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We report a calculation of the generalised oscillator-strength density (GOSD) of the helium atom
for low momentum transfer. The calculation was performed by extraction of the searched entity from
the resolvent of the complex-rotated Hamiltonian. That Hamiltonian was found using a standard
ab-initio program without any change in the program code. The shape of the Bethe surface is
reproduced (including resonances and the absorption edge). However, with increasing momentum
transfer the magnitude of the calculated values for the Bethe ridge becomes too small. This is clearly
demonstrated by an evaluation of the Bethe sum as a function of the momentum transfer. A
comparison with recent additional theoretical data shows that the deviations are due to the em-

ployed basis set.
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1. Introduction

The original motivation for this work originates
from the fact that the measurement of Compton spec-
tra has reached such an accuracy that deviations from
the currently employed theoretical model describing
the scattering process (the sudden-impulse approxi-
mation) become more and more evident. This can be
seen, e.g., from the discussion concerning the “Comp-
ton defect” [1-13].

It has been shown by Flores-Riveros, Froelich and
Weyrich [8, 9] that the generalised oscillator-strength
density (GOSD) can be extracted from the resolvent of
the complex-rotated Hamiltonian of the target sys-
tem. The GOSD, defined within the Bethe theory,
quantitatively describes photoionisation as well as
photon and electron scattering by atomic (target) sys-
tems under validity of the first Born approximation.
When the GOSD is known, the double-differential
and the total cross-sections are directly accessible. The
complex-rotation procedure avoids the singularities
of the resolvent and therefore renders the correct de-
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scription of the resonances possible. If the GOSD is
calculated in this way, the projectile-target interaction
is included in first order and the Coulombic influence
of the target to all orders. Therefore, the result is
equivalent to the distorted-wave Born approximation
(DWBA). If the resolvent is expanded in CI eigenfunc-
tions, electron—electron correlation is also included in
the calculation.

Since this method approaches the problem from the
side of bound states, it is natural to perform the first
tests of the method at values of low momentum trans-
fer K and energy transfer E, although this part of the
Bethe surface is not the aim of a typical Compton
experiment using photons as projectiles. As typical
examples to be mentioned, the use of MoKa radiation
under nearly backward-scattering conditions leads to
a cut through the Bethe surface at K ~ 9a; ! and the
use of the y-radiation of a 2*'!Am source to a cut at
K ~29a,'. Therefore, there are no experimental
Compton-scattering data for low K and E available at
present. However, radiation sources of lower energy
and/or smaller scattering angles can probe the Bethe
surface also at values of low momentum and energy
transfer.

At the same time, there exists a number of data in
the range of small momentum transfer (K ~ 0.2 to
4.0a, ') measured by inelastic electron scattering ex-
periments, especially for the helium atom. The impor-
tance of helium is due to the fact that helium is the
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simplest example for a scattering problem that cannot
be solved analytically. It therefore serves as a standard
for electron scattering experiments. Kim [14] has com-
piled a number of different data sets with the aim to
obtain consistent reference data. In addition, he com-
pared those data with the best theoretical data avail-
able at that time. The discrepancies that were still
contained in that data set motivated two groups [15,
16] to measure new data in a systematic way with two
different detector systems. More recently Rudd [17]
combined all these data sets in order to extract a new
reference data set.

A large amount of theoretical work in this area,
especially during the last fifteen years [18], is moti-
vated by the discrepancies between the measured data
sets, the problem of measuring absolute values, the
need for extrapolation to scattering angles that are not
accessible experimentally, and the wish to understand
the scattering process in more detail. Beside the calcu-
lations at the level of the impulse approximation there
exists a number of calculations (mostly of the triple-
differential cross-section of the (e, 2e) experiment) at
the level of the distorted-wave Born approximation
(e.g. [19-24]) and even at the level of the second Born
approximation [25-27]. The exact range of the valid-
ity of the DWBA, however, is still unknown, mainly
owing to the dependence of the results on the chosen
ansatz for the continuum wave function. For that rea-
son a calculation of the GOSD of the helium atom
applying the method of Froelich et al. [8] is desirable,
since no ansatz for the continuum wave function has
to be made, correlation between all electrons is in-
cluded at the CI level, the calculated GOSD values are
absolute values, and the case of multiple excitation of
the target electrons is automatically included.

We have developed an implementation of the
method that allows to perform the complex-scaled CI
calculation in the atomic case using standard ab-initio
programs without any change in the program code.
No new types of integrals need to be calculated, and
all optimisations of the ab-initio program used here
(GAMESS [28]) are automatically included.

In a previous paper [29] we have given a detailed
description of the method and have reported the cal-
culated GOSD values in the optical limit (momentum
transfer K — 0). In the case of a not specially optimised
basis set we have obtained values that can be regarded
as satisfactory, when compared with experimental and
other theoretical data. In this paper we report the
results obtained with the same basis set in the case of
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low-momentum scattering for the helium atom. In the
following section we give a brief outline of the theory.
In the third section we report the obtained results and
discuss the influence of the basis-set. The paper is
concluded with an outlook to future improvements.

2. Theory

The complex-scaled atomic or molecular Hamil-
tonian H(n) [30-33] is obtained by multiplying the
space coordinates of H (r, R) with the complex number
n=oe® In the case of atoms this procedure is
obviously reduced to a scaling of the electronic coor-
dinates r only. Because of the analytical structure of
the atomic Hamiltonian, this scaling procedure can be
performed at the CI level by a scaling of the kinetic-
energy part of each matrix element by -2 and of the
potential-energy part by 5~ '. Therefore the matrix
elements have to be calculated only once when 7 is to
be varied. This essential simplification is the so-called
direct approach and was introduced by Doolen [34].
Usually, however, the kinetic and potential parts of
the CI matrix are not directly accessible by standard
ab-initio programs. In a previous paper [29] we have
described a method how to extract this information
with the aid of only two real-valued standard CI cal-
culations. Once this information is obtained, the con-
tinuation of the matrix elements into the complex
plane can be done using the direct-approach method.
The resulting complex-symmetric matrix has to be
diagonalised to give the eigenvalues and eigenvectors
of the complex-scaled Hamiltonian. With the solution
of the eigenvalue problem the GOSD is then accessible
[8, 9] via the equation

df (E, K) )
d(E/E,)
U E 1 [X[Q, kI Q; ¢
2 ®ay 7" [Z El—E|—E ]

with df(E, K)/d(E/E,) = generalised oscillator-strength
density, E = energy transfer projectile to target, K =
momentum transfer projectile to target, N = number
of calculated CI states, ¢! = eigenvector i of the com-
plex-scaled CI eigenvalue problem, E! = eigenvalue i
of the complex-scaled CI eigenvalue problem, Q"i =
matrix of the e***""-operator developed in the CI basis
(configurations), E, =27.21 eV =2hcR,, ay=h*/m e’



A. Saenz and W. Weyrich - Generalised Oscillator-Strength Density of the Helium Atom

The double-differential cross-section of photon or
electron Compton scattering within the non-relativis-
tic distorted-wave Born approximation (DWBA) can
be calculated by

dz hK)*> df(E, K
o _ o "K? ¢/(E K) o
dQ dE /pwea E dE
with
C— w, (do 3)
a @, d‘Q Thomson
in the case of photons and
k do
c=-2. <—> @)
kl dQ Rutherford or Mott

in the case of electrons, where w; is the angular fre-
quency of the photon and p=#k; is the momentum of
the electron. The subscript i is equal to 1 before and
equal to 2 after the scattering event. A relativistic
extension of (2) in connection with (3) has been given
by Bonham [35]. In the case of (4), the factorisation
implies either complete neglect or only approximate
inclusion of the exchange between projectile and target
when employing the Rutherford or the Mott cross-
section, respectively.

In the limit K -0 the GOSD is equal to the dipole
oscillator-strength density [36, 37]. For photon scat-
tering the energy and momentum conservation laws
result in the equation

K(w9 (1)1, (P)
=|k,— k,| = (k}+ k3 — 2k, k, cos ¢)'/? (%)

1
= [w?—2w; w(1—cos ¢) + 2w3 (1 — cos @)]*/?,

(6)
where E=hw is the energy transfer and ¢ is the scat-
tering angle. From (6) it is obvious that even in the
case of ¢ — 0 the range of the Bethe surface that is
accessible by inelastic photon scattering is restricted by

lim K = K,;, = w/c. 7

=0

The case of electron scattering deserves special inter-
est. Although it has been analysed by Inokuti [37] to
some extent, approximations in his treatment make it
advisable to present more rigorous relations here.
Also for electrons the smallest possible momentum
transfer p;. for a given energy transfer E occurs at
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zero scattering angle. Then, in addition to the general
formula

E=E —E,=)/m*c*+pic* —|/m*c*+ pic* (8

for the energy transfer, there holds

Pmin = P1 — P2 )

for the momentum transfer, provided the target mass
M is much greater than the electron mass m. Ex-
pressed in terms of dimensionless energies E = E/mc?
and momenta p = p/mc, that minimal momentum
transfer is

ﬁmin:ﬁl_ ﬁ%“zEIEJ‘-EZ (10)
E . 1 . E, -
=lE+-S B+ LB
D1 2p3 2p3
5 1 ~
+ + E*+..., 11
(851 213?) HEd
which becomes
1 ~ 1 < ~
ﬁmin non-rel='~_E o =3 E2+ ~5 E3+ ~7 E4+ .
‘ p 2p 2p 8p
1 1 1 1 (12)

in the non-relativistic limit. The last equation and
Inokuti’s results [37] suggest that the momentum
transfer could be made arbitrarily small with high
momentum p; of the incoming electron. That is, how-
ever, not true, as the correct limit of (11)

(13)

lim p,,=E,
pr1— 0
shows. Its equivalence to (7) is obvious, when written
in terms of absolute energy and momentum:

hm pmin = E/C ’ (14)
) S 8mds]

i.e. photon and electron scattering possess the same
lower limit for momentum transfer for a given energy
transfer. It is, however, remarkable that p_;. obtained
in the electron scattering experiment approaches the
value of K, of the photon scattering experiment (for
the same energy transfer) only in the limit p, - o0 and
is greater otherwise, which can be seen from (11) also
written in terms of absolute energy and momentum:

E, m?
Pmin=—>S E+—-—=E*+... 15)
P1C2 ZP?
m2c2 1/2 E m2
=[1 —+ E*+.... 16
<+ p%) ¢ 2p} £
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Energy transfer E/FEy

Fig. 1. Different cuts through the Bethe surface of helium at constant momentum transfer (K): a) K ~ 0 ay*, b) K = 0.25 a,*,
¢) K=05a,", d) K=0.75a;5", ¢) K =1.0a,". The resonant part of the spectrum is enlarged shown in the inlet. The
complex-scaling parameter 7 = g e'? is defined by ¢ = 1.0, 6 = 24° in all five cases.

This means that the X-ray method can measure down
to smaller values of K than the electron impact exper-
iment does for any finite p, .

Another interesting limit is the one for vanishing p,,

lim p.,, =|/2E+ E?

P2 =0
= 1o 1 1 . 5 =
=)/2E 1+—E——F*+ —E———F*+...),
< 47327 18" 208 )

which lies above the limit given by (13) and approaches
it for E > 1.

In our considerations here we have assumed inelas-
tic scattering experiments on targets in the ground
state, i.e. E; > E,. Then, as we have shown, the dipole
limit K=0 is not directly accessible by any inelastic
scattering experiment. Our finding, however, does not
invalidate the analytical extrapolation also of experi-

(17)

mental data over the forbidden gap to K=0, just
along the lines of Bethe theory [36, 37].

3. Results

We have calculated the GOSD for the helium atom
in the case of low momentum transfer. The basis set
used is the same as reported in [29]; it consists of 11 s-
and 10 p-type even-tempered Cartesian Gaussians.
32 of the obtained 41 Hartree-Fock orbitals were
chosen for a full CI calculation.

In Fig. 1 different cuts through the Bethe surface
with constant momentum transfer are presented. The
scaling angle 6 was chosen to give the smallest 6-de-
pendence of the spectra in this range of momentum
transfer. In principle, the GOSD has to be stabilised
for each value of E and K by varying the scaling
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Energy transfer E/Ey

Fig. 2. Cuts through the Bethe surface of helium at constant
— but in companson to Fig. 1 hlgher - momentum transfer
(K): a) K=1.0ay", b) K=15a,", ) K=20a;!, d) K=

25a,",¢) K=30a, ! The complex-scaling parameter 1 =
0 "% is defined by ¢ = 1.0, 6 = 18° in all five cases.

parameter 1 (= g e'?) separately. Since we were only
interested in the general shape of the Bethe surface in
this paper, we have not done such a detailed stabilisa-
tion procedure here and have rather restricted our-
selves to a global stabilisation.

In Fig. 1 one can see the decrease of the maximum
and its shift to higher energy transfer when the mo-
mentum transfer increases. The resonant part of the
spectrum (which is shown enlarged in the inlet)
demonstrates the automatic fulfilment of the dipole
selection rules. S- and D-type resonances appear in
the spectrum not before the momentum transfer be-
comes unequal to zero; in the dipole limit only P-type
resonances are visible.

In Fig. 2 we present cuts through the Bethe surface
at constant momentum transfer in the range from 1 up
to 3ag !. The resonances and the absorption edge be-
come less significant when the momentum transfer
increases. At the same time the maximum shifts more
and more to higher energy transfer, and its value de-
creases. These effects are in good agreement with the
experimentally obtained Bethe surface [38].

In Figs. 3 and 4 we show spectra that were calcu-
lated by the method presented here for two values of
momentum transfer in comparison to spectra that we
have calculated in the sudden-impulse approximation.
In the latter case the double-differential cross-section
for the Compton process was calculated as a product
of a theoretical Compton profile [39] and a function
that is given by Opher et al. [40]. Then the GOSD was
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Fig. 3. Cut through the Bethe surface of helium at a momen-
tum transfer K = 3.0 ap%; a) calculated in the distorted-wave
Born approximation using the complex-scaling method
(0=22°), b) calculated in the plane-wave impulse approxima-

tion.
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Fig. 4. Cut through the Bethe surface of helium at a momen-
tum transfer K = 8.98 ag*; a) calculated in the distorted-
wave Born approximation using the complex-scaling method
(6 = 17°), b) calculated in the plane-wave impulse approxi-
mation. In the maximum this is identical to the cut obtained
in a Compton experiment using MoKa radiation.

obtained by an application of (2). The area under this
curve is automatically normalised to the number of
the electrons because of the use of a normalised theoret-
ical Compton profile. Obviously the area under the
respective curve calculated in the DWBA is smaller.
On the other hand, the spectrum in the DWBA shows
the absorption edge and the resonant features, which
the impulse approximation cannot yield. In more de-
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Fig. 5. Dependence of the values of the Bethe sum on the
momentum transfer. *: Result obtained in this work with a
basis set consisting of 11 s- and 10 p-type Cartesian Gaussians;
o, o, O: data calculated by a propagator method [41],
o: with a basis set consisting of 8s- and 7p-type Cartesian
Gaussians, ¢: 8s-, 7p-, and 6d-type Gaussians, o: 8s-, 7p-,
6d-, 4f-type Gaussians.

tail, the magnitude of the GOSD decreases too
quickly with increasing momentum transfer.

A quantitative check of this observation is easily
performed by a calculation of the so-called Bethe sum
(36]

o]

SO.K) =% fi+ f

Ejon

YIEK) dE.

dE (18)

In this equation, / is the number of discrete states and
f; is the discrete generalised oscillator strength for the
transition from the ground state into the discrete
state i. E,, is the first ionisation threshold of the sys-
tem. The Bethe sum rule states that the Bethe sum
is equal to the number of electrons of the system
(S(0, K) = Z) for arbitrary momentum transfer K.

In Fig. 5 we display the obtained Bethe sums in
dependence on the momentum transfer K. The dis-
crete GOS values were obtained with the same pro-
gram, modified in order to give the discrete GOS val-
ues as well as the continuous GOSD values. The
discrete values were calculated with ¢ = 1.0 and 6 = 0.
In the continuous case we have calculated the integral
in (18) for different values of momentum transfer with
¢ varying in steps of 0.025 from 0.925 to 1.10 and 0
varying in steps of 1° in the range of 6° to 28°. Then
we have stabilised the Bethe sum numerically with
respect to variation in 7 (= ¢ ') for each momentum
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transfer. We have done this in order to be sure that the
result is influenced by the scaling factor as little as
possible. In fact, the result for a single fixed value of
shows a very similar behaviour — the curve contains
only more oscillations with higher amplitude. From
that result it can be seen that in our calculation the
Bethe sum rule is approximately fulfilled only near the
photoionisation threshold, independently from the
scaling factor. With increasing momentum transfer
the Bethe sum decreases very rapidly.

In a recent work by Mortensen et al. [41] the Bethe
sum for the helium atom was calculated with a rather
different approach using a basis-set-oriented propaga-
tor method. Also in these calculations Cartesian
Gaussians were used. We have plotted the values
(taken from Fig. 1 of the mentioned paper) for basis
sets cointaining s- and p-, s-, p-, and d-type, and s-, p-,
d-, and f-type Gaussians together with our result in
Figure 5.

The comparison of the Bethe sum obtained with
our calculation and the result of [41] obtained with a
basis set with the same angular-momentum quantum
numbers shows a remarkable agreement in spite of
orbital exponents differing between the two basis
sets. On the other hand, the results obtained within
the propagator method with basis sets containing
Gaussians of d- and f-type possess a larger range of
momentum transfer in which the Bethe sum rule is
fulfilled. These facts, in connection with the above-
mentioned result of the approximate independence
from the scaling factor # are, in our opinion, an obvi-
ous indication that the deviation from the Bethe sum
rule with increasing momentum transfer originates
only from the limited angular-momentum quantum
numbers that were used in the basis set. The probable
reason for this dependence is given by Mortensen et al.
[41] by expanding the e'X"-operator into a Taylor
series. An equivalent explanation is given by Bonham
[42] analysing the expansion of the GOSD into an
even polynomial in K as it is used for the extrapola-
tion of the measured data to K =0,

df(E,K) 5 .
d(E—/Eh)—AO(E)'FAZ(E)K ++A2"(E)K . (19)

Already the explicit form of 4,(E) [42], (20)
1€0] 27 |n)|? {<0|Zi|"> <"|Z,~3|0>}
— Re .

A,(E) = 4 3
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demonstrates that higher angular momentum com-
ponents must be involved because of the non-dipole
selection rules in the quadrupole and octupole matrix
elements.

4. Conclusions and Outlook

In this paper we have reported the results of a calcu-
lation of the GOSD of the helium atom in the low-
momentum scattering regime. The calculation was
performed using an implementation of the complex-
scaling method, in which a standard ab-initio pro-
gram is used without any change in the source code.
No complex integrals were calculated to obtain the
complex-scaled CI matrix.

The shape of the Bethe surface containing the ab-
sorption edge and the resonances is reproduced by the
calculation, whereas the amplitude of the Bethe ridge
decreases too rapidly with increasing momentum
transfer. This was demonstrated by a calculation of
the Bethe sum in dependence on the momentum
transfer. The deviation is quite independent of the
scaling factor used in the complex-scaling procedure.
A comparison with Bethe sums calculated recently by
a propagator method shows a very good mutual
agreement when basis sets with the same angular-mo-
mentum quantum numbers are used in both proce-
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