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The doubly differential cross-section for weak inelastic scattering of waves or particles by many-
body systems is derived in Born approximation and expressed in terms of the dynamic structure
factor according to van Hove. The application of this very general scheme to scattering of neutrons,
x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space
and time Fourier transform of the density-density correlation function, is a property of the many-
body system independent of the external probe and carries information on the excitation spectrum
of the system.

The relation of the electronic structure factor to the density-density response function defined in
linear-response theory is shown using the fluctuation-dissipation theorem. This is important for
calculations, since the response function can be calculated approximately from the independent-par-
ticle response function in self-consistent field approximations, such as the random-phase approxima-
tion or the local-density approximation of the density functional theory. Since the density—density
response function also determines the dielectric function, the dynamic structure can be expressed by
the dielectric function.
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1. Introduction

Scattering of neutrons, high energy electrons, and
photons by many-body systems are the most impor-
tant methods for obtaining information on the spatial
structure and on the dynamical structure, i.e., on the
excitation spectrum, of the many-body system in ques-
tion. Whereas the spatial structure is derived from
elastic scattering, the excitations of the system are
monitored by analyzing the inelastically scattered
particles.

Neutrons “see” predominantly the nuclei, electrons
and photons “see” predominantly the electrons in the
system. Coupling to magnetic moments will not be
considered in this article. More precisely, the informa-
tion on the spatial structure is obtained by analyzing
the scattered particles with respect to the scattering
angle, i.e., with respect to change of the momentum. A
measure of the scattering intensity is the differential
cross-section

do/dQ.

The dynamic structure is obtained by analyzing the
scattered particles with respect to scattering angle and
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kinetic energy. A measure of the inelastically scattered
particles is the doubly differential cross-section

d%6/dQdE,

which is the subject of this article.

After a general derivation in the weak scattering
limit, the doubly differential cross-section is worked
out for the scattering of x-rays, fast electrons, and
neutrons. Following van Hove, it is shown that the
scattering intensity is essentially determined by the
scattering function or dynamic structure factor, which
is the space and time Fourier transform of the density-
density correlation function, a property of the unper-
turbed system.

A calculation of the dynamic structure factor of the
electronic structure of the system requires the knowl-
edge of the many-body eigenstates of the unperturbed
system, i.e., the solution of the corresponding many-
body Schrodinger equation. This is seldom possible.
In order to apply approximate methods based on the
solution of an effective single-particle Schrodinger
equation, contact is first made with the density—den-
sity response function, defined in linear-response the-
ory, using the fluctuation-dissipation (FD) theorem.
The density—density response function also provides
the microscopic definition of the macroscopic dielectric
function. In the self-consistent-field (SCF) approxima-
tion, the response function of seemingly independent
particles is used to find an approximation to the true
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response function by considering the response of these
particles to an effective microscopic field (mean field)
that is linked self-consistently to the induced density
fluctuations. In order to illustrate the SCF approxi-
mation, we calculate the response function for the
model of a homogeneous electron gas and discuss
briefly its excitation spectrum. The response function
of a crystalline solid is formally derived in the SCF
approximation based on the solution of the corre-
sponding band structure problem. Finally, we briefly
discuss the response of highly localized electrons.

II. The Doubly Differential Cross-Section

The doubly differential cross-section is the relative
intensity of the inelastically scattered particles, more
precisely [1]

[number of particles scattered per sec into a solid an-
gle dQ in the direction 7= r/r with energies between
E, and E, + dE,]/[number of incoming particles per
sec and per cm? along the z-direction with momentum
hk, and energy E;] = N d?o,

where N is the number of scatterers in the target, or
1 j,(rky,E,) - Ir*dQdE,
N Uo): .

Herej, (r,k,, E,) is the current density of the scattered
particles at r with momentum k, and energy E, . In the
denominator of (1), (j,), is the current density of the
monochromatic beam in the z-direction (see Figure 1).
In quantum-mechanical terms, the numerator of (1)
is given by the number of particles that are scattered
into a group of states in a phase-space volume of d3k,
around k,:
No 2 R.ow(no’ko_’n1’k1)D(k1)d3k1~ )

no,ny

d%c = (1)

Here D (k,) is the density of plane-wave states in k-
space, which for periodic boundary conditions in vol-
ume V is

D(k,)=V/2n)’
and

vV
D(k,)d*k, = Mk{ dQdk,.
N, is the number of particles in state |k, ». The scatter-
ing system is characterized by the quantum numbers
n, before and n, after scattering.
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Fig. 1. Scattering geometry.

w(ng, ko — ny, k,)is the transition rate for the parti-
cle to be scattered from the initial state |k,) to the
final state |k,) while the system undergoes a transi-
tion from state |n,) to state |n, ). B, is the probability
of finding the system in state |n,) before scattering. At
thermal equilibrium it is given by

B, =e*n/Z,

where Hy|no)» = E, |no), Z =3, e #F is the parti-
tion function and f = 1/(kgT). Before and after scat-

tering particle and system do not interact, ie. for
i=0,1

Ini, k> =|n ki ‘ ©)

Assuming a weak interaction during scattering, the
transition rate can be calculated in the Born approxi-
mation using (3),

w(ng, ko —ny,k,) (4)
27 .

= 7|<nO3kO|Hinler|nl’kl>| 5(Eno+E0—En1 —E)),

where H,,,., is the interaction Hamiltonian with the

system. Further evaluation of the doubly differential

cross-section requires specification of the particle and
its interaction with the system.

III. Inelastic X-Ray Scattering Spectroscopy (IXSS)

In X-ray scattering [2], the interaction Hamiltonian
(in nonrelativistic approximation) consists of two
terms (— e is the charge of the electron):

2
e

e
Hinler=m—ch(rj)pj+m§A2(rj)- (5)
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The first term, which is linear in the vector potential
A (r) that represents the photon field, describes in low-
est order one-photon processes such as absorption
and emission. Scattering is a two-photon process.
The second order contribution of the first term is, for
hw, ~ 10 keV, smaller by #w,/mc? < 1 than the first-
order contribution of the second term of (5), provided
hwo> E, —E, ,ie., in the nonresonant limit. Thus,
if only the second term is important, the evaluation [3]
of the transition probability yields

w(ng, ko —>ny, ky)

27n( 2mcch \? i
_ 7(—> r (8o - £,)21<n, | X €% 71 oy 2
V/wew, i
O (Epy — Ey, +ho0), ©

where r, = e?/(mc?)=2.8-10" 3 cm is the classical
electron radius and g,, &, are the polarization vectors
of the incoming and outgoing photons, respectively.
The momentum transfer & is defined by

k=ko—k, ()
and the energy transfer #w by
ho=E,—E,. 8)

Since for photons E;,=hw;=hk;c for i=0,1,
dE,; = hcdk, and (j), = (N,/V) - ¢, we obtain finally

dzo' do- kl 1 .
=\30 T w7 P ikr; 2
BB <dQ>Thk0N no,z'l) no|<"1|§e [no>l

'5(E"°_E"1 +hw)’ (9)

where

do
(d_‘Q>Th =r5(8 &)

is the Thomson cross-section for the scattering of a
photon by an electron.

(10)

IV. Electron Energy Loss Spectroscopy (EELS)

In electron energy loss spectroscopy [2], as the in-
elastic scattering of high-energy electrons (E, ~ 10—
100 keV) is called, the interaction Hamiltonian is
given by the Coulomb interaction of the external elec-
tron at the position r and of the electrons in the system
at the positions r;, i.€.,

1
Hinler=ezz *
J |"—"j|

(1)
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22
Since for electrons E; = ——
2m

for i=0,1, dE, =

Wk, N, hk,

T m dk, and (jo), = 70 o e obtain
2
d;;d(;fl - (%)R :—; % Z B, I<n,| gem,,nmz
"O(E,,—E,, +how), 12)
where
do 4m?e*
(@> T Hk (13)

is the Rutherford cross-section for scattering of
charged particles. The 1/k* dependence is a conse-
quence of the Coulomb interaction. Apart from the
prefactor

(&) &
dQ /e ko’

which accounts for the fundamental scattering process
of the scattered particle by a single scatterer in the
system, (9) and (12) are identical and dependent only
on the properties of the scattering system. In other
words, both EELS and IXSS yield the same informa-
tion on the dynamical properties of the electronic sys-
tem, ie. on the excitation spectrum of the system,
namely on transitions of the system from state |n,) to
state |n, ), provided

E,—E, =ho,
with the transition probability proportional to

[<ny| S e [no) .

The doubly differential cross-section yields an average
over all possible excitations of the system with a fixed
energy hw and a wavevector k.

V. Inelastic Neutron Scattering

In neutron scattering [4], a neutron interacts with
the nuclei at r; in the system by a contact potential, the
so-called Fermi pseudopotential,

2nh

Hinlerz—zajé(r—rj)’ (14)
m, j

where m, is the mass of the neutron and a; is the
scattering length for a neutron by a nucleus at r;,



236

which depends on the chemical and isotopical species.

h? k?
For neutrons we have E;= 3 L for i=0,1,
m"
h?k N, hk
dE, = Lodk,, (o).=—2-—2, and we obtain
n V m'l
d%c
d0dE, k—o—DZ ..oKnlIZa e*rilngy|?
-0(E,,—E, +how). (15)
VI. Correlation Function
and Dynamic Structure Factor
(a) In EELS and in IXSS we observed that
d%e 1 .
A P ikr; 2
dQdE, N"E,“ n0|<n1|§e [no)|
1
-6(E,,— E,, +ho) = ES(k,(u), (16)

where the scattering function or dynamic structure
factor S (k, w) depends on the properties of the unper-
turbed system only. Van Hove was the first to point
out that S (k,w) is the space and time Fourier trans-
form of the density-density correlation function

AR, 0 17

where for an operator A

~BEng

Ayp =T e tnglAIny.

no
The density-density correlation function is the proba-
bility of finding a particle at r at time ¢ when there is
one at r' at time t=0. The following four steps
provide the proof of van Hove’s assertion [2]:
(i) The density operator 7(r) is defined by

r‘z(r)=§5(r—rj)=iVs§ﬁ,‘e“", (18)
where the Fourier transform

hy = [dPrii(r)e =3 em k. (19)
(i) ’
o(E,,— E,, +hw)

1 .dt
= ﬂj;exp {i(E,, — E,, + hw)t/h}.
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(iii)
no iy |ny> exp {i(E,, — E,,) t/h}
= {ng| e'Fnoth Age” Emth| ngy
iHot/h A

= (nole' o iy e~ ot |n

= {no| Ay (1) [ny ),

where

ﬁk(t) - eiHot/hﬁke—iHQI/h (20)
is the Heisenberg representation of the 7,.
(iv) Completeness relation:

2n > <ny|=1. 21
Using (i)—(iv) we find
1 .
gS(k,w) > B, I<n | Z e ng)|?

"0 ny J

“0(E,,—E, +ho)

1 i A A
= mfdte‘”‘§ﬂ0 {no | iy () i (0) o)

jdt e (0 A_, (0)) 1 (22)

2hN

jdte‘w'jd3rj'd3’ g = nl <n(r A, 0>,

i.e. photons (X-rays) or high-energy electrons are scat-
tered by the electron density fluctuations in the sys-
tem.
(b) Using (i)—(iv), the neutron scattering cross-section
becomes

(23)
fde ei“"<2 a;e”krr aje”"f> :

JJ

T

d’c Kk
dQdE, ky2nhN

For simplicity we consider systems comprising one
chemical species only, but with different isotopes (as-
sumed to be randomly distributed). We introduce an
average scattering length

a=a
J
and the local deviation from it,

daj=a;—a.

Then da; =0 and

oy

dajoa; =0;;(6a)* =9, ;(a;—a —a?

Il
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with a? = a7. In this way we can split the scattering

cross-section into a coherent and an incoherent part,
d%c k, 1

dQdE, k,4nh

[acoh Scoh (k’ (l)) P Oinc Sinc (k’ w)] ’
(24)
where

1 o1
Scon (k, @) = Efdt e 5 A 07 (25)

is the coherent scattering function, which includes in-
terference effects. o, = 4 w a> is the coherent neutron
scattering cross-section.

1 1 . .
Sinc (k, (0) = ﬁjdr exwtﬁz <e—1kr,-(t) etkrj(0)>T (26)
J

is the Fourier transform of a self-correlation function
that accounts for the incoherent scattering processes,
i.e., without interference effects. o,,. = 4n(a® — a?) is
the incoherent neutron scattering cross-section. o,
and o, are typically of the order of 10~ 24 cm?. Again
Scon (k, @) and S;,. (k,w) are functions describing the
dynamic properties of the unperturbed system.

The calculation of the dynamical structure factors
is a very difficult problem. The required many-body
eigenstates of the system cannot be calculated in gen-
eral, and we must depend on approximations. For this
purpose another important function that describes the
dynamical properties of the system is introduced. It is
the density-density response function, which is related
to the dynamic structure factor and for which, for
example, the self-consistent-field approximation is
such an approximate scheme.

VII. Response Function

Consider a weak external potential ¢, (r,t) acting
on the electrons in the system. Then

Hinlcr = (_ e)z Pext (rj’ t)
J

= [BrTor—r)(—)oulnt)  (27)

=§d3rﬁ(r)(_e)q)exl(r,t).

In linear-response theory [2], the density response of
the system, e.g. to the external potential, can be calcu-
lated by first-order perturbation theory. One finds

on(r,t)=[d [dry(rr;t —1)(— €)@ (r,r), (28)
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where
xrst—t)=—iO@ —){[Alr AW, )])r/h (29)

is the density-density response function. The ©-func-
tion (@ (r) = 0for 7 < 0; © (1) = 1 for T = 0) guarantees
causality, i.e., contributions to the induced density
fluctuations d n(r,t) at time ¢ can only arise from per-
turbations, ie., from ¢, (r,?) for ' <t. The square
bracket in (29) denotes a commutator, i.e., [4, B] = AB
— BA. An important consequence of causality are the
Kramers—Kronig relations [5, 6]

Imy(r,r; @)

o —o

1
Rey(r,r;w)=—P[do’ ! (30a)
T

R N0y
M_ (30b)
-

—1
Im y (r,r;) = —P [ do’
n

Here P denotes a principle-value integral. Using the
Kramers—Kronig relations, sum rules can be obtained
from

[l 0,40, )] = —Idglmx(r, riw)e ¢ (31)

(i) by differentiating (31) with respect to ¢,
(ii) by using Heisenberg’s equation of motion

ih % A(r,t) = [A(r, 1), Ho), (32)
(iii) by taking the limit ¢ = ¢
[Ghd/do)" alr, 1), A(r, O] =,
=L[[-.-[A(r,0), Ho} Hol.. LA, O] 1
= —h"fd?ww"lmx(r,r’;w), (33)

provided the equal time commutators in (33) can be
evaluated. A well-known example is the f~sum rule,
which is the first frequency moment (n=1) of
Im y (r,7; w).

VIIL. Macroscopic Dielectric Function

In order to solve Maxwell’s equation in the pres-
ence of matter one needs a constitutive relation be-
tween the dielectric displacement D and the electric
field strength E. If we deal with longitudinal fields, we
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can represent them by scalar potentials
D= -V
E=—Vo,.

The constitutive relation is
D=¢yE,

which is valid for the space and time Fourier trans-
form. ¢y is the macroscopic dielectric function. In
terms of the scalar potentials, the constitutive relation
can be written [6]

1 _ P (k, @)

= : (34)
M (k’ CO) Dext (ka (D)
For the macroscopic potentials we have
Dot (K, @) = @y (K, ) + @Qia (K, ). (33)

The induced potential ¢@,,4(k, w) is related to the in-
duced density fluctuations n (k, w) by Poisson’s equa-
tion

4
Puna k. 0) = = 5 (k. 0). (36)

From linear-response theory we have
n (k,a (D) — % (k(’ k’ w) ( - e) Dext (k’ CU) s

where using (29) (and with Vg as the quantization vol-
ume of the system), the Fourier transform of the den-
sity-density response function is defined by

1 (k' k) = ;l_—l/_lsjdsre_"‘"j"d3r'

- &% [ dr e @t (A, ), Ar,0)]>r (37)
0
and

1 o
n(k',w) = Vj'd:’rén(r,a))e""‘ r,

s

This provides us with a microscopic definition of the
macroscopic dielectric function ¢y, (k, ®) in terms of the
density-density response function

1 _1_+_47re2
emw) K *

(k, k, ). (38)

IX. The Fluctuation-Dissipation Theorem

Obviously there is a formal similarity between the
dynamic structure factor S (k, ) and the density-den-
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sity response function y (k, k; ). The link is provided
by the fluctuation-dissipation (FD) theorem [2]. With
n = N/V; it reads

1

h
Stho)=——gmo—7mxk ko)

(39)

or, using the definition of the dielectric function (38),

he 1 —1 -
& ey (k, o) | =)

4nte?nl —e Fhe

It is important to note from (39’) that the imaginary
part of the negative inverse of the dielectric function is
determined by the excitation spectrum of the system.
Im[— 1/ey (k, )] is known as the energy-loss function.
The name fluctuation-dissipation theorem derives
from the fact that S(k,w) determines the scattering
intensity of particles by the density fluctuations in the
system. One can show, on the other hand, that
Im y (k,k;w) determines the amount of energy ab-
sorbed by the system when perturbed by an external
potential.

The fluctuation-dissipation theorem is of great
practical importance for the approximate evaluation
of the dynamic structure factor. The true many-body
eigenstates E, ,|ny) cannot be calculated in most
cases except for a fictitious system of non-interacting
particles. However, we cannot expect that S(k,w)
evaluated for non-interacting particles is a reasonable
approximation to the true dynamic structure factor,
and the same is true for the density-density response
function.

The response function x° (k, k; ) of seemingly inde-
pendent particles (electrons), however, can be used to
find approximations to the true y (k, k; w) within the
self-consistent-field (SCF) approximation such as the
random-phase approximation (RPA) or the local den-
sity approximation (LDA) in density functional theory
[7]. Thus

o SCF
L=

S(k,w) =

138, (40)

X. Self-Consistent-Field Approximation for Jellium

In order to illustrate what is meant by the symbolic
relation (40) we calculate SCF approximations to y for
the model system of a homogeneous electron gas (jel-
lium). Because of translational invariance,

1rnriw)=y(r—ro)
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and
n (ka CD) =X (k7 (1))(—’ e) Pext (k5 w) .

For jellium, y depends on the modulus of | k| = k only.
In the SCF approximation for y (k, w) we consider the
response of seemingly independent particles to an ef-
fective microscopic field,

n(k, ) = x° (k, 0)(— €) @, (k, )
with

(41)

(42)

0 2. fE)—S(Egsd)
o) =y Y o i6 T E,—E, oy

(43)

E, = h? ¢*/2m are single-particle energies of the plane-
wave states |¢), and f(E,) is the Fermi function. Self-
consistency means that the microscopic total potential
is related to the external potential and to the induced
density in a similar way as in classical electrodynam-
ics,

(Plot (ks (0) = QPext (k’ Cl)) ¥ (pind (k1 CO) * (44)

In the LDA, e.g., we obtain

47e? d?
— eQina(k,0) = Tn(k, w) + an? [ne, (n)]nk,w)

= (Uk 17 ch) n (ks (l)) ’ (45)

d2
where v, = 4ne?/k? and v, = F[n e (M) & (n) is
n

the exchange-correlation energy per particle in jellium.
If we neglect v, ., which is a true quantum mechanical
effect, we obtain the RPA. From (42), (44) and (45) we
find

0
X (k)

k,w) = — &) Pk, ). (46
n(k, w) 1—(vk+u,c)x°(k,w)( €) Pen (k). (46)
Comparing (41) and (46) we observe

(1]
x (k,w)
k, ) = 47
S S P R
or, neglecting xc-effects,
0
x (k,w)
ko)y=——"—7"—. 48
Xrea (k, ) 1—0,2° (k) (43)
Using (38) we obtain for the dielectric function
Ok
A ) = 1 - 2k ) 49)

-0 10 (ko)
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or, introducing the so-called local field factor G° (k) of
the homogeneous electron gas by

e = — 1, GO (k), (50)
(1]
eLPA (k, ) = 1 v X (k, ) 49)

T 1+0,6°(k) (k)

Since in the LDA v_, is a negative constant, G° (k) ~ k.
This has the proper behaviour for small k, but it di-
verges for large k although it should become a con-
stant. Approximations that satisfy both the small- and
the large-k requirements for G° (k) qualitatively were
proposed by Hubbard [8], Singwi et al. [9], Utsumi
and Ichimaru [10] and by many others [11]. These are
nonlocal density approximations. In principle, G° (k)
should also depend on frequency [12].

XI. Excitation Spectrum of the
Homogeneous Electron Gas in RPA

It is well-known that the RPA is valid only in
the high-density limit (r; < 1, where r, is defined by
4n(ryay)®/3 =1/n). Normal metals range between
r, =2 and 6. Nevertheless, it is instructive to discuss
the excitation spectrum of the jellium in the RPA [6],

am (ko) =1—0,1° (ko) =e ko), (51)

where ¢, (k,w) is the well-known Lindhard dielectric
function, which is easily evluated for T = 0 from (43).
Its explicit form can be found in many textbooks.

According to (39’) the excitation spectrum is deter-
mined by the energy-loss function, which for jellium in
the RPA is

Im[— 1/g, (k, w)].

As illustrated in Fig. 2 it consists of a broad contin-
uum of (screened) particle-hole excitations and, for
small k, of a discrete collective excitation, the plasmon.
This exhibits a quadratic dispersion for k — 0 and
ceases to exist for k > k_, the so-called plasmon cutoff
wavevector, which is of the order of the Fermi
wavevector kp. In the long-wavelength limit the
plasma frequency w, is determined by

2._ 2
w; =4nne*/m

(52)

and is typically of the order of the Fermi energy Eg. It
was pointed out before (see (9) and (12)) that EELS
and IXSS yield the same information on the excitation
spectrum. There is an important practical difference,
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Fig. 2. Excitation spectrum of the homogeneous electron gas
in the RPA for r, = 2.07 (average valence electron density of
aluminium).

however, because (do/dQ),, is independent of k, where-
as (do/dQ)g ~ 1/k*. Consequently

d%c 1 —4q
~=Im|[—-—
dQdE, |gps K em (k, )
favours small k, i.e., small-angle scattering, whereas
d? -1
7 ~ k*Im [ }
dQdE |ixss ey (k, )

favours large k, i.e., large-angle scattering. EELS has
been applied for many years for detailed studies of
plasmons [13, 14]. Improvement in the experimental
technique and the availability of synchrotron radia-
tion sources [15] has led recently to the discovery of
unexpected structures in the large-k regime of the par-
ticle-hole continuum that are particularly interesting
in the context of xc-effects. This provided the motiva-
tion for very elaborate theoretical investigations of
xc-effects on the dielectric function of the homoge-
neous electron gas [16]. Experimental investigations
centred on simple metals and semiconductors, re-
garded as nature’s closest realization of the jellium
model.

One must keep in mind, however, that the effective
crystal potential (pseudopotential), although rather
small in simple metals and semiconductors, changes
the simple picture derived from jellium considerably.
A coupling of the two types of excitations via umklapp
processes leads to a decay of plasmons by interband
transitions and to plasmon bands, for example [17,
18]. The Bloch nature of the electronic states can lead
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to new collective modes (zone-boundary collective
states [19—23]). The understanding of these properties
is based on the SCF approximation for the density-
density response function of crystalline solids [24, 25],
which is outlined in the last section.

XII. Density Response in Crystalline Solids

Periodicity requires that

1(r+R.¥ + Ryw)=yx(r,r;w) (53)

for any lattice vector R. Expansion in a double
Fourier series yields

1) =3 y(kk;w)e*re T (54)
k. k'

Because of (53) we must satisfy

ol k—KIR _

which requires
k—k =G,

where G is any reciprocal-lattice vector. If we intro-
duce the Brillouin zone (BZ), then

k-k+G,

where k is now restricted to the first BZ. Then (54)
becomes

> xk+Gk+Gm)
k,G,G’
i(k+G)re—i(k+G')r"

x(r ;o) =

e (54)

This means, for example, that
nk + G,0)=y(k+G,k, w)(—e) g (k,») (55)

is valid for any reciprocal-lattice vector G. An external
potential ¢, (k,w)e*" will not only excite density
fluctuations of the same periodicity as the external
potential has, but a whole spectrum of short-wave-
length fluctuations and vice versa. According to (54')
the response in a crystalline solid is represented in
k-space by a response matrix y spanned by reciprocal-
lattice vectors G, G'.

Again we do not know the many-body eigenstates
of the crystalline solid. Most calculations rely on the
SCF approximation based on the solution of the cor-
responding band structure problem, ie., one calcu-
lates the response matrix y from the single-particle
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Bloch states and band energies

2 .
1k+Gk+Gio)=—7 3 (lgle™**9"|l,q

s Ll

+k>

 S(Er) = f (Erogd)
ho+id+E,,—

lq+k|e® %) |1g>, (56)
El’,q+k

where the crystal momentum g is restricted to the first
BZ and the band indices [ (or ', respectively) charac-
terize the Bloch states |/¢) and band energies E,,. In
order to calculate &y (k, ) in the SCF, the equation
corresponding to (41) is

n(k + G, w) (57)
=Y 1k + Gk +G;0)(—e) 9k + G, 0),
=
where now
(plol (k + G” U)) = 5G’I) (pext (k’ (D) + (pind (k 5 o Gl’ CU) . (58)
Within the RPA,
e
Pina(k + G, 0) = (k+0)2n(k+G’ , ). (59)
Using again (57) yields
Pina(k + G, 0) (60)
47e?

(k+G,2Zx°(k+G' k+G;0) 0,k + G v).

Combining (60) and (58), we obtain

47 e?
(k+G)?

Pk + G 0) =

> [56'6" = L k+Gk+ G";CU):I
-

; €6 6" (k7 w) Prot (k - G"; LU)
= 56'0 Dext (k7 (D) s
where the microscopic dielectric matrix defined by

41 2
*k+G67"

is introduced. If we define the inverse dielectric matrix
tge (k, w) by

g 8;(1" (k’ (U) 86' G” (k’ (U) = 6GG

tge k,w) =0gg — Lk + Gk +G;w) (61)

(62)

(note that eg¢. (k, w) # (1/e¢ (k, ®)), then we can solve
formally for ¢, (k + G, ®) and find

Pk + G, 0) = ego (K, ) 9oy (k, ), (63)
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and finally for G = 0 from (34)
1 _
KA (k) = g9 (k, ) (64)
or
ey (k@) = 1/25q (K, ) = &40 (k, ®) (65)

- ¥,

G*0,G'¥0

eog (K, w)MC_;G' (k, w) ego (k, @),

where M ~! is the inverse of the submatrix M which is
the dielectric matrix ¢ without the first row and first
column. The first term of the right-hand side of (65)
describes the intra- and interband contributions to the
dielectric function, the second term accounts for the
so-called local field effect that arises from the (peri-
odic) inhomogeneity of the crystalline solid.

More generally, we have for the dynamic structure
factor of a crystalline solid (for #® > kgzT) in the RPA

h(k + G)*

SEo)=——55 -

— 2.2, Im[egg (k, )] (66)

with

ko—k,=K=k+G. (67)

We now have to distinguish between the scattering
vector K=k, —k, and the crystal momentum &,
which is restricted to the first BZ. In other words, in
order to obtain the dynamic structure factor, we have
to calculate the microscopic dielectric matrix, invert it
and take the GG element, where the appropriate G is
determined by the requirement (67). For simple metals
and semiconductors, the nearly-free-electron pseudo-
potential approximation can be applied to calculate
the dielectric matrix by perturbation theory within a
certain (k, w) regime [17].

The dielectric matrix can be generalized to include
xc-effects in some approximate way as in the density
functional theory.

The above scheme, however, is not very practical
when we deal with the response of tightly bound elec-
trons as in insulators. These, to a good approxima-
tion, can be viewed as a collection of independent
polarizable units with a local polarizability a (w). In-
cluding the intra-atomic Coulomb interaction, a(w)
can be calculated self-consistently [26, 27] from the
independent-particle polarizability

W (w)=—1[d [drryl@er;o)r. (68)

Here the index a denotes an atomic-like response
function. Allowing the polarizable units to interact via
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their dipolar fields leads to the well known Clausius-
Mossotti formula in the long-wavelength limit or its
generalization [28] to finite k.

In metals it comes to an interplay of the core and
conduction-electron responses that, treated in the
SCF approximation [29, 30], provides, among other
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