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We report a calculation of the generalised oscillator-strength density (GOSD) of the helium atom 
for low momentum transfer. The calculation was performed by extraction of the searched entity from 
the resolvent of the complex-rotated Hamiltonian. That Hamiltonian was found using a standard 
ab-initio program without any change in the program code. The shape of the Bethe surface is 
reproduced (including resonances and the absorption edge). However, with increasing momentum 
transfer the magnitude of the calculated values for the Bethe ridge becomes too small. This is clearly 
demonstrated by an evaluation of the Bethe sum as a function of the momentum transfer. A 
comparison with recent additional theoretical data shows that the deviations are due to the em-
ployed basis set. 
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1. Introduction 

The original motivat ion for this work originates 
f rom the fact that the measurement of C o m p t o n spec-
tra has reached such an accuracy that deviations f rom 
the currently employed theoretical model describing 
the scattering process (the sudden-impulse approxi-
mation) become more and more evident. This can be 
seen, e.g., f rom the discussion concerning the "Comp-
ton defect" [1 -13] . 

It has been shown by Flores-Riveros, Froelich and 
Weyrich [8, 9] that the generalised oscillator-strength 
density (GOSD) can be extracted f rom the resolvent of 
the complex-rotated Hami l ton ian of the target sys-
tem. The G O S D , defined within the Bethe theory, 
quantitatively describes photoionisa t ion as well as 
pho ton and electron scattering by a tomic (target) sys-
tems under validity of the first Born approximat ion . 
When the G O S D is known, the double-differential 
and the total cross-sections are directly accessible. The 
complex-rotat ion procedure avoids the singularities 
of the resolvent and therefore renders the correct de-
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scription of the resonances possible. If the G O S D is 
calculated in this way, the projectile-target interaction 
is included in first order and the Coulombic influence 
of the target to all orders. Therefore, the result is 
equivalent to the distorted-wave Born approximat ion 
(DWBA). If the resolvent is expanded in CI eigenfunc-
tions, e lec t ron-e lec t ron correlat ion is also included in 
the calculation. 

Since this m e t h o d approaches the problem f rom the 
side of b o u n d states, it is na tura l to perform the first 
tests of the m e t h o d at values of low m o m e n t u m trans-
fer K and energy transfer E, a l though this par t of the 
Bethe surface is not the aim of a typical C o m p t o n 
experiment using photons as projectiles. As typical 
examples to be mentioned, the use of M o K a radia t ion 
under nearly backward-scat ter ing condit ions leads to 
a cut th rough the Bethe surface at K « 9 a ^ 1 and the 
use of the y-radiat ion of a 2 4 1 Am source to a cut at 
X « 2 9 a o 1 . Therefore, there are no experimental 
Compton-sca t te r ing data for low K and E available at 
present. However , radiat ion sources of lower energy 
a n d / o r smaller scattering angles can probe the Bethe 
surface also at values of low m o m e n t u m and energy 
transfer. 

At the same time, there exists a number of da ta in 
the range of small m o m e n t u m transfer (K « 0.2 to 
4.0 aö*) measured by inelastic electron scattering ex-
periments, especially for the helium atom. The impor-
tance of helium is due to the fact that helium is the 
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simplest example for a scattering problem that canno t 
be solved analytically. It therefore serves as a s t andard 
for electron scattering experiments. Kim [14] has com-
piled a number of different da ta sets with the a im to 
obta in consistent reference data . In addit ion, he com-
pared those da ta with the best theoretical da ta avail-
able at that time. The discrepancies that were still 
contained in that da ta set motivated two g roups [15, 
16] to measure new data in a systematic way with two 
different detector systems. M o r e recently R u d d [17] 
combined all these data sets in order to extract a new 
reference da ta set. 

A large a m o u n t of theoretical work in this area, 
especially dur ing the last fifteen years [18], is moti-
vated by the discrepancies between the measured da t a 
sets, the problem of measuring absolute values, the 
need for extrapolat ion to scattering angles that are not 
accessible experimentally, and the wish to unders tand 
the scattering process in more detail. Beside the calcu-
lations at the level of the impulse approximat ion there 
exists a number of calculations (mostly of the triple-
differential cross-section of the (e, 2e) experiment) at 
the level of the distorted-wave Born approx imat ion 
(e.g. [19-24]) and even at the level of the second Born 
approximat ion [25-27] , The exact range of the valid-
ity of the DWBA, however, is still unknown, mainly 
owing to the dependence of the results on the chosen 
ansatz for the cont inuum wave function. F o r tha t rea-
son a calculation of the G O S D of the helium a t o m 
applying the method of Froelich et al. [8] is desirable, 
since no ansatz for the con t inuum wave funct ion has 
to be made, correlation between all electrons is in-
cluded at the CI level, the calculated G O S D values are 
absolute values, and the case of multiple excitat ion of 
the target electrons is automatical ly included. 

We have developed an implementat ion of the 
method that allows to perform the complex-scaled CI 
calculation in the atomic case using s tandard ab-init io 
p rograms without any change in the p rogram code. 
N o new types of integrals need to be calculated, and 
all opt imisat ions of the ab-initio p rogram used here 
(GAM ESS [28]) are automatical ly included. 

In a previous paper [29] we have given a detailed 
description of the method and have reported the cal-
culated G O S D values in the optical limit (momen tum 
transfer 0). In the case of a not specially optimised 
basis set we have obtained values that can be regarded 
as satisfactory, when compared with experimental and 
other theoretical data. In this paper we repor t the 
results obtained with the same basis set in the case of 

l ow-momen tum scattering for the helium atom. In the 
following section we give a brief outline of the theory. 
In the third section we report the obtained results and 
discuss the influence of the basis-set. The paper is 
concluded with an out look to future improvements . 

2. Theory 

The complex-scaled a tomic or molecular Hamil-
ton ian H(rj) [30-33] is obta ined by multiplying the 
space coordinates of H{r, R) with the complex number 
R] = Q eld. In the case of a toms this procedure is 
obviously reduced to a scaling of the electronic coor-
dinates r only. Because of the analytical s tructure of 
the a tomic Hamil tonian, this scaling procedure can be 
per formed at the CI level by a scaling of the kinetic-
energy par t of each matr ix element by rj~2 and of the 
potential-energy par t by t ]" 1 . Therefore the matr ix 
elements have to be calculated only once when rj is to 
be varied. This essential simplification is the so-called 
direct approach and was introduced by Doolen [34], 
Usually, however, the kinetic and potential par ts of 
the CI matr ix are not directly accessible by s tandard 
ab-init io programs. In a previous paper [29] we have 
described a method how to extract this informat ion 
with the aid of only two real-valued s tandard CI cal-
culat ions. Once this informat ion is obtained, the con-
t inua t ion of the matr ix elements into the complex 
plane can be done using the direct-approach method. 
The resulting complex-symmetric matrix has to be 
diagonalised to give the eigenvalues and eigenvectors 
of the complex-scaled Hamil tonian . With the solution 
of the eigenvalue problem the G O S D is then accessible 
[8, 9] via the equat ion 

d m K) 
d (E/Eh) 

(1) 

= 2 
(Ka0)2 

1 
- I m " [ c ] ] r Q ; c g [ c 3 r Q n 

n = 2 El - E \ - E 

with df(E,K)/d(E/Eh) = generalised oscillator-strength 
density, E = energy transfer projectile to target, K = 
m o m e n t u m transfer projectile to target, N = number 
of calculated CI states, c 1 = eigenvector i of the com-
plex-scaled CI eigenvalue problem, = eigenvalue i 
of the complex-scaled CI eigenvalue problem, Q ~ — 
matrix of the e±ikr''-operator developed in the CI basis 
(configurations), Eh = 27.21 eV = 2hcRao,a0 = h2/me e2. 
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The double-differential cross-section of pho ton or 
electron C o m p t o n scattering within the non-relativis-
tic distorted-wave Born approximat ion (DWBA) can 
be calculated by 

with 

d2a 

d Q d E 
= C 

(;hK)2 df(E,K) 

E d E 

da\ 

d Q J-, 
in the case of pho tons and 

k1 \ dQ JRutherford or Mott 

(2) 

(3) 

(4) 

in the case of electrons, where co; is the angular fre-
quency of the pho ton and p = h kt is the m o m e n t u m of 
the electron. The subscript i is equal to 1 before and 
equal to 2 after the scattering event. A relativistic 
extension of (2) in connect ion with (3) has been given 
by B o n h a m [35]. In the case of (4), the factorisat ion 
implies either complete neglect or only approx imate 
inclusion of the exchange between projectile and target 
when employing the Rutherford or the M o t t cross-
section, respectively. 

In the limit K ->0 the G O S D is equal to the dipole 
oscillator-strength density [36, 37]. F o r p h o t o n scat-
tering the energy and m o m e n t u m conservat ion laws 
result in the equat ion 

K(co, C O 1 ? q>) 

= \k1-k2\ =(kj+ k2
2-2k1k2cos q>)1/2 (5) 

1 
= — [co2 — 2co1co(l —cos q>) + 2cof (1 — cos (p)]1/2, 

c 
(6) 

where E = h co is the energy transfer and q> is the scat-
tering angle. F r o m (6) it is obvious tha t even in the 
case of (p 0 the range of the Bethe surface that is 
accessible by inelastic photon scattering is restricted by 

l im K = Kmin = co/c . 
q>~* 0 

(7) 

The case of electron scattering deserves special inter-
est. Al though it has been analysed by Inokut i [37] to 
some extent, approximat ions in his t rea tment make it 
advisable to present more r igorous relat ions here. 

Also for electrons the smallest possible m o m e n t u m 
transfer pmin for a given energy transfer E occurs at 

zero scattering angle. Then, in addi t ion to the general 
formula 

E = EX-E2 = j/m2c4 + p\c2 - |/m2c4 + p\c2 (8) 

for the energy transfer, there holds 

Pmin = P i - P i ( 9 ) 

for the m o m e n t u m transfer, provided the target mass 
M is much greater than the electron mass m. Ex-
pressed in terms of dimensionless energies E = E/m c2 

and momen ta p = p/m c, tha t minimal m o m e n t u m 
transfer is 

»in — Pi — ]/P\—2ExE + E2 

E, ~ 1 

2 p \ 2p\ 
2 , E i £ 3 

Pi 
5 1 

+ I M + Wi 
£ 4 + 

(10) 

(11) 

which becomes 

1 
Pmin,non-rel ~ E 4" 

Pi 
E 2 + 

2P\ 2 p i 

5 

8 p[ 
(12) 

in the non-relativistic limit. The last equat ion and 
Inokuti ' s results [37] suggest that the m o m e n t u m 
transfer could be made arbitrari ly small with high 
m o m e n t u m px of the incoming electron. Tha t is, how-
ever, not true, as the correct limit of (11) 

l im Pmin = E , (13) 

shows. Its equivalence to (7) is obvious, when writ ten 
in terms of absolute energy and m o m e n t u m : 

l im Pmin — E/c , 
Px - » C O 

(14) 

i.e. pho ton and electron scattering possess the same 
lower limit for m o m e n t u m transfer for a given energy 
transfer. It is, however, remarkable tha t pmin obtained 
in the electron scattering experiment approaches the 
value of Kmin of the pho ton scattering experiment (for 
the same energy transfer) only in the limit pY ->oo and 
is greater otherwise, which can be seen f rom (11) also 
written in terms of absolute energy and m o m e n t u m : 

Pmin 
PlC2 2 P\ 

+ ... 

= 1 + 

2,2X1/2 E m c m 

2 p i 

(15) 

(16) 
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Energy transfer E/Eh 
Fig. 1. Different cuts through the Bethe surface of helium at constant momentum transfer (K): a) K « 0 a ö \ b) K = 0.25 aö1» 
c) K = 0.5 aö1, d) K = 0.75 aö1, e) K = 1.0 aö1. The resonant part of the spectrum is enlarged shown in the inlet. The 
complex-scaling parameter rj = g e,e is defined by g = 1.0, 6 = 24° in all five cases. 

This means that the X-ray method can measure down 
to smaller values of K than the electron impact exper-
iment does for any finite p1. 

Another interesting limit is the one for vanishing p2, 

lim Jmin = ]/2E + E2 (17) 
p 2 O 

= ]/2E(I + - E - — E2 + — E3 — £4+...), V { 4 32 128 2048 J 

which lies above the limit given by (13) and approaches 
it for E > 1. 

In our considerat ions here we have assumed inelas-
tic scattering experiments on targets in the ground 
state, i.e. Ex > Ez. Then, as we have shown, the dipole 
limit K— 0 is not directly accessible by any inelastic 
scattering experiment. O u r finding, however, does not 
invalidate the analytical extrapolat ion also of experi-

mental da ta over the forbidden gap to K = 0, just 
along the lines of Bethe theory [36, 37]. 

3. Results 

We have calculated the G O S D for the helium a tom 
in the case of low m o m e n t u m transfer. The basis set 
used is the same as repor ted in [29]; it consists of 11 s-
and 10 p-type even-tempered Cartes ian Gaussians. 
32 of the obtained 41 Har t ree-Fock orbitals were 
chosen for a full CI calculation. 

In Fig. 1 different cuts through the Bethe surface 
with constant m o m e n t u m transfer are presented. The 
scaling angle 6 was chosen to give the smallest 0-de-
pendence of the spectra in this range of m o m e n t u m 
transfer. In principle, the G O S D has to be stabilised 
for each value of E and K by varying the scaling 
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d f ( E , K ) 
dE 

d f ( E , K ) 

Energy transfer E / E ^ 

Fig. 2. Cuts through the Bethe surface of helium at constant 
- but in comparison to Fig. 1 higher - momentum transfer 
( K ) : a) X = 1 . 0 a ö 1 , b ) K = l.Saö\ c) K = 2.0aö\ d ) K = 
2.5 a^ , e) K — 3.0 üq1. The complex-scaling parameter q = 
Q elB is defined by Q = 1.0, 9 = 18° in all five cases. 

10 15 20 25 

Energy transfer E / E ^ 

Fig. 3. Cut through the Bethe surface of helium at a momen-
tum transfer K = 3.0 a^1; a) calculated in the distorted-wave 
Born approximation using the complex-scaling method 
(6 = 22°), b) calculated in the plane-wave impulse approxima-
tion. 

parameter rj ( = g e,e) separately. Since we were only 
interested in the general shape of the Bethe surface in 
this paper , we have not done such a detailed stabilisa-
tion procedure here and have ra ther restricted our-
selves to a global stabilisation. 

In Fig. 1 one can see the decrease of the max imum 
and its shift to higher energy transfer when the mo-
men tum transfer increases. The resonant par t of the 
spectrum (which is shown enlarged in the inlet) 
demonst ra tes the au tomat ic fulfilment of the dipole 
selection rules. S- and D- type resonances appear in 
the spectrum not before the m o m e n t u m transfer be-
comes unequal to zero; in the dipole limit only P-type 
resonances are visible. 

In Fig. 2 we present cuts th rough the Bethe surface 
at constant m o m e n t u m transfer in the range f rom 1 up 
to 3 a ö 1 . The resonances and the absorp t ion edge be-
come less significant when the m o m e n t u m transfer 
increases. At the same time the m a x i m u m shifts more 
and more to higher energy transfer, and its value de-
creases. These effects are in good agreement with the 
experimentally obtained Bethe surface [38]. 

In Figs. 3 and 4 we show spectra tha t were calcu-
lated by the method presented here for two values of 
m o m e n t u m transfer in compar i son to spectra that we 
have calculated in the sudden-impulse approximat ion. 
In the latter case the double-differential cross-section 
for the C o m p t o n process was calculated as a product 
of a theoretical C o m p t o n profile [39] and a function 
that is given by Ophe r et al. [40]. Then the G O S D was 

d f ( E . 

0 20 40 60 80 100 

Energy transfer E/Eh 

Fig. 4. Cut through the Bethe surface of helium at a momen-
tum transfer K = 8.98 a^1-, a) calculated in the distorted-
wave Born approximation using the complex-scaling method 
(0 = 17°), b) calculated in the plane-wave impulse approxi-
mation. In the maximum this is identical to the cut obtained 
in a Compton experiment using M o K a radiation. 

obtained by an applicat ion of (2). The area under this 
curve is automatical ly normalised to the number of 
the electrons because of the use of a normalised theoret-
ical C o m p t o n profile. Obviously the area under the 
respective curve calculated in the D W B A is smaller. 
O n the other hand, the spectrum in the D W B A shows 
the absorpt ion edge and the resonant features, which 
the impulse approximat ion cannot yield. In more de-
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W 

Momentum transfer KCLQ 

Fig. 5. Dependence of the values of the Bethe sum on the 
momentum transfer. *: Result obtained in this work with a 
basis set consisting of 11 s- and 10p-type Cartesian Gaussians; 
o, o, • : data calculated by a propagator method [41], 
o : with a basis set consisting of 8 s- and 7p-type Cartesian 
Gaussians, o : 8 s-, 7p-, and 6d-type Gaussians, • : 8 s-, 7p-, 
6d-, 4f-type Gaussians. 

tail, the magni tude of the G O S D decreases too 
quickly with increasing m o m e n t u m transfer. 

A quant i ta t ive check of this observat ion is easily 
performed by a calculation of the so-called Bethe sum 
[36] 

S(0,K)= Z fi + 
; = 2 

d/(£, K) 

dE 
d E (18) 

E i o n 

In this equat ion, / is the number of discrete states and 
f i is the discrete generalised oscillator strength for the 
t ransi t ion f rom the ground state into the discrete 
state i. Eion is the first ionisation threshold of the sys-
tem. The Bethe sum rule states that the Bethe sum 
is equal to the number of electrons of the system 
(5(0, K) = Z) for arbi t rary m o m e n t u m transfer K. 

In Fig. 5 we display the obtained Bethe sums in 
dependence on the m o m e n t u m transfer K. The dis-
crete G O S values were obtained with the same pro-
gram, modified in order to give the discrete G O S val-
ues as well as the cont inuous G O S D values. The 
discrete values were calculated with Q = 1.0 and 0 = 0. 
In the cont inuous case we have calculated the integral 
in (18) for different values of m o m e n t u m transfer with 
Q varying in steps of 0.025 f rom 0.925 to 1.10 and 9 
varying in steps of 1° in the range of 6° to 28°. Then 
we have stabilised the Bethe sum numerically with 
respect to variat ion in t] { = q eld) for each m o m e n t u m 

transfer. We have done this in order to be sure that the 
result is influenced by the scaling factor as little as 
possible. In fact, the result for a single fixed value of rj 
shows a very similar behaviour - the curve contains 
only more oscillations with higher ampli tude. F r o m 
that result it can be seen that in our calculation the 
Bethe sum rule is approximate ly fulfilled only near the 
photoionisat ion threshold, independent ly f rom the 
scaling factor. With increasing m o m e n t u m transfer 
the Bethe sum decreases very rapidly. 

In a recent work by Mor tensen et al. [41] the Bethe 
sum for the helium a tom was calculated with a ra ther 
different approach using a basis-set-oriented p ropaga-
tor method. Also in these calculations Cartesian 
Gaussians were used. We have plot ted the values 
(taken f rom Fig. 1 of the ment ioned paper) for basis 
sets cointaining s- and p-, s-, p-, and d-type, and s-, p-, 
d-, and f-type Gauss ians together with our result in 
Figure 5. 

The compar ison of the Bethe sum obtained with 
our calculation and the result of [41] obtained with a 
basis set with the same angu la r -momen tum q u a n t u m 
numbers shows a remarkable agreement in spite of 
orbital exponents differing between the two basis 
sets. O n the other hand, the results obtained within 
the p ropaga tor me thod with basis sets containing 
Gaussians of d- and f-type possess a larger range of 
m o m e n t u m transfer in which the Bethe sum rule is 
fulfilled. These facts, in connect ion with the above-
ment ioned result of the approx imate independence 
f rom the scaling factor rj are, in our opinion, an obvi-
ous indication that the deviat ion f rom the Bethe sum 
rule with increasing m o m e n t u m transfer originates 
only from the limited angu la r -momen tum q u a n t u m 
numbers that were used in the basis set. The probable 
reason for this dependence is given by Mortensen et al. 
[41] by expanding the e'K""-operator into a Taylor 
series. An equivalent explanat ion is given by Bonham 
[42] analysing the expansion of the G O S D into an 
even polynomial in K as it is used for the extrapola-
tion of the measured da ta to K = 0, 

df(E, K) 

d(E/Eh) 
= A0(E) + A2(E) K2 + ... + A2n(E) K2". (19) 

Already the explicit form of A2(E) [42], 

A2(E) Re 

(20) 
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demonst ra tes that higher angula r m o m e n t u m com-
ponents must be involved because of the non-dipole 
selection rules in the quadrupo le and octupole matr ix 
elements. 

4. Conclusions and Outlook 

In this paper we have reported the results of a calcu-
lation of the G O S D of the helium a tom in the low-
m o m e n t u m scattering regime. T h e calculation was 
performed using an implementa t ion of the complex-
scaling method , in which a s t anda rd ab-initio pro-
gram is used without any change in the source code. 
N o complex integrals were calculated to obta in the 
complex-scaled CI matrix. 

The shape of the Bethe surface containing the ab-
sorpt ion edge and the resonances is reproduced by the 
calculation, whereas the ampl i tude of the Bethe ridge 
decreases too rapidly with increasing m o m e n t u m 
transfer. This was demons t ra ted by a calculation of 
the Bethe sum in dependence on the m o m e n t u m 
transfer. The deviation is qui te independent of the 
scaling factor used in the complex-scaling procedure. 
A compar ison with Bethe sums calculated recently by 
a p ropaga to r me thod shows a very good mutua l 
agreement when basis sets with the same angular-mo-
men tum q u a n t u m numbers are used in both proce-

dures. It can therefore be concluded that the devia-
tions depend solely on the angu la r -momen tum 
quan tum numbers of the basis set. The physical rea-
son is that with increasing K the electron ejected in the 
inelastic scattering process is more and more directed 
parallel to the Ä"-vector; the cont r ibut ion of that elec-
tron to the total wavefunct ion requires basis funct ions 
with high angu la r -momentum q u a n t u m numbers . 

In fur ther calculations, either much larger a tomic 
basis sets will have to be employed (with the advan-
tage of preserving the possibility to use a s tandard CI 
program) or new types of basis sets have to be intro-
duced that take the preferred ejection direction of the 
outgoing electron into account. In the latter case, how-
ever, new computer codes will have to be developed. 
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