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We show an iterative algorithm that allows to obtain accurate Compton profiles J(q) from
Compton scattering spectra I,(w,), if the excitation radiation is not strictly monochromatic. It
requires knowledge of the spectral distribution of the primary radiation I, (w,), validity of the
impulse approximation and dominance of a monochromatic part in I, (w,) over the polychromatic
rest. Conversely, the primary spectrum is often experimentally not directly accessible. In such a
situation it is possible to evaluate the primary spectrum I,(w,) from the spectrum of scattered
photons, I, (w,), with a similar iterative algorithm. We use a scattering target of high atomic number
in order to ensure that the elastically scattered photons dominate the inelastically scattered ones.
From the scattered spectrum we get a model for the Compton profile that allows us to separate the
inelastic part of the scattered spectrum from the elastic part, which, in turn, is proportional to the

spectral distribution of the primary radiation.
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1. Introduction

Compton spectroscopy has become a well-estab-
lished tool for the direct investigation of projections of
the electron momentum density [1, 2] and therefore of
the electronic structure of the chemical bond. Long-
range (> 5 A) intermolecular interactions can only be
examined if the momentum resolution is better than
~02p, (po=h/ay=1Dumond = 1992891024
kg m/s). This can only be achieved with crystal analy-
sers. The reflectivity of such crystals is very low,
whence sources of higher intensity are required. Syn-
chrotron radiation has been used for some years with
great success [3, 4]. With conventional, much cheaper
and continuously available sources, on the other
hand, higher intensity is attained only at the expense
of a lower degree of monochromatisation. Strong
y-ray sources have a low-energy tail owing to internal
inelastic scattering with an integral intensity of up to
several percent of the main peak [5]. Manninen et al.
[6] and Rollason et al. [7] discussed this problem in
detail. Imperfect monochromatisation of an X-ray
tube is another example.
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In the scope of the impulse approximation, the
Compton profile (i.e. the projection of the momentum
density along the scattering vector) is directly propor-
tional to the scattering spectrum. This, however, is
valid only if ideal monochromatic excitation radiation
can be assumed. In Sect.2 we show an iterative al-
gorithm that enables us to obtain the accurate Comp-
ton profile also in those cases where the assumption of
monochromatic excitation is not valid. The algorithm
is applicable if the spectral distribution of the exciting
radiation — the primary spectrum — is known and if it
can be subdivided into a dominating monochromatic
part and a polychromatic remainder. Our procedure
applies not only to low-energy tails of y-ray sources
but to all possible spectral shapes of polychromaticity.

In some experimental cases, however, the true pri-
mary spectrum is not directly accessible, e.g. because
the radiation is too intense to be measured by an
energy discriminating detector. We show in Sect. 3
that it is possible to obtain the intensity distribution
of the primary spectrum from a scattered spectrum by
a similar iterative algorithm. In that case we use a
scattering target of high atomic number to ensure that
the elastically scattered photons dominate the inelasti-
cally scattered ones. From the scattered spectrum we
obtain a model for the Compton profile by a nonlinear
least-squares fitting procedure that allows us to sepa-
rate the inelastic part of the scattered spectrum from
the elastic part, which is proportional to the primary
spectrum.
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2. Accurate Compton Profiles

For a given scattering cross-section model, the eval-
uation of Compton profiles J(g) is straightforward, if
strict monochromaticity of the primary radiation is
assumed and if J(g) is a multiplicative part of the
cross-section [8]. In most experimental cases mono-
chromaticity is not guaranteed. We here present an
algorithm that allows us to obtain the accurate Comp-
ton profile also in those cases, provided the spectral
distribution of the primary radiation I, (w,) is known *.

The scattering spectrum I, (w,) is a function of the
primary spectrum I, (w,) and the scattering power
Q(w,, w,, @) of the target; owing to the different final
states, I, (w,) can be subdivided into an elastic and an
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Therefore, the first correction is to eliminate the
elastically scattered part of I,(w,) by subtracting the
correctly weighted I, (w,):

Iz, ine1 (@2) = I3 (w3) — I, (w,) Qo (@5, 0) ¥))]
= [1,(0) A(@,, 0, 9) Cl@,, 0,, ¢) I (g) do, .

This correction is necessary especially when targets of
high atomic number are investigated. In practice the
correction factor is given by the ratio of the dominat-
ing Rayleigh peak in the scattering spectrum to the
same peak in the primary spectrum.

Now the crucial point is the subdivision of the pri-
mary spectrum into a dominating monochromatic
part of energy w, , and a polychromatic remainder,

Il(w1)=1(l),m 6(w1_wl,m)+11,p(wl)9 3)

which by insertion in (2) leads to

Il.inel(wz) = If.m C(wl.m’wZ’(p) A(wl,m’ wz, (p) J(qm)+ III,p(wl) A(wl’ (02, (p) C(wl, w27 (P) J(‘I) dwl (4)

with g,, being the momentum component calculated from w, ., and w,. This can be solved for J(q,,),

L (@) — [ 1, () A0, ©,, ¢) C(w,,0,, ¢) J(g) do,

J () =

; &)

Il,m A(wl,ma COZ, (P) C(wl,ma (02, ¢)

which can be interpreted as an iteration scheme for the determination of the true Compton profile. The zeroth
approximation is obtained by neglecting the polychromatic part. Each improvement is calculated by subtract-
ing the polychromatic contributions on the basis of the J(g) obtained up to then:

J(o)(qm) = IZ,inel(a)Z) ,
I o A(@y, > @2, 9) C(@4 1> @2, 9)
JEHD(g ) = I3 ina (@) — 5 I p(,) Alwy, ©;, ¢) Clw,, 0,, ¢) J9(g) dw, )

(6)

Il,mA(wl.m’ @5, (P) C(wl‘m’ @;, (P)

inelastic part:
Lo, =] 1,(0,) Q(®,, »,, 9) dw, (1)

=1,(0)) Q0 (@;,9) + [ I, (@,) A0, ®, @)
. C(wl’w29 (P) J(‘]) dwl .

Q, (w5, @) is porportional to the Thomson scattering
cross-section, A(w, , ®,, @) the absorption factor and
C(w,,w,, @) - J(q) a cross-section model containing
J (g) multiplicatively. The momentum component q is
a function of both w, and w, (and, of course, of the
scattering angle ¢, which is a constant parameter of
the traditional isogonal experiment).

* We use # =1 throughout the paper.

This procedure is repeated until self-consistency of
J(q) is achieved.

The experiment yields the spectra as vectors of dis-
crete data points, and therefore the integral becomes
a sum. The correction of the J(q) is best carried out
from the high-energy end downwards, since there is no
anti-Stokes part with @, > w, in the Compton spectra
of targets in the electronic ground state. Thus the J(q)
vector is improved continuously even within each iter-
ation cycle, similar to the tail-stripping in the process-
ing of high-energy y-ray spectra. This “stripping”
strategy contributes significantly to the fast conver-
gence.

The algorithm was implemented as a FORTRAN-77
program under the operating system VMS. It has been
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Fig. 1a. “Synthetic” primary spectrum consisting of a domi-  Fig. 2a. “Synthetic” primary spectrum consisting of a domi-
nating peak at 60 keV and a second line at 52 keV of 40%  nating peak at 60 keV and a low-energy tail of ~ 40% inten-
intensity (solid line), and the resulting scattering spectrum, sity (solid line) and the resulting scattering spectrum, calcu-
calculated on the basis of a Gaussian shaped Compton pro- lated on the basis of a Gaussian shaped Compton profile

J(q ) (arb. units)
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Fig. 1b. The resulting Compton profile at different stages of  Fig. 2b. The resulting Compton profile at different stages of
the iteration: Oth approximation (o), result of 1st (+),2nd (¥)  the iteration: Oth approximation (o), result of 1st (+), 2nd (*)
and 3rd (x) cycle, final result (o). and 3rd ( x) cycle, final result (o).

tested by the following procedure. Starting from a  ond line at 52 keV (40% intensity) together with the
Gaussian-shaped model Compton-profile J(g) «c  corresponding scattering spectrum. In Fig. 1b the re-
exp(—0.03 g?) and a given primary spectrum, we cal-  sulting Compton profile is shown at different stages of
culated the resulting scattering spectrum on the basis  the iteration. One clearly sees the over-correction on
of a particular scattering cross-section. We chose the the low-momentum side of the Compton profile in the
model of Ribberfors [9] with some slight simplifica- first step of the iteration, because the J(q) determined
tions. Both spectra were convoluted with a realistic in the zeroth approximation is strongly asymmetric.
resolution function. An alternating sequence of J?(q) follows, which,

Figure 1a shows a “synthetic” primary spectrum however, converges rapidly. After five iteration cycles
consisting of a dominating peak at 60 keV and a sec- there is no significant change left. The obtained
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Fig. 3a. The differentially-filtered scattering spectrum of a Pb
target with a dominating Rayleigh peak from the AgKa, line,
a broad Compton band mainly caused by the AgK«, radia-
tion, fluorescence lines of the filter materials Ru (negative)
and Rh, and a rest of the bremsstrahlung background.

Compton profile is the same as the original Gaussian-
shaped one within full numerical accuracy. Figures 2a
and b show the same results for a primary spectrum
consisting of a single line with an exponential low-
energy tail of ~40% integral intensity. In comparison
to the 6-10% tail of a 24 Am y-ray source [5], this is
a worst-case study that proves convergence also under
unfavourable circumstances.

3. Determination of the Spectral Distribution
of the Primary Radiation

Often, however, the primary spectrum I, (w,) is not
directly measurable. In this section we present a re-
lated algorithm that allows us to obtain I, (w,) from
the scattering spectrum of a target of high atomic
number. In such a case the scattering spectrum is
dominated by the elastic part and is therefore nearly
proportional to I;(w,). The inelastically scattered
part of the spectrum, however, must be separated.

In the following we shall demonstrate the deter-
mination of the differentially filtered spectrum of a
wide-focus X-ray tube with Ag anode from a scatter-
ing spectrum of a Pb target. This method of mono-
chromatisation, which was introduced by Ross [10]
and consists in forming the difference between a Ru-
filtered and a Rh-filtered spectrum, enables us to sep-
arate the AgKo, line out of the tube spectrum, because
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Fig. 3b. The resulting primary spectrum
simple iteration scheme.
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Fig. 3¢c. The resulting primary spectrum obtained by the im-
proved iteration scheme.

the RuK absorption edge lies between the AgKa, and
Ko, line. Figure 3a shows the scattering spectrum
with a dominating Rayleigh peak from the AgKa,
line, a broad Compton band mainly caused by the
AgKua, radiation, some fluorescence lines of the filter
materials Ru (negative) and Rh, and a rest of the
bremsstrahlung background (above AgKa,) owing to
imperfect monochromatisation because of the 1.1 keV
energy difference between the Ru and Rh absorption
edges.

The elimination of the inelastically scattered part is
based on a nonlinear least-squares fit of the scattering
spectrum. We use Gaussian-type functions for the
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Rayleigh and fluorescence peaks, a polynomial back-
ground and a sum of Lorentzian functions of higher
degree for the Compton band:

{iﬂi Am (wl)ki
[CF + gm(@2)1"

I, and {; are the parameters optimised by the least-
squares fit, g,, is the momentum component calcu-
lated from w,; ., and w,. This type of function is the
Fourier transform of Slater-type functions [11] and
therefore very suitable to fit the inelastic part of the
spectrum. The subscript “m” indicates that the mod-
elling was carried out under the assumption of perfect
monochromaticity of the exciting primary radiation
I, (w,). Division by the scattering cross-section leads
to a model for J(q):

n
d
Igl.oinel.m(wz) = 'Zl Icp.i
i=

™

d
Il;.uinel. m (wz)

Il.m A(wl,m’ @;, (P) C(O)l,m’ @;, 07) .

Jmed(q) = @)

With this model we can eliminate the inelastically
scattered part by the following iterative algorithm.
Insertion of (8) in (1) leads to

I, (w,) oc IZ,el(wZ) =1,(w,) _.‘.11(0’1)1‘1((1’1, s, Q)
- C(wy, w,, ) de(q} doy, 9)

which is the iteration scheme for the determination of
I (wy):

1(10)((92) =1,(w,),
I{* D (@,) =Ly (0,) — [ IP(@,) A(0y, 05, 9)
- Clwy, 0y, @) JmOd(q) do, .

(10)

This procedure is repeated until self-consistency of
I, (w,) is achieved. Figure 3b shows the result of the
iteration. One clearly sees that the inelastic contribu-
tions caused by the fluorescence peaks of the filter
material are correctly eliminated. A slight minimum at
the position of the Compton-band maximum results
from the rigid and hence imperfect modelling of the
inelastic part.

We therefore propose an improved algorithm. In
each iteration only those inelastic contributions are
eliminated that originate from non-dominating parts
of the primary spectrum (in our case the fluorescence
lines and the bremsstrahlung background are elimi-
nated). This is done by subtraction of both the elastic
and inelastic contributions of the dominating line as
obtained by the least-squares modelling before the
iteration:
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190, = I} (0,),
I Y (0,) = I¥ (0,) - [ I9(,) A(0,, ,, 9)

Cloy, 0, 9) J™(g) dw,
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with
I3 (w,) = I, (w,) — I?f’:‘(wz) .

After convergence is reached (self-consistency of
If (w,)), the subtracted contributions are re-added. In
this way only the inelastic contributions of the domi-
nating AgKo, line are left. We then repeat the least-
squares fit and obtain an improved model for the
inelastic part.

The whole procedure therefore consists of two iter-
ations, one within the other. The outer loop improves
the model for the Compton profile successively, while
the inner one removes all inelastic contributions of the
non-dominating part of the primary spectrum on the
basis of this model. Using this approach, the crudity of
the original least-squares fit is overcome by sub-
sequent refinement of the model until total self-con-
sistency of both J™4(g) and I, (w,) is reached.

Figure 3¢ shows the result of this improved algo-
rithm. All inelastic contributions in the scattering
spectrum are eliminated, and the remaining spectrum
consists of the dominating AgKa, line, the fluores-
cence lines of the filter materials and the rest of brems-
strahlung background. This is the true primary spec-
trum I, (w,) seen by our target. A further important
advantage over the direct measurement of the primary
spectrum through attenuating slits or holes is the fact
that the geometrical parameters are exactly the same
as in the following Compton scattering measurements.

4. Conclusions

It is possible to correct the influences of polychro-
maticity in the primary radiation by the presented
algorithms, which offers an improved evaluation of
Compton scattering experiments with y-radiation. It
furthermore enables one to utilise sources of higher
flux but lower degree of monochromatisation for
Compton scattering experiments, e.g. the differentially
filtered Ag radiation of a wide-focus tube. The “indi-
rect” determination of an intense primary spectrum,
on the other hand, is a general method, not restricted
to the use of X-ray sources in Compton scattering
experiments. It can be employed in all situations
where intense y- or X-ray sources are used and thus
offers a wide field of applications.
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