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The simple plane wave target Hartree-Fock impulse approximation for the (e, 2¢) reaction is
developed. One result of the approximation is the separation of the expression for the (e, 2¢)
cross-section into a kinematic factor and a structure factor that contains all of the information about
the target. When the target is a molecule, the structure factor can be further separated into atomic
terms and a geometric term. This is illustrated for a simple one-electron homonuclear diatomic
molecule. Three examples of the application of (e, 2€) spectroscopy to systems of chemical interest
are given. They are borazine (inorganic benzene), the methyl siloxanes and the inorganic complex
trimethylamine —boron trifluoride.
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Introduction

(e, 2e)-spectroscopy has its origins in nuclear physics
with the first experiments and theoretical analyses
performed by physicists with a nuclear-physics back-
ground [1-3]. Once the feasibility of the experiments
was demonstrated [4], chemists also became inter-
ested, and a large and increasing number of gas-phase
molecules has been the subject of (e, 2¢) studies [5]. In
addition, (e, 2e)-spectroscopy has been applied to
solid films [6, 7], crystals [8], and atoms in excited
states [9]. The basic collision mechanism upon which
(e, 2e)-spectroscopy is based has not been neglected,
and there exists a large number of studies of the mech-
anism of the (e, 2e) reaction in different experimental
geometries [10—12]. In this paper we will concentrate
on the information that can be obtained from (e, 2e)-
spectroscopy on the electronic structure of chemically
interesting molecules. We will use three examples;
borazine, sometimes called inorganic benzene, three
siloxanes, and the weakly-bonded compound tri-
methylamine—boron trifluoride. The evolution of
(e, 2¢e)-spectroscopy from an interesting curiosity to a
worthwhile experimental technique for the investiga-
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tion of the electronic structure of atoms and molecules
is due in large part to the close relation between the
experimental results and quantum-chemical calcula-
tions. Experimental data by themselves are not suffi-
cient for a complete understanding of electronic struc-
ture because of the various averagings that are inherent
in gas-phase experiments. On the other hand, calcula-
tions need experimental data to establish their valid-
ity. As we shall show, a close coupling between exper-
iments and calculations can indeed tell a good deal
about electronic structure and its relation to the
chemical and physical properties of atoms and mole-
cules.

We will begin with a brief review of the simple the-
ory of the (e, 2e) reaction under conditions that are
most relevant to electronic structure determinations.
A more complete treatment of the theory has been
given by Weigold and McCarthy [2]. We will then
examine the experimental arrangements and the data
analysis methods. Data on the three systems we have
chosen as examples will be presented along with the
calculations and interpretations.

Simple Theory of the (e, 2e) Reaction

The idea of the (e, 2e) reaction is simple and can be
illustrated by a classical model, Figure 1. Assume that
we have a single electron fixed in space, the target
electron, and that we hit it with a second projectile
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Fig. 1. Schematic diagram of a simple classical collision be-
tween two identical particles. The momenta and kinetic ener-
gies of the particles are indicated.

electron with kinetic energy E, and momentum k,.
Energy and momentum are conserved so that the rela-
tions between the final energies, E, and Eg, and final
momenta k, and kg of the two electrons after the
collision can be calculated. The momentum trans-
ferred to the target electron is k,—k, = K. For the
simple situation described above, K= kg holds. In or-
der to extend this simple picture, consider the target
electron to be one of a number of electrons in an atom
or molecule, with a binding energy I, and suppose that
at the instant of collision with the projectile electron
it is moving in some arbitrary direction with momen-
tum —g¢. Under these circumstances, the momentum
of the target electron after the collision is the vector
sum of the momentum transferred to it by the projec-
tile electron and the momentum it had at the instant
of the collision: ky =k, —k,—qorq=ko—k,— kg.
Furthermore, the sum of the kinetic energies of the
projectile and target electrons after the collision are
reduced by the value of the binding energy. The impli-
cations of this are profound. If one can measure the
momenta of the incident electron before and after the
collision, and that of the target electron after its ejec-
tion, it is possible to calculate the momentum of the
target electron at the instant of collision directly. Ad-
ditionally, the determination of the kinetic energies of
the electrons after the collision is sufficient to establish
the binding energy or ionization potential of the target
electron. An orbital electron in an atom or molecule
has a fixed ionization potential, and its momentum at
any instant can be described by a momentum density
function. By performing the collision experiment over
and over with a collection of identical atoms or mole-
cules and accepting for analysis only those electrons
with a single ionization potential we can obtain this
density function.

The momentum density of an electron in an atom or
molecule is a fundamental quantum-mechanical prop-
erty of the system and can be calculated from first
principles. Our ability to measure momentum densi-
ties in a straightforward manner combined with

binding-energy selectivity, is the most important
feature of the (e, 2e) experiment.

The experimental configuration used in (e, 2¢) exper-
iments all share the same basic elements, a source of
projectile electrons, energy/momentum analyzers,
detectors for the scattered and target electrons and
electronic circuits to distinguish the two electrons re-
sulting from a single (e, 2¢) event from all other elec-
tron-producing processes. In general, (e, 2€) experi-
ments only measure a single component of ¢, either
the component that lies in the plane of the incident
and scattered electron momentum vectors (coplanar
geometry) or the component perpendicular to that
plane (noncoplanar geometry). A third geometry, the
symmetric out-of-plane one, combines elements of
both the coplanar and noncoplanar geometries. The
different geometries are listed in Table 1 along with
the expressions for | ¢| as a function of the experimen-
tal parameters. The normal experimental parameter
ranges are also listed.

In the gas phase all orientations of ¢ are equally
probable so that the determination of the momentum
density of a single component of ¢ is equivalent to a
spherically-averaged momentum density. For oriented
atoms or molecules it is possible to obtain momentum
densities along preferred directions in space in a man-
ner analogous to directional Compton profiles.

In the above discussion we have represented the
collision process in classical terms while discussing the
properties of the target electrons in the more quantum-
mechanical language of distributions and densities.
The quantum-mechanical treatment of the collision
between the projectile and target electrons is most
simply treated within the Born approximation with
the incident, scattered, and ejected electrons are repre-
sented by plane waves. The interaction that connects
the initial state and final state is taken to be the Cou-
lomb interaction between the incident and target elec-
trons. If the target electron is part of an atom or mole-
cule, we can write the initial state of the system as the
product of the wave function of the projectile electron
and the many-electron wave function of the atom or
molecule ¥(r,,r,, ..., rz). The final state is the product
of the wave functions of the scattered electron, ejected

electron, and residual ion @(ry,r,,...,r;_,).
Initial state: e’ " Y(r,,r,,...,r;),
Final state:  e'ka'r eike're @(r, r,,...,7r,_,),
. z  —¢? .
Ttermetion: (two-body Coulomb
j=1 |r—rnl operator) . 1)



Table 1. Geometries in (e, 2¢€) experiments.

Parameter range ®

Geometry Experimental constraints Independent variable Target momentum |¢q| (a.u.)?*
Symmetric E,=Eg=E=(E,—1)/2 ¢ I/E_ 5 o2 E,=400-2000 eV
noncoplanar B, i oe 2 l/i [(l/E . - 0) + E sin? 0 sin? _2_] 0 =45°
¢ =0-60°
Symmetric E,=Ey=E=(E,—D/2 0=0,=0, _ VENT E, = 4002600 eV
topianm ¢ = 2)/2 (VE cos 0 — T") ] 0 =30-60°
Symmetric E,=Eg=(E,—I)/2=E ¢’ =sin~!(tan 0 sin ¢/2) — p I/E— 5 i3 E, = 800-2600 eV
Bl-olplave 0=0,=0, 2)/2 <1/E T °> + ED? tan? ¢’] 0 =44-45°
cos
coscosp=cos'=D = ¢ =0-8°
; 1

Asymmetric E,> Ey 0Oy 2 [(Eo - E) E, = 8000 eV
coplanar 0, <1 Eg =400-600 eV

¢ =0 + / Es Eg (cos 0, cos 0y — sin 0, sin 0 cos ¢) 0, =10-17°

VEq (/Ex VEs = O = 30-140°
—VEy(/E, cos 0, + |/ Eg cos Op) B

Nonsymmetric Eq=E,+Eg+1 AE=E, —E, ‘/i [2Eo— I +)/(Eo—1)*— AE? (cos* § — sin? 6)

coplanar
(energy-sharing)

0,=0y=0
¢ =0

—V2Eo (VEo— I + AE + |/Eo — I — 4E) cos 6]

* With energies also in a.u.
® For determination of momentum densities in valence states of gaseous atoms and molecules.
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The matrix element connecting the initial and final
states is

j'(p*e—ikA-r e—ikg-ra

-

Yekordr dr,...dr,dr. (2

j=1 |r—rl

The integration over r, the coordinate of the incident
electron, was done by Bethe [13] giving the result

eilko—ka):r Z

J=1 |r _]l

__ 4 S ike-ka
Tkl 559
The result on the left-hand side is the product of a
term involving only the momentum transferred by the
incident electron to the target and a term involving
only the coordinates of the electrons in the target
atom or molecule. This means that the details of the
collision can be separated from the structure of the
target. If we further make the assumption that only
the target electron participates in the collision, the
binary-encounter approximation, only the term for
electron B remains in the summation over the Z elec-
trons in the target, and we can rewrite the matrix
element as

AT (@it (4)
lko— kal?

The next simplifying assumption is the representa-
tion of both the wave function for the target atom and
the residual ion as the product of one-electron func-
tions, the target Hartree-Fock assumption. The appli-
cation of this to the above formula gives

4
= T P it

- 8(Eo—

lko
Elon 3 k2 i— klzl) £l (5)

where the first integral is the overlap of the residual-
ion wave function with ¥, the neutral wave function
minus the ejected target-electron function ¢,(rg). The
second integral is the Fourier transform of the single-
electron wave function for the ejected electron. The
delta function assures that energy is conserved. The
cross-section for the (e, 2€) reaction, o, ., is then
proportional to the modulus-square of the above ex-
pression,

e, 2¢) = Oc, ¢) [ {P| > 2 (9 - (6)
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Here . , is the Rutherford cross-section, which be-
comes the Mott cross-section when exchange is taken
into account. The modulus-square of the overlap inte-
gral is called the spectroscopic factor, a measure of the
probability that the residual-ion wave function has a
hole in the initial-state orbital I. Finally, the term g,(q)
is the momentum density.

At this point it is important to review the approxi-
mations that have led to this formula and to consider
the appropriate experimental regimes. In order to en-
able one to use the Born approximation the motion of
the unbound electrons must be very nearly free. This
will be the case when the kinetic energy of the elec-
trons is very much larger than the ionization potential
of the target electron. For the valence electrons of an
atom or molecule, where the ionization potentials are
of the order of 10 eV, this means that the scattered and
ejected electrons should have kinetic energies in excess
of 500eV. The binary-encounter approximation
ignores the interaction of the incident electron with
the nucleus or nuclei, and all the electrons of the target
atom or molecule with the exception of the target
electron. Once again, this is a high-energy approxima-
tion that becomes increasingly accurate as the kinetic
energies of the incident, scattered, and ejected elec-
trons are increased. Here we note that the interaction
between the incident electron and target electron is
represented without approximation, which is not al-
ways the case for some of the higher-order approx-
imations that seek to include the second-order inter-
actions. Because the binary-encounter approximation
leads directly to the separation of the collision kine-
matics from the target structure, it can be tested exper-
imentally. The results have confirmed the accuracy of
the approximation at sufficiently high kinetic energies.

Fig. 2. Coordinate system for a simple one-electron homo-
nuclear diatomic molecule.



362

Finally there is the target Hartree-Fock approxi-
mation, which is a reasonable description of the va-
lence states. The target Hartree-Fock approximation
can be improved at the expense of increased computa-
tional time through the use of configuration interac-
tion. This partially compensates for the deficiencies in
the Hartree-Fock functions, while retaining the same
basic formalism.

0(g)=X.(q9) Xt(q9) = A(q A*(g) -

Electron Densities in Molecules

Our interest has mostly been with the application of
(e, 2e)-spectroscopy to the valence electrons of mole-
cules, especially those molecules whose physical and
chemical properties are mainly determined by a few
outer valence electrons. There are interesting effects
associated with the determination of the momentum
densities of molecular electrons that can be illustrated
by considering the momentum density for a simple
one-electron homonuclear diatomic molecule with
LCAO wave function P. This analysis follows closely
that of Coulson, and Coulson and Duncanson [14].
The two nuclei at positions a and b are located by the
vectors r, and r, with origin at 0, Figure 2. The single
electron is located by the vector r, and the vectors
r—r, and r—r, locate the electron with respect to the
nuclear centers. The LCAO electronic wave function
for the molecule, ¥, is given by

P, = l/’aid/b

T )20£8.)

where ¥, and ¥, are atomic one-electron wave func-
tions and S,, is the overlap integral. The positive sign
is for the symmetric (bonding) wave function and the
negative sign is for the antisymmetric (antibonding)
wave function. X (¢), the Fourier transform of ¥, is

1 )
Xo(@) = f Bl 07 dr (8)

™

This can be rewritten as
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or
Xalg) = Al ot 2 (10
+9)=A49)
V20 £5,
where

Alg) = ﬁ [War—r)e e r—radr. (11)

The momentum density is then

1+cos[g-(ra—r)] 12)

(1+S,)
The leading term is the atomic momentum density,
and all of the information about the molecule is con-
tained in the second term. In the second term the
argument of the cosine is the scalar product of the
electron momentum vector ¢ and the internuclear dis-
tance vector r, — r,. When ¢ is perpendicular to the
internuclear axis the cosine has its maximum value
and the momentum density for the bonding wave
function is a maximum, while the momentum density
for the antibonding wave function is zero. When ¢ is
parallel to the internuclear axis, the argument of the
cosine depends on the product of the magnitudes of
the product of ¢ and the internuclear distance. For
small values of ¢ the momentum density of the bond-
ing wave function is close to its maximum, while the
antibonding wave function is near a minimum. The
momentum densities as a function of ¢ and the angle
between ¢ and the internuclear axis are shown in
Fig. 3 for both the bonding and antibonding wave
functions. Here we clearly see the nodal structure
of the antibonding wave function reflected in the
momentum density. This is not surprising, since the
symmetry of the momentum-space wave function is
preserved under Fourier transformation. Moreover,
in the absence of an external magnetic field all mo-
mentum-space wave functions have inversion symme-
try. This follows from the fact that in such a case all
position-space wave functions are or can be made real.
Even when the momentum densities are spherically
averaged, as shown in Fig. 3, the symmetry properties
of the two wave functions remain clearly distinguish-
able.

Xi(q) = (2 7[)3/2

: .[l//a(r_’a)e_""'('_"”eﬂ"""’illlb(r—rb)e"i“""'b’e“'""b
2(1+£8,)

dr, 9
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Fig. 3. Molecular momentum densities for the bonding, ¥,, and antibonding, ¥_, wave functions of the one-electron
homonuclear diatomic molecule of Figure 2. The momentum densities are shown in perspective plots and contour diagrams
where the independent variables are the momenta parallel and perpendicular to the internuclear axis. The spherical averages
of the two densities are shown in the bottom diagrams. Hydrogen 1s atomic wave functions have been used as basis functions,

and an internuclear spacing of 1 a.u. has been assumed.

The features of this elementary example are to be
found in the more complicated molecules that we shall
refer to in the following examples.

Experiments

The most frequently used experimental geometry
for electron momentum density measurements is the

noncoplanar symmetric one. This geometry is shown
schematically in Figure 4. It has two advantages; one
is derived from the fact that only electrons with iden-
tical energies are accepted by the apparatus, and the
other is due to the constant polar angle 6 for the
scattered and ejected electrons. Identical energies min-
imize interactions between the electrons and the resid-
ual ion, while the constant polar angle results in a
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gl =[(2k, cos 6 — ko)2 + (2k, sin 0 sin ¢/2)%1?

Fig. 4. Schematic diagram of the noncoplanar symmetric geometry.

nearly constant value for the (e, ) cross-section. This
latter fact means that any variation in the (e, 2¢€) cross-
section with change in the out-of-plane angle ¢ is
almost entirely due to changes in the momentum den-
sity of the ejected electron with g. The principle disad-
vantage of the noncoplanar symmetric geometry is the
small value of the cross-section at the values of 6
usually used. In order to overcome this, asymmetric
geometries where the scattering angle of the incident
electron is small have been investigated with encour-
aging results [15, 16].

Our experimental results have been obtained with a
multiple-detector noncoplanar-symmetric spectrome-
ter shown schematically in Figure 5. In this spectrom-
eter we take advantage of the cylindrical symmetry of
the (e, 2¢) collision and use fourteen separate discrete
detectors to sample 49 different ¢ angles simulta-
neously [17]. This increases the data rate by a factor of
49 over that of a conventional two-detector spectrom-
eter, while at the same time it eliminates the need to
monitor incident current and target density. On the
other hand, the fourteen detectors must be carefully
calibrated, since variations in their sensitivities during
the course of a measurement can result in significant
errors. The energy resolution of the spectrometer is
1.4 eV and the momentum resolution 0.07 a.u. Nor-
mal operating conditions are an incident electron cur-
rent of 1 to 20 microamps and a target density of 10*2
to 103 cm 3.

Three Case Studies

Having established the relation between the (e, 2¢)
cross-section and momentum densities, we will give

three examples from our work to illustrate the kinds of
chemical information that can be obtained. We have
concentrated on molecules whose chemical and phys-
ical properties are mostly given by a few outer valence
electrons. In borazine B;N;Hg, the outermost valence
electrons are 7m-electrons. There is some evidence that
these electrons give borazine an aromatic character
very much like benzene [18]. For the siloxanes, we
were mainly interested in the nature of Si—O bonds
and the changes in the basicity of the lone-pair elec-
trons on the oxygen atom [19]. Finally, in our study of
the weakly bound complex trimethylamine—boron
trifluoride we wanted to find out how valence elec-
trons rearrange themselves upon the formation of a
chemical bond between two molecules [20].

The calculations that we use for comparison with
the experimental results are done in several steps.
First, the molecular geometry must be known. When
bond angles and bond distances are not available
from experimental data they must be calculated. We
do this by locating the minimum of the total electronic
energy of the molecule as a function of bond distances
and angles within given symmetry constraints. These
are SCF calculations with medium-size basis sets with
two STOs for each valence-shell atomic orbital, but
only one STO for each inner-shell atomic orbital. Be-
cause atomic orbitals are distorted in a molecule, ad-
ditional basis function STOs are used where the angu-
lar momentum quantum numbers are greater than the
maximum for the corresponding free atom. As is com-
mon in such quantum chemistry calculations, each
STO is replaced by a contracted Gaussian function
that itself is a linear combination of elementary Gaus-
sian functions with coefficients chosen to give a good
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Fig. 5. Multiple-detector noncoplanar symmetric spectrome-
ter based on a truncated spherical electrostatic analyzer.
Electrons leaving the collision region at a polar angle of 45°
can pass through the entrance aperture of the analyzer, but
only those electrons with energies equal to the pass energy of
the analyzer can reach the detectors. The pass energy is set
to correspond to the ionization potential of the orbital under
study. Detectors 1 through 14 are located on the focal plane
of the analyzer. An (e, 2¢) event with scattered and ejected
electrons striking detectors 3 and 9 is shown. The out-of-
plane angle, ¢,,, is shown.
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Fig. 6. Momentum densities for the highest occupied molec-
ular orbital 1¢” of borazine, B;N;H,. The experimental data
(black circles) are compared with momentum density (MD)
calculations using four different wave functions (3-21G™,
3-21G*** 6-311 " ** and atomic N 2p). The fifth calculation
is a full overlap density calculation (OVD) of the neutral
molecule and residual ion states using 3-21G™ functions.

fit to the STO. The functions we use are generally of
the 3-21G* type, where each inner-shell 1s atomic
orbital is represented by three elementary Gaussian
functions. Two sets of functions are used for the va-
lence-shell orbitals with one set a linear combination
of two elementary Gaussian functions and the other a
single Gaussian with an orbital exponent smaller than
those in the set of two. The asterisk designates the
addition of a single set of d-type Gaussian functions to
each nonhydrogen atom to account for polarization.
Additional diffuse functions are indicated by a plus-
sign superscript. For the momentum density calcula-
tions we use the same basis set as for the geometry
optimization calculation with the addition of diffuse
Gaussian functions. The calculations can be improved
by calculating the full overlap between the neutral-
target state and the residual-ion state with CI wave
functions. This is a considerably more difficult calcula-
tion, and at present is only justified when the simpler
momentum density calculations clearly fail to repro-
duce the experimental data.

Borazine is often called inorganic benzene because
of the analogy between its three highest occupied
molecular orbitals and those of benzene. In this exper-
iment we measured the momentum density of the
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highest occupied molecular orbital of borazine, 1e”,
and compared the results with a variety of calcula-
tions. The experimental results are shown in Figure 6.
In the figure we show calculations using a variety of
Gaussian basis sets along with the experimental data.
There is a very clear difference between the calcu-
lations and theory. In this case the experimental
momentum density is significantly broader than the
calculations. The physical meaning of this discrepancy
is best understood by going back to the relation be-
tween momentum density and charge density. The
momentum density is the square of the absolute value
of the momentum-space wave function, which is in
turn the Fourier transform of the position-space wave
function. The nature of the Fourier transformation is
such that a compact function in one space transforms
to a diffuse function in the other space. As a result we
expect that a compact momentum density function
corresponds to a diffuse charge density. Another way
of looking at momentum densities is to recognize that
the momentum operator is the spatial derivative in the
position-space representation. Small values of momen-
tum are associated with spatial regions where the
position-space wave function is relatively flat. These
are the regions in the tails of the wave functions and
the regions of bonding wave functions between atoms.
Large values of momentum are associated with spatial
regions where the function is changing rapidly, often
the region of nodes. Since anti-bonding wave func-
tions have more nodes than bonding wave functions,
we expect more high-momentum components for
anti-bonding functions than bonding functions. Re-
turning to the borazine results, we interpret the broad
experimental momentum density as an indication that
the charge density is not so diffuse as predicted by the
calculations. In fact, if we calculate the momentum
density for an isolated nitrogen 2 p atomic orbital we
find that the momentum density is much closer to the
experimental momentum density for borazine than
the full molecular orbital calculation on the molecule.
Here the (e, 2¢) experiment has given us valuable in-
formation about the valence electrons in borazine. In
the absence of experimental results, it is not possible
to investigate the details of the electronic structure
directly. Energies alone are not sufficient. On the other
hand, the experimental results in the absence of the
calculations cannot be interpreted in a meaningful
way. We need calculated momentum densities with
which to compare. Parenthetically, it is interesting
to note that our investigations of the influence of
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n-orbitals of halogen-substituted ethenes, we found
that the experimental momentum densities matched
the momentum densities for the isolated halogens
more closely than the calculated n-electron density.

The siloxanes are the silicon analogues of organic
ethers. The basicity of the siloxanes is principally due
to the two pairs of lone-pair electrons on the oxygen
atom. Our interest is the degree to which geometry
changes the momentum densities of these electrons.
Figure 7 shows experimental momentum densities for
the highest occupied molecular orbital normally asso-
ciated with the “lone-pair” electrons of three methyl-
siloxanes and the corresponding calculated momen-
tum densities. For reference we also show the calcu-
lated momentum density for the analogous molecular
orbital of water, 1b,. The two-peaked structure for
the siloxanes is very different from the single-peak
water momentum density. The multiple-peak struc-
tures in the calculated momentum densities for the
highest occupied molecular orbitals for the lone-pair
electrons in both the linear and cyclic siloxanes are
due to the admixture of Si3p, H1s and C2p atomic
orbitals and the O2pn. The difference between the
momentum densities of linear disiloxane and the
3-ring and 4-ring compounds is mostly due to the
delocalization of the HOMO over the oxygens in the
ring. The experimental data were difficult to obtain
because of the corrosive nature of the siloxanes; never-
theless the two-peak structure predicted by the calcu-
lations is seen in the experiment. Both the HOMO
and LUMO of Si(CH;); are predominantly C2p in
character, and this character is reflected in the HOMOs
of the methylated siloxanes. This direct observation of
the C2p character of the HOMOs of the siloxanes
bears directly on models for bonding in these com-
pounds.

The final example of the application of (e, 2 e)-spec-
troscopy to chemical problems is the donor—acceptor
complex trimethylamine—boron trifluoride. This com-
plex is formed when the lone-pair electrons on the
amine interact with the empty B2p orbital to form a
bonding molecular orbital. Since trimethylamine is a
stable molecule, it was possible to measure the
momentum density of the N2 p electrons in the amine
and then the corresponding bonding molecular or-
bital in the complex in order to see how the electrons
rearranged themselves upon the formation of a chem-
ical bond. Figure 8 is a correlation diagram showing
how the molecular orbitals of the isolated reactant
molecules interact in the formation of the molecular
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complex. The highest occupied orbital of trimethyl-
amine is the nonbonding 6a,, and the lowest unoccu-
pied molecular orbital of boron trifluoride is the anti-
bonding n*,2a’;. These two orbitals correlate with the
11a,, highest occupied orbital of the complex. The
experimental and calculated momentum densities for

the 11a, orbital of the complex are shown in Fig. 9
along with the momentum density for the 6a,; orbital
of the free trimethylamine. A comparison of the exper-
imental momentum densities for the two orbitals
shows the HOMO of the complex to have a signifi-
cantly larger momentum density at high momentum.



Relative Momentum Density

Relative Momentum Density

M. A. Coplan et al. -

1.00 M T T T T T
Trimethylamine
0.60 7
040 ]
0.20 |- -
0.00
0.0 3.0
1.00 T T T T T
\
- Trimethylamine-boron trifluoride
‘ N(CHg)4-BF,
0.60 ‘\ + N
34N
0.40 |- $ H -
) ++ / h
0.20 - D -
N\ +++\
0.00 ! ! Lo
0.0 0.5 1.0 1.5 20 25 3.0
q(a.u.)
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fluoride. For the complex, the broken line is a calculation
using a 3-21G* wave function and the solid line shows the
results with a 3-21G wave function.

The shape of the momentum density for the orbital of
the complex has more structure than that of the free
amine with peaks at momentum values of 0.44 and
1.15 a.u. We attribute the large amplitude near zero
momentum to the contribution of the methyl-group
hydrogen 1s orbitals. This is evidence that the elec-
tron density continues to be substantially delocalized
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over the methyl groups even upon the formation of a
chemical bond with boron trifluoride. We attribute the
increase of the high-momentum components of the
momentum density of the 11a,; compared to the 6a,
to the antibonding interactions between the fluorine
and nitrogen 2 p orbitals. As demonstrated in the dis-
cussion of molecular momentum densities, the orbital
momentum density is the product of an atomic term
and an interference term. The modulation of the
atomic density term by the interference term is a re-
flection of the symmetry of the molecule. In the case of
the 11a, orbital, the modulation is sufficient to pro-
duce secondary extrema in the momentum density.
From this study we were able to show that the forma-
tion of the bond in the donor—acceptor complex in-
volves more than the simple accumulation of charge
density between the boron and nitrogen atoms. The
experimental results, supported by the calculations,
show substantial electron charge density distributed
over the methyl groups along with a strong F2p—N2p
antibonding interaction.

Conclusions

Because (e, 2¢) spectroscopy can provide informa-
tion about the momentum densities of individual
atomic and molecular orbitals, it is useful for the in-
vestigation of electronic structure. The experimental
progress over the last several years has resulted in
increased energy and momentum resolution at the
same time that statistical uncertainty has been de-
creased. We are currently limited by the random ori-
entation of the targets, which averages out fine struc-
ture in the momentum densities. Nevertheless, for a
large number of chemically interesting molecules,
spherically averaged momentum densities, when com-
bined with calculations, can tell us a great deal about
molecular bonding.
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