1) 5.346032(1) 5.314173(2) G H z 

* J 4.818(9) 4.728(13) 4.809(19) kHz 
AJK 1.835(11) 1.739(13) 0.835(20) kHz 

7.456(9) 7.661(11) 8.788(18) kHz 
TJ 2.016(2) 1.972(2) 2.030(3) kHz 
<3* 5.755(4) 5.612(4) 5.776(7) kHz 

4>J -0 .03 (2 ) - 0 . 0 2 ( 4 ) 0.07(6) Hz 
<T>JK -0 .01 (5 ) 0.16(5) 0.2(1) Hz 
*KJ 0.00(7) - 0 . 1 7 ( 8 ) - 0 . 6 ( 2 ) Hz 
<T>K 0.02(3) 0.08(4) 0.58(9) Hz 
<1>J 0.005(4) 0.015(5) 0.018(9) Hz 
&JK 0.00(2) - 0 . 0 4 ( 2 ) - 0 . 0 7 ( 4 ) Hz 
<PK -0 .08(1) 0.12(2) 0.07(4) Hz 

Fitted Transitions 
234 190 133 

Degenerate Transit ions Included 

55 44 23 

Standard Deviation 
35 29 35 kHz 

weak for a rovibrational analysis. T h i s s ituation adds 
importance to the study of these three vibrational 
levels by purely rotational spectroscopy. 

Fo l lowing the identification and rotational assign-
ments of the three satellite spectra in the M W range by 
DRM-techniques in the early 1980s [26], a further 
pool of 186, 143, and 88 t rans i t ions of the spectra of 
Vj2 = 1, Vg — 1, and v 1 0 = 2, respectively, were added 
in the M M W range. T h u s , for all three states, a suffi-
ciently large number of t ransit ion frequencies was 
available to make the determination of sextic distor-
t ion constants at least qualitatively meaningful. 

Results of the fits of these three spectra are given in 
Table 3 a for the A-reduction and in Table 3 b for the 
S-reduction. T h e correlation matrices (not given) from 
these f its show again marginally smaller coefficients in 
the case of the S-reduction than for the A-reduction, 
in keeping with analogous results for the state v 1 0 = 1. 

3.4. The Excited Vibration States v u = 1, v4 = 1, 
and v9 = 1 

T h e state v 1 1 = 1 represents the C H 2 out-of-plane 
wagging motion of 1 , 1 - D F E (F igure 5). I t belongs to 

Table 3 b. Rotational and centrifugal distort ion constants 
from rotat ional t ransi t ions alone of the states v1 2 = l , v6 = l 
and v1 0 = 2 using Watson's S-reduction in representat ion IIP. 
S tandard errors are given in units of last quoted digit. 

= 1 V'A = 1 , = 2 

A 10.997051(1) 10.999462(1) 11.025356(2) G H z 
B 10.445242(1) 10.407314(1) 10.411685(2) G H z 
C 5.350154(1) 5.346034(1) 5.314175(2) G H z 

Dj 11.864(10) 11.715(13) 11.851(19) kHz 
DJK -20.4585(24) -20 .1669(27) -20 .8977(44) kHz 
dk 9.381(7) 9.236(8) 9.795(13) kHz D, -1 .3149(6) -1 .3639(8) -1 .3905(11) kHz 
D2 

0.1925(4) 0.1574(5) 0.1004(8) kHz 

" j -0 .01(2) 0.02(4) 0.12(6) Hz 
HJK -0 .116(2) -0 .106(3 ) -0 .160(8 ) Hz 
H KJ 0.146(5) 0.136(8) 0.27(3) Hz 
"K -0 .06(2) 0.0(2) - 0 . 2 0 ( 5 ) Hz 
>H 0.0037(5) 0.0020(8) 0.023(2) Hz 
H 2 -0 .0028(3) -0 .0046(6) 0.021(2) Hz 
H 3 -0 .0023(1) -0 .0024(1) 0.0071(6) Hz 

Fitted Transitions 
234 190 133 

Degenerate Transit ions included 

55 44 23 

Standard Deviation 
35 29 34 kHz 
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the symmetry species B 2 and the corresponding I R -
fundamental v n = 1 <- 0 is a C-type band. I t has been 
analysed [10] in 1992 when its band centre was deter-
mined as 802.070 c m - 1 . I n the M W range 47 rota-
tional transit ions within this E V S were identified by 
the DRM-technique [26] and M M W spectroscopy al-
lowed 16 further transit ions to be observed within that 
state. 

The states v4 = 1 and v9 = 1 represent the sym-
metric C F 2 stretching motion (A j symmetry species, 
A-type IR-band) and the C C H bending motion (B x 

symmetry, B-type IR-band), respectively. Rovibra-
tional transit ions of these two bands were f i rst 
studied in 1978 [25] by laser-Stark techniques and 
by diode laser techniques in 1981 [8]. I n the latter 
work the vibrational frequencies were determined as 
v° = 925.77199(4) c m " 1 and v° = 953.80492(4) c m " 1 . 

Purely rotational transit ions within these two E V S s 
were too weak for observation with the M M W spec-
trometer (Boltzmann factor at room temperature: 
~ 0.01). The higher sensitivity in combination with 
the molecular selectivity of the DRM- ins t rument , on 
the other hand, had allowed 49 transit ions of the state 
v4 = 1 and 47 transit ions of the state v9 = 1 to be 
readily identified, with both sets comprising the same 
five low-J R-branch transit ions and Q-branch transi-
t ions up to J = 39 and J = 38, respectively [26]. 

The purely rotational spectra of these three states 
were fitted in both the A- and the S-reduction with 
sextic distort ion constants fixed to the G S values of 
Table 1. The results are collected in Table 4. The cor-
relation matrices of these fits indicate the same sl ight 
superiority of the S-reduction over the A-reduction as 
apparent for the v1 0 = 1. 

Conclusion 

The combination of the new M M W-data for the G S 
of 1 , 1 - D F E with all the previous MW-data [13 -19 ,23 , 
26], with data from laser-Stark- [23] and diode laser [8] 
spectroscopy, and with selected G S combination dif-
ferences extracted from six high-resolution F T - I R 
bands, leads to an optimized set of rotational parame-
ters for this molecule. F o r comparison with previously 
published sets, the present are given in both the A-re-
duction (Table 1 a) and the S-reduction (Table 1 b). 
These G S parameters are hoped to facilitate future 
work on the spectra of 1 ,1 -DFE . 

Table 4. Rotational and centrifugal distortion constants of 
the EVSs v n = l , v4 = 1 and v 9 = l from Watson's A- and 
S-reduction with sextic distortion constants held fixed to 
their GS values. Standard errors are given in units of last 
quoted digit. 

802.070 cm 
v 4 = l 
925.772 cm 

v9 = l 
953.805 cm 

A-reduction in representation Ir 

A 10.989555(9) 10.972064(20) 
B 10.407448(8) 10.415028(20) 
C 5.349223(8) 5.328531(20) 

11.026939(12) G H z 
10.436391(12)GHz 

5.346144(12)GHz 

AJK 

t j 
<5, 

2.670(78) 
1.517(50) 
7.601(51) 
1.990(7) 
5.448(23) 

7.8(13) 
1.11(44) 
7.999(73) 
1.908(72) 
6.17(16) 

Standard Deviation 
95 69 

S-reduction in representation IIIr 

3.86(79) 
0.59(27) 
8.73(18) 
1.950(45) 
5.59(10) 

42 

kHz 
kHz 
kHz 
kHz 
kHz 

kHz 

A 10.989563(8) 10.972073(20) 11.026948(12) G H z 
B 10.407437(8) 10.415017(20) 10.436380(12)GHz 
C 5.349225(8) 5.328533(19) 5.346145(1 l ) G H z 

DJ 9.50(8) 14.69(13) 10.64(74) kHz 
Djk -19.847(19) -20.774(43) --20.277(28) kHz 
Dk 9.036(36) 10.11(28) 9.61(17) kHz 
DI -1.2839(44) -1.3225(31) -1.3573(22) kHz 
D2 

0.144(4) 0.207(3) 0.085(2) kHz 

Standard Deviation 
95 67 

Fitted Transitions 
63 49 

Degenerate Transitions included 
6 

39 

47 

kHz 

The use of the newly determined G S parameters 
together with the purely rotational data established 
by M W and M M W techniques on the E V S v1 0 = 1 
allows a satisfactory explanation of the structure of 
the observed, weak F T - I R band v 1 0 , and it permits the 
determination of the band centre Vi0 with a statistical 
uncertainty ( ± 2 x 1 0 " 6 c m " 1 ) which is considerably 
smaller then the 'real' uncertainty ( ~ + 1 0 " 4 c m " 1 ) 
which arises from the wavenumber calibration of 
modern IR- inst ruments . 

F o r the three E V S s v1 2 = 1, v6 = 1, and v10 = 2, 
which are associated with not readily analysable 
bands in the vibrational spectrum of 1 ,1 -DFE , a suffi-
cient number of purely rotational transit ions within 
each state could be detected in the M W and M M W 
range to allow the determination of the otherwise elu-
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sive rotational parameters of these states. The spectro-
scopic information concerning the states v n = 1, 
v4 = 1, and v9 = 1, on the other hand, was not exten-
sive enough to allow the determination of sextic dis-
tort ion constants. Accordingly, these were held fixed 
to their G S values in an attempt to derive reasonably 
precise rotational constants and quartic distort ion 
constants for these three states. 
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