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Theoretical work on the cross-section for Compton scattering by magnetic materials is surveyed.
Exact results for scattering by a free polarized electron are contrasted with corresponding results
obtained perturbatively for a model of bound electrons with a finite width to the momentum

distribution.
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1. Introduction

Radiation scattering experiments on magnetic ma-
terials continue to provide new and exciting science.
Recent examples include polarization and resonance
studies of x-ray magnetic scattering in rare-earth
metals [1] and white-beam non-resonant diffraction of
synchrotron radiation from ferromagnetic iron [2].
Material properties probed in such experiments are
weak structural modulations that accompany the
magnetic ordering of some rare-earth metals and that
are described by a so-called spin-slip model, and the
spin and orbital contributions to the magnetic-
moment distribution. For the most part, neutron scat-
tering is the preferred method for the study of mag-
netic configurations, structures and excitations. Not-
able among recent achievements is the confirmation of
an interplay between spin and orbital moments in
actinide compounds [3, 4]. There are fresh challenges,
to both experimental and theoretical methods, pre-
sented by the development of new magnetic materials
with attractive properties for applications in various
devices [5].

In the present paper we gather results for Compton
and total scattering of photons by magnetic materials.
Discussions are at a basic level in as much that no
specific experimental data are analysed. Rather, key
elements of standard theoretical models are summa-
rized and compared. Hence, we begin by recording the
cross-section for photon scattering by a free polarized
electron initially at rest, a result that is an outcome of
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a straightforward exercise with QED [6]. Moving to a
more realistic model, in which the momentum distri-
bution for the electrons has a finite width, we consider
the impulse approximation to the cross-section for
pure charge scattering, and its expansion as a function
of the initial momentum of the electron. This work
provides a link between studies by Ribberfors [7] and
Grotch et al. [8], which are at first sight quite different.
A derivation in §4 of the Compton profile for (non-rel-
ativistic) charge scattering hopefully sheds fresh light
on the real nature of the approximations involved.
The method employed is similar to that used for the
derivation of Compton profiles for spin and orbital
magnetic moments [9]. These topics are addressed in
§5 and 6, where following on from the work by
Grotch et al. we provide an expression for the Comp-
ton profile for scattering by a material with pure spin
moments, and the behaviour of the total scattering
from spin and orbital moments. For the special case of
pure spin scattering it is stressed that the polarization-
induced contribution to the cross-sections for models
of free and bound electrons are different, at least at the
level of current theoretical work. Before embarking on
discussions of these various topics, perhaps it is worth
remarking that the theory of photon scattering by
electrons is based on QED which is thoroughly tested
and proven [10].

2. Scattering from a Free Polarized Electron

The cross-section for scattering by a free polarized
electron can be calculated without approximation.
Here we record the result for the special case in which
the free electron is initially at rest, and the primary
photon beam possesses circular polarization. The re-
sult for unpolarized photons and electrons is usually
referred to as the Klein—Nishina formula.
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Let the ratio of the secondary and primary photon
energies be denoted by b = (q'/q), where ¢ and ¢’ are
the corresponding wave vectors. If the primary photon
is scattered through an angle 6, the energy—momen-
tum relation is

g(1 —cos@)=<%>,

where g = (hg/mc) is the ratio of the primary photon
energy to the rest mass of the electron. The degree of
primary circular polarization is described by a Stokes
parameter P,, and the spin moment of the electron is
{s». With this notation, the differential cross-section

for scattering into a solid-angle element dQ is [6]
do 1, 2 5
0= 5T b{(1 + cos*0) — (1 — b)(b + cos*6)
—2P,(1—b)<{s)-(§cosO+b§)}. (2.2)

2.1)

In the limit b — 1 we recover Thomson’s formula. This
limit is achieved for # — 0 (which means g — 0) or
0 — 0 for any value of the primary energy.

It is possible to choose a scattering geometry such
that the contribution induced by the circular polariza-
tion vanishes. One obvious scheme is to arrange the
spin polarization perpendicular to the plane defined
by the primary and secondary wave vectors ¢ and ¢q'.
If, on the other hand, {s) is in the scattering plane,
and the unit vectors in (2.2) are expressed in the form

g, =cosa and ¢, =cos(x—0),

where « is the angle between (s) and ¢, the condition
at which the spin contribution vanishes,

g.cos0+b4.=0,
can be expressed in the form

tanatan = — (1 + 1/b). (2.3)

This relation is exact for the case of a free electron at
rest before the scattering event.

3. Impulse Approximation for Pure Charge Scattering

A realistic model for the interpretation of data for
electrons in molecules and solids must incorporate a
non-trivial distribution for the momenta of the elec-
trons. Let the distribution be denoted by ¢ (k) and
normalized such that

[dko(k)=1.

For an electron at rest ¢ (k) = J (k), where 6 (k) is the
delta-function.
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For this model it is not possible to calculate the
cross-section without making approximations, except
for some very special cases which we shall not discuss.
The most successful approximation to describe scat-
tering of energetic radiation (deep inelastic processes)
appears to be one based on the impulse approxima-
tion, where the target particle is assumed to behave as
a free particle for the brief duration of the scattering
event. Applied to electrons in condensed matter there
is need for the further assumption that scattering is
dominated by independent electron events, i.e. spatial
correlations between target particles (electrons) can be
safely neglected. Physical intuition leads one to expect
the independent-particle (or incoherent) approximation
to be valid when the photon wavelength is small com-
pared to the mean separation between target particles.

In words, the impulse approximation to the cross-
section is the cross-section for scattering by a free
electron with momentum p; with an average over p;
performed according to the distribution ¢ (p;). Since
the cross-section for scattering by a free electron with
an arbitrary initial momentum can be reduced to a
simple analytic expression, the impulse approxima-
tion to the cross-section for a bound electron can be
expressed in a closed form that can be evaluated (nu-
merically) for a given momentum distribution. The
analytic expression for the impulse approximation
to the cross-section is provided by Ribberfors [7],
Eqn. (8). For our part we have evaluated this cross-
section as an expansion in the initial momentum of the
target electron motivated by the realization that, in
most cases of interest, the mean value of the momen-
tum in the initial bound state is relatively very small,
being of order (mc/137). The result for the partial
differential cross-section is

d%c
dQdE’

1 B2
= Eri(q’/q)fdpe(p)é {ho — ﬁ(k2 +2k-p)}

~([1 + cos? 6] — fn—tp (g + ¢)cos (1 — cos 0)). (3.1)

If o(p) = o(— p), the leading-order correction to the
standard expression for the Compton profile vanishes.
In this instance the first finite correction is of order p?,
and the appropriate expression is obtained from the
general expression by straightforward tedious algebra.

The standard Compton profile, often written in
terms of the van Hove response function,

2
S (k, w) =_[dpg(p)5{hw— —Zh—m(k2 +2k -p)}, (3.2)
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has been shown to accurately describe deep inelastic
scattering events. Note that, in this limit, the total

intensity is independent of &,
@

h j' doSk,w) =1, (3.3)
while the result
[ dowSk w)=Kk/2m) (34)

agrees with the exact f~sum rule (relativistic forces
between the electrons are here assumed to be negligi-

ble). Using (3.2),
k? (hk)® 4
2mh>{ m + §<KE>}, (3.5)

aj? dwsz(k,w)=<

where (KE) is the average value of the kinetic energy
of an electron in the initial state. The result (3.3) can
be used to gauge the value of the impulse approxima-
tion to describe data, whereas (3.4) tests the quality of
the data. The result (3.5) then provides a reliable esti-
mate of (KE). Higher-order sum-rules are more com-
plicated and possibly of little value in data analysis.

4. A Derivation of the Impulse Approximation
for the Compton Profile

The following derivation of the impulse approxima-
tion, given for pure charge scattering, should shed
fresh light on the real nature of the various approxi-
mations made, although at first sight it could appear
meretricious. The full van Hove response function for
(non-relativistic) charge scattering is the time Fourier
transform of the density autocorrelation function,

4.1)

(n* (K)n(k,1)) = X <exp(— ik - Ry)exp(ik - R; (1)),

where k = g — ¢/, R; is the position of the jth electron
and R;(t) is a Heisenberg operator. On writing the
latter out in full, the correlation function on the right-
hand side of (4.1) is

<exp(—ik- R;)exp(it H/h)exp(ik - R))
-exp(—itH/h)), 42

in which H is the Hamiltonian for the target electrons.
Next we perform some rearrangements that bring (4.2)
to a convenient form.

First we bring the operator exp(— i H t/h) from the
right to the left. This does not change the correlation
function because the average value (denoted by angular
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brackets) is taken with respect to the states of H,
namely

{..>aTr{exp(— H/kgT)...},

and the trace operation is invariant with respect to a
cyclic permutation of operators. The second step is to
insert unity before exp (ik - R)) in the guise of

exp{ik-(R; —R;)} =1,
and so create the combination
exp(—ik-R;)exp(it H/h)exp(ik - R;).

Here, the exponential operators involving k - R;. con-
stitute a unitary transform on H in which the momen-
tum operator p; becomes (p; + hk); the transformed
Hamiltonian is denoted by H ;. Following these two
steps, the correlation function of interest is 423)

{exp(—itH/hexp(itH;/h)exp{ik - (R;— R;)}).

The product of the exponential operators that involve
H and H; can be combined using the Campbell-
Backer—Hausdorff formula,

exp(— it H/h)exp(it H;/h)
it ?
= CXP{Z(Hj, — H)+ W[H’H’"] + }, 4.4)

in which additional terms on the right-hand side are
labelled by ascending powers of t.

To proceed to the impulse approximation, based on
the leading term in (4.4), let H be the sum of kinetic
terms for identical particles of mass m, and a potential
energy V that is not a function of the momenta (rela-
tivistic interactions are therefore excluded). In this in-
stance,

h
H;—H=_——(hk*+2k"p)
2m

J

4.5)

and

[HH)=ih*(k - V,V)/m. (4.6)

Hence, neglect of the term in t2 in (4.4), and all higher-
order terms, implies that for the duration of the scat-
tering event t ~ (h/E) the mean value of (1 k? + 2k - p)
exceeds the mean value of ¢ (k - V'V). This can be trans-
formed to an inequality for the primary energy E,
namely

= (1))

4.7
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where a is the radius of the atomic orbital. Note that
(4.7) is well satisfied for a sufficiently large value of the
scattering vector k. On taking (ak) ~ 1 and V ~(Z e?/r),
the inequality (4.7) provides the familiar estimate

E>(Zeé*/ay~ZR,

where R, is the Rydberg energy unit.

The second aproximation to be made involves spa-
tial correlations. Given that k is large, the exponential
of {(R; — R;) - k} in (4.3) will oscillate rapidly, taking
positive and negative values, as the sums in (4.1) range
over all the electrons. In consequence, all but the
terms j = j* will largely cancel, i.e. the incoherent ap-
proximation can be safely invoked. Combining this
observation together with the approximation for the
dynamics reduces (4.3) to

it and zero
2 2 . ) o Y
<exp {2m(hk o p,)}>, I=1> otherwise.

Using
fdpd(p—p)=1

and the standard definition for the momentum distri-
bution,

Op—p) =0,

we arrive finally at the standard Compton profile,

(4.8)

1 ©
S (k, w) =<m> | diexp(—iwt){n* (k)n(k,1)>

—

=|dpe(p)d{hw —E,—h* k- p/m},

where E, = (hk)?/2m is the recoil energy. Note that
the two approximations involved in reaching the stan-
dard Compton profile, one for dynamic and the other
for static correlations, have a common denominator
in as much as they are valid for sufficiently large k.

Another scheme by which to arrive at (4.9) is to use
the short-time expansion,

(4.9)

t
Rj(t)=Rj(0)+;pj, (4.10)
where R;(0) = R; and p; are, of course, conjugate vari-
ables. Taken together with the incoherent approxima-
tion, which means keeping just the self-terms j =’ in
(4.1), it leads directly to (4.9). The next term in (4.10)
would involve the force acting on the jth particle, as
in (4.6). This is negligible compared to the retained
momentum term over a time t ~ (h/E) provided the
foregoing inequalities are well satisfied.

5. Compton Profile for Bound Magnetic Electrons

A realistic model for the interpretation of photon
scattering by a magnetic material is based on unpaired
electrons in atomic (bound) orbitals, in which the mo-
mentum distribution has a finite width. The scattering
probability for such a model has been calculated per-
turbatively by Grotch et al. [8] for circularly polarized
primary photons. Contributions of order e? (single
Compton scattering) arise from first-order perturba-
tion theory, in which interactions occur at a single
space—time point, as well as from second-order per-
turbation theory. For the latter case the emission and
absorption of photons occur at different space—time
points. The authors checked their complicated expres-
sion for the cross-section by performing an indepen-
dent calculation of the free relativistic cross-section,
including polarization effects. In the appropriate limit
this result confirms their cross-section.

Grotch et al. perform a systematic expansion of
their cross-section in powers of (1/m). In this way cor-
rections of order g = (E/mc?) and (h p;/mc) in the am-
plitude are obtained. As far as the cross-section is
concerned, the leading-order momentum terms are
precisely those given in (3.1). The polarization-in-
duced spin-dependent scattering is quite complicated,
because contributions come from both the first-order
and second-order perturbation terms, whereas orbital
magnetism comes solely from the latter. In the follow-
ing expression, adapted from Grotch et al., orbital
scattering is not included, and just leading-order mo-
mentum and spin corrections to Thomson (non-rela-
tivistic) scattering are retained:

S0 1y apsiho— E,— k- pim)
dQde ~ 2/ POV T R P

: {(1 +cos*0)e(p)— i—tp “(§+4¢)cos0(1—cosb) e (p)
—2gP,<s;6(p—p)>-[(1 —cosb)(gcosb + §)
+1(b—1){g(1 +cosf) + § (1 — 3cos 6)}]}, (5.1)

in which b = (¢'/g) as in (2.2). The spin-dependent scat-
tering in (5.1) is different from that in (2.2) because the
cross-sections are for different models (bound and free
electrons), and they are computed to different levels of
accuracy ((2.2) is exact, whereas (5.1) is obtained by
expansion in 1/m). The additional orbital contribution
not included in (5.1) is discussed by Lovesey [9].
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The spin-dependent scattering in (5.1) vanishes
when tana (cf. (2.3)) satisfies

tanasin 0 {1 — cos 0 + %(b —1)(1 — 3cos 6)} (5.2)
+ (1 —cosf){2cosf +3(b— 1)(1 4+ 3cos )} = 0.

The difference between this result and (2.3) is attrib-
uted to the points made following (5.1).

6. Total Scattering

Total scattering is related to instantaneous correla-
tions, as is evident from the integral of S (k, w) taken
over all w (k fixed). In one sense it is the opposite
extreme to Bragg scattering, which is proportional to
the time average (¢t — oo0) of the correlations and
strictly elastic. More precisely, the total and Bragg
scattering cross-sections for pure charge scattering are
proportional to {|n,|*> and |{n,>|?, respectively [9].

The following expressions for the polarization-in-
duced charge—magnetic interference contribution to
the total cross-section are derived for the model of
bound electrons used by Grotch et al. [8] and de-
scribed in the previous section. The spin contribution
can be derived from (5.1). If the primary photon en-
ergy is sufficiently large, scattering is only mildly in-
elastic (g ~ q' or b ~ 1), and on integrating over w the
spin contribution to (5.1) is just

—1r2gP(1 —cos0){S) - (§cosh + §).

The corresponding result for the orbital contribution,
which is to be added to (6.1), is 62)

—1r2g P,sin0(1 + cos 6) (k/q) {k,<L,> — K.<L,>}.
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Here, the z-axis defines the quantization axis (in a fully
saturated magnet the non-zero components of {S)
and (L) are parallel to the z-axis). Note that the
orbital contribution vanishes for § — 0 and 6 — =. Op-
timum geometries are discussed by Collins et al. [11].
The latter work demonstrates that the special position
at which the sum of (6.1) and (6.2) vanishes does
provide a unique value for the ratio of the spin and
orbital magnetizations. Such information is not directly
available by other experimental methods [4].

7. Conclusions

The brief survey of some key features of the theory of
Compton scattering has aimed to link work for pure
charge scattering with technically much more compli-
cated calculations for a realistic model of a magnetic
material. For a polarized free electron the cross-sec-
tion can be calculated without approximation. The
result provides insight and confidence for correspond-
ing results for charge and spin scattering by bound
electrons tackled perturbatively. However, similar
comfort is not available for the theory of orbital scat-
tering since there is no such scattering from free elec-
trons (orbital scattering is induced for free electrons by
application of a magnetic field) *.
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