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The doubly differential cross-section for weak inelastic scattering of waves or particles by many-
body systems is derived in Born approximation and expressed in terms of the dynamic structure 
factor according to van Hove. The application of this very general scheme to scattering of neutrons, 
x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space 
and time Fourier transform of the density-density correlation function, is a property of the many-
body system independent of the external probe and carries information on the excitation spectrum 
of the system. 

The relation of the electronic structure factor to the density-density response function defined in 
linear-response theory is shown using the fluctuation-dissipation theorem. This is important for 
calculations, since the response function can be calculated approximately from the independent-par-
ticle response function in self-consistent field approximations, such as the random-phase approxima-
tion or the local-density approximation of the density functional theory. Since the densi ty-densi ty 
response function also determines the dielectric function, the dynamic structure can be expressed by 
the dielectric function. 

Key words: Scattering theory; Dynamic structure factor; Inelastic photon scattering; Inelastic elec-
tron scattering; Inelastic neutron scattering; Dielectric function. 

I. Introduction 

Scattering of neutrons, high energy electrons, and 
photons by many-body systems are the most impor-
tant methods for obtaining information on the spatial 
structure and on the dynamical structure, i.e., on the 
excitation spectrum, of the many-body system in ques-
tion. Whereas the spatial structure is derived from 
elastic scattering, the excitations of the system are 
monitored by analyzing the inelastically scattered 
particles. 

Neutrons "see" predominantly the nuclei, electrons 
and photons "see" predominantly the electrons in the 
system. Coupling to magnetic moments will not be 
considered in this article. More precisely, the informa-
tion on the spatial structure is obtained by analyzing 
the scattered particles with respect to the scattering 
angle, i.e., with respect to change of the momentum. A 
measure of the scattering intensity is the differential 
cross-section 

dcr/dß. 

The dynamic structure is obtained by analyzing the 
scattered particles with respect to scattering angle and 
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kinetic energy. A measure of the inelastically scattered 
particles is the doubly differential cross-section 

d2<r/dßdElt 

which is the subject of this article. 
After a general derivation in the weak scattering 

limit, the doubly differential cross-section is worked 
out for the scattering of x-rays, fast electrons, and 
neutrons. Following van Hove, it is shown that the 
scattering intensity is essentially determined by the 
scattering function or dynamic structure factor, which 
is the space and time Fourier transform of the density-
density correlation function, a property of the unper-
turbed system. 

A calculation of the dynamic structure factor of the 
electronic structure of the system requires the knowl-
edge of the many-body eigenstates of the unperturbed 
system, i.e., the solution of the corresponding many-
body Schrödinger equation. This is seldom possible. 
In order to apply approximate methods based on the 
solution of an effective single-particle Schrödinger 
equation, contact is first made with the density-den-
sity response function, defined in linear-response the-
ory, using the fluctuation-dissipation (FD) theorem. 
The density-density response function also provides 
the microscopic definition of the macroscopic dielectric 
function. In the self-consistent-field (SCF) approxima-
tion, the response function of seemingly independent 
particles is used to find an approximation to the true 
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response function by considering the response of these 
particles to an effective microscopic field (mean field) 
that is linked self-consistently to the induced density 
fluctuations. In order to illustrate the SCF approxi-
mation, we calculate the response function for the 
model of a homogeneous electron gas and discuss 
briefly its excitation spectrum. The response function 
of a crystalline solid is formally derived in the SCF 
approximation based on the solution of the corre-
sponding band structure problem. Finally, we briefly 
discuss the response of highly localized electrons. 

II. The Doubly Differential Cross-Section 

The doubly differential cross-section is the relative 
intensity of the inelastically scattered particles, more 
precisely [1] 

[number of particles scattered per sec into a solid an-
gle df i in the direction / = r/r with energies between 
E! and Ex + dFJ / fnumber of incoming particles per 
sec and per cm2 along the z-direction with momentum 
h k0 and energy E0] = N d 2 a , 

where N is the number of scatterers in the target, or 

_ i A M ^ . i - z y d f l d f . 

* N {Jo). 

Here jl {r,kx, is the current density of the scattered 
particles at r with momentum k l and energy E 1 . In the 
denominator of (1), (J0)z is the current density of the 
monochromatic beam in the z-direction (see Figure 1). 

In quantum-mechanical terms, the numerator of (1) 
is given by the number of particles that are scattered 
into a group of states in a phase-space volume of d3/c1 

around k 1 : 

N0 X 5 o w ( w O . * O - * « i . * I W * I ) < 1 3 * I . (2) 
"O. "1 

Here D{kx) is the density of plane-wave states in k-
space, which for periodic boundary conditions in vol-
ume V is 

/ ) ( * , ) = F/(2 TT)3 

and 
V 

D(k,)d k, = ——^kjdQdk,. 
(2 7i) 1 1 

N0 is the number of particles in state |A0>. The scatter-
ing system is characterized by the quantum numbers 
n0 before and n1 after scattering. 
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w(n0,k0 -> n ^ k j is the transition rate for the parti-
cle to be scattered from the initial state |A:0> to the 
final state while the system undergoes a transi-
tion from state |n0> to state l ^ ) . is the probability 
of finding the system in state |n0> before scattering. At 
thermal equilibrium it is given by 

Pno = e-ßE"o/Z, 

where H0\n0) = £ J " o X Z = Zn0
e~ßEn° is the parti-

tion function and ß = 1 /(kBT). Before and after scat-
tering particle and system do not interact, i.e. for 
i = 0,1 

|n i ,Ä i) = | n i ) | Ä i ) . (3) 

Assuming a weak interaction during scattering, the 
transition rate can be calculated in the Born approxi-
mation using (3), 

w ( n 0 , A 0 ( 4 ) 

= ^ | <n0, k01 tfiBter | n,, k, > |2 <5 (Eno + E0 - Eni - E J , 

where Hinter is the interaction Hamiltonian with the 
system. Further evaluation of the doubly differential 
cross-section requires specification of the particle and 
its interaction with the system. 

III. Inelastic X-Ray Scattering Spectroscopy (IXSS) 

In X-ray scattering [2], the interaction Hamiltonian 
(in nonrelativistic approximation) consists of two 
terms (— e is the charge of the electron): 

"in,er = — Z A ( r ß f j + X A2 { r . (5) mc j 2mc j 
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The first term, which is linear in the vector potential 
A (R) that represents the photon field, describes in low-
est order one-photon processes such as absorption 
and emission. Scattering is a two-photon process. 
The second order contribution of the first term is, for 
h co0 « 10 keV, smaller by h cojm c2 1 than the first-
order contribution of the second term of (5), provided 
ha>0P Eni — Eno, i.e., in the nonresonant limit. Thus, 
if only the second term is important, the evaluation [3] 
of the transition probability yields 

w(n0,k0 -> n^kj) 

2nf 2nc2h 

\ F V / ö v 
r g ( « o ' « i ) 2 l < » i l 2 y f c " r ' l » o > l s 

•ö(Eno-Eni+hco), 

where r0 = e2/(m c2) = 2.8 

(6) 

10" 1 3 cm is the classical 
electron radius and are the polarization vectors 
of the incoming and outgoing photons, respectively. 
The momentum transfer k is defined by 

k — k o 

and the energy transfer ha> by 

ha> = E0 — . 

(7) 

(8) 

Since for photons = fco); = hktc for i = 0,1, 
dE^ = and (J)z = (NJV) • c, we obtain finally 

d2a 
dQ&El \d QjJhk0N "A Z P J < n A T e - " n 0 > l : 

where 
•ö(Eno-Eni + hco), 

3 T h
= r 2 ° i e o ' e i ) 2 

(9) 

(10) 

is the Thomson cross-section for the scattering of a 
photon by an electron. 

Since for electrons E, = 
h 2 k 2 

2m 
for i = 0,1, dE^ = 

h2k. N0 hk0 = d k , and (j0). , we obtain 
m V m 

d2a fda\ k, 1 .. 

where 

•ö(Eno-Eni + hco), 

do-\ _ 4 m 2 e 4 

(12) 

(13) 

is the Rutherford cross-section for scattering of 
charged particles. The \/kA dependence is a conse-
quence of the Coulomb interaction. Apart from the 
prefactor 

dcr\ k1 

which accounts for the fundamental scattering process 
of the scattered particle by a single scatterer in the 
system, (9) and (12) are identical and dependent only 
on the properties of the scattering system. In other 
words, both EELS and IXSS yield the same informa-
tion on the dynamical properties of the electronic sys-
tem, i.e. on the excitation spectrum of the system, 
namely on transitions of the system from state | n 0 ) to 
state !«!>, provided 

Eni-Eno = hco, 

with the transition probability proportional to 

l < n i l I > i , t r j K > l 2 -j 

The doubly differential cross-section yields an average 
over all possible excitations of the system with a fixed 
energy h co and a wavevector k. 

IV. Electron Energy Loss Spectroscopy (EELS) 

In electron energy loss spectroscopy [2], as the in-
elastic scattering of high-energy electrons (£ 0 « 1 0 -
100 keV) is called, the interaction Hamiltonian is 
given by the Coulomb interaction of the external elec-
tron at the position r and of the electrons in the system 
at the positions i.e., 

H i n t e r = e 2 ^ - ^ — (11) 
J \r ~ r j \ 

V. Inelastic Neutron Scattering 

In neutron scattering [4], a neutron interacts with 
the nuclei at r, in the system by a contact potential, the 
so-called Fermi pseudopotential, 

2nh 
Winter = Z OjS (f - ^ , (14) 

™n j 

where mn is the mass of the neutron and cij is the 
scattering length for a neutron by a nucleus at rjf 
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w h i c h d e p e n d s o n t h e c h e m i c a l a n d i s o t o p i c a l species. (iii) 

For neutrons we have £ , = * A for / = 0, 1, < " o l " * l " t > e x p { i ( E „ o - E J t / h } 

dEl = -— dk1, {jo)z = y " —-> and we obtain = <n0lelH°«hAke-,B°«*jnl> l ' \j/z j 7 mn V mn 

d 2 a k j = < " O l " * ( 0 K > , 

(20) fi (t\ — piHot/hA -iHot/h 
•ö(Eno-Eni+hco). (15) n * e 

is the Heisenberg representation of the nk . 
(iv) Completeness relation: 

2 > i > < " i l = l . (21) 
VI. Correlation Function 
and Dynamic Structure Factor 

(a) In EELS and in IXSS we observed that 
Using (i)-(iv) we find 

dÜ dEy n o,ni 

•ö(Eno-Eni + hco) = -S(k,co), (16) ! 

2nhN "0 

(22) 

where the scattering function or dynamic structure 
factor S (k, oo) depends on the properties of the unper- _ 1 (dtei(at (n (t) n (0)) 
turbed system only. Van Hove was the first to point 2 n h N k ~k T 

out that S (k, oo) is the space and time Fourier trans- ^ I 
form of the density-density correlation function = — - \dtei(0t f d 3r \ d3r' e~ik{r~r) — <n(r,t)n(r' ,0)}T, 

2nh J J N 
1 

(n(r, t)n(r ,0)>T (17) j e photons (X-rays) or high-energy electrons are scat-
tered by the electron density fluctuations in the sys-

where for an operator A tem. 
ße„0 (b) Using (i)-(iv), the neutron scattering cross-section 

<^>r = E — y — < n 0 \ Ä \ n 0 } . becomes 

H2 t 1 The density-density correlation function is the proba- " a _ 1 [dteita,/Y a e~ikrj' a eikrj 

u: — + „ * „,1 :„ jnAr /, T^-hAT* \ J' J 

N 

bility of finding a particle at r at time t when there is dQdE1 k02nhN' 
one at r' at time t = 0. The following four steps 
provide the proof of van Hove's assertion [2]: F o r simplicity we consider systems comprising one 
(i) The density operator A(r) is defined by chemical species only, but with different isotopes (as-

I sumed to be randomly distributed). We introduce an 
n(r) = X <5 (r — rß = — J^nkeikr, (18) average scattering length 

j Vs k 

where the Fourier transform a j ~ a 

_ j d 3
r n ( r ) e ~ i k r = £ e ~ i k r j . (19) a n d ^ e local deviation from it, 

j 

(ii) 3 aj = a j — a. 

t ( E n o ~ E n i + h(o) Then ^ = 0 and 
= Yn $ J™* { i ( E n o ~E^ + h 0 i ) t / f l } • J^öYy = öjj.(ö^j2 = öjj. i ^ W = ? - ä 2 
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with er = aj. In this way we can split the scattering 
cross-section into a coherent and an incoherent part, 

d2a k1 1 
A n A r = T T T ~ l [ ^ o h 5 c o h ( * , Ö>) + <*inc ^ i n c ( k , CO)] , 

d ß d £ x k04nh ^ 

where 
Scoh (A, co) = —— J" dt ei<ot -j- (nk (t) n _ t (0)>T (25) 

2n N 

is the coherent scattering function, which includes in-
terference effects. <rcoh = 4 n ä2 is the coherent neutron 
scattering cross-section. 

SLc(*.o>) = r—Jdt (e~ikrjit) e '* r j < 0 ) > T (26) 2 71 TV j 

is the Four ie r t ransform of a self-correlation function 
that accounts for the incoherent scattering processes, 
i.e., wi thout interference effects. <rinc = i n i a 1 — ä2) is 
the incoherent neu t ron scattering cross-section. <rcoh 

and (7;nc are typically of the order of 10" 2 4 cm 2 . Again 
Scoh(k,a>) and Sinc(k,a>) are funct ions describing the 
dynamic propert ies of the unper turbed system. 

The calculation of the dynamical structure factors 
is a very difficult problem. The required many-body 
eigenstates of the system canno t be calculated in gen-
eral, and we must depend on approximat ions . Fo r this 
purpose ano ther impor tan t funct ion that describes the 
dynamical propert ies of the system is introduced. It is 
the density-density response function, which is related 
to the dynamic s t ructure factor and for which, for 
example, the self-consistent-field approximat ion is 
such an approx imate scheme. 

VII. Response Function 

Consider a weak external potential (pext (r, t) acting 
on the electrons in the system. Then 

W i n t e r = ( ~ 2 > e x t ( » > *) j 

= Sd3rZÖ(r-rj)(-e)(pexi(r,t) (27) j 

= f d 3 rn(r ) ( -e )<p e x t ( r , f ) . 

In l inear-response theory [2], the density response of 
the system, e.g. to the external potential, can be calcu-
lated by first-order pe r tu rba t ion theory. O n e finds 

Sn(r,t) = $ d V J df x(r,* t-t')(-e)cpext(r\ t'), (28) 

where 

X(r,r';t- f ) = - i 0 ( t - t') <[n(r,t),n(r',t')]>T/h (29) 

is the density-density response funct ion. The ©-func-
tion (6> (T) = 0 for T < 0; 0 (R) = 1 for T ^ 0) guarantees 
causality, i.e., cont r ibut ions to the induced density 
fluctuations ö n (r, t) at t ime t can only arise f rom per-
turbat ions , i.e., f rom (pext (r, t) for t' ^ t. The square 
bracket in (29) denotes a commuta to r , i.e., [Ä, B] = ÄB 
— BÄ. An impor tan t consequence of causality are the 
Kramer s - K r o n i g relat ions [5, 6] 

d t . 1
 D r A / I m X i r S i a ) ' ) , Rex( r , r;co) = - P I dco , (30a) K CO' — CO 

Im x (r, r; co) = P dco . (30 b) 
7t CO — CO 

Here P denotes a principle-value integral. Using the 
K r a m e r s - K r o n i g relations, sum rules can be obta ined 
f rom 

<[n ( r , f ) , n ( r ' , 0 ]>T= - J — I m x(r,r ' ;co)*- | t o<'- ' '> (31) 
71 

(i) by differentiating (31) with respect to t, 
(ii) by using Heisenberg's equat ion of mot ion 

ih~n(r,t) = [n(r,t),H0], (32) 
d£ 

(iii) by taking the limit t = t' 

([{ihd/dt)"n(r,t),n(r', f')]>|,=(. 

= <[[.. .[n(r,t),H0],H0]...),n(r',t)]>T 

= — cD"lmx(r,r'-,co), (33) 
71 

provided the equal t ime c o m m u t a t o r s in (33) can be 
evaluated. A well-known example is the / - s u m rule, 
which is the first frequency m o m e n t (n = 1) of 
Im x (r,r'; co). 

VIII. Macroscopic Dielectric Function 

In order to solve Maxwell 's equa t ion in the pres-
ence of mat ter one needs a consti tutive relation be-
tween the dielectric displacement D and the electric 
field strength E. If we deal with longitudinal fields, we 



238 K. Sturm • Dynamic Structure Factor: An Introduction 

can represent them by scalar potentials 

D=-Vcpext, 

E = ~ ?<Pu*-

The constitutive relation is 

D = emE, 

which is valid for the space and time Four ie r trans-
form. eM is the macroscopic dielectric function. In 
terms of the scalar potentials, the consti tut ive relation 
can be writ ten [6] 

1 (PtoM, co) 

m (k, CO) (p ext 

F o r the macroscopic potentials we have 

<Ptot (*» = <Pex. (*. + (pind {k, CO) . 

(34) 

(35) 

The induced potential (pind(k,a>) is related to the in-
duced density f luctuat ions n (k, co) by Poisson 's equa-
tion 

4ne 
(pind (k, co) = - - p - n {k, co) . (36) 

F r o m linear-response theory we have 

n (k ' , co) = i (k\ k; co)(— e) <pext (k, co), 

where using (29) (and with Vs as the quant iza t ion vol-
ume of the system), the Four ier t ransform of the den-
sity-density response funct ion is defined by 

X(k\k; co) = — - J d 3 r e _ i * ' r J d V 
h Vc 

eikr \ dxei(0)+iö)z([ü(r,r), n(r\0)]>T (37) 

and 

n(k',co) = — J d 3rSn(r, co)e~ikr. 

This provides us with a microscopic definit ion of the 
macroscopic dielectric funct ion eM (k, co) in terms of the 
density-density response funct ion 

1 

eM(k, co) 

4 n e 2 

= 1 + -j-x(k,k,co). (38) 

IX. The Fluctuation-Dissipation Theorem 

Obviously there is a formal similarity between the 
dynamic s t ructure factor S(k,a>) and the density-den-

sity response function x (k, k; co). The link is provided 
by the fluctuation-dissipation (FD) theorem [2]. With 
n = N/Vs it reads 

S(k,co) = 
1 h 

nn e~ßh(° — 1 
Im x(k,k;co) (39) 

or, using the definition of the dielectric funct ion (38), 

S(k,o)) = 
hk2 1 

4n2 e2n 1 - e ßhi Im 
- 1 

eM(k, co)_ 
(39') 

It is important to note f rom (39') tha t the imaginary 
par t of the negative inverse of the dielectric funct ion is 
determined by the excitation spec t rum of the system. 
Im [— l/sM (k, co)] is known as the energy-loss function. 
The name fluctuation-dissipation theorem derives 
f rom the fact that S(k,co) determines the scattering 
intensity of particles by the density f luctuat ions in the 
system. One can show, on the o ther hand, that 
Imx(k ,k ;a>) determines the a m o u n t of energy ab-
sorbed by the system when per turbed by an external 
potential. 

The fluctuation-dissipation theorem is of great 
practical importance for the approx ima te evaluat ion 
of the dynamic structure factor. The t rue many-body 
eigenstates E„ o , |n 0 > cannot be calculated in most 
cases except for a fictitious system of non-interact ing 
particles. However, we cannot expect that S(k, co) 
evaluated for non-interact ing particles is a reasonable 
approximat ion to the true dynamic s t ructure factor, 
and the same is true for the density-density response 
function. 

The response function X° {k, k; co) of seemingly inde-
pendent particles (electrons), however, can be used to 
find approximations to the true x(k,k;co) within the 
self-consistent-field (SCF) approx imat ion such as the 
random-phase approximat ion (RPA) or the local den-
sity approximat ion (LDA) in density funct ional theory 
[7], Thus 

0 SCF FD C (40) 

X. Self-Consistent-Field Approximation for Jellium 

In order to illustrate what is mean t by the symbolic 
relation (40) we calculate S C F approx imat ions to x for 
the model system of a homogeneous electron gas (jel-
lium). Because of translat ional invariance, 

x(r,r';co) = x ( | r - r ' | ; c o ) 
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and 

n {k, co) = x(k, co) ( - <?) cpext (k, co). (41) 

F o r jellium, x depends on the modulus of\k\ = k only. 
In the S C F approximat ion for x {k, co) we consider the 
response of seemingly independent particles to an ef-
fective microscopic field, 

n (k, co) = x (k, co)(-e) cplot (k, co) (42) 

with 

X°(k,co) = ^ t t
 f [ E i / F

{ E q i • (43) 
Vs q nco + id + Eq-Eq + k 

Eq = h2 q2/2 m are single-particle energies of the plane-
wave states | q)>, and / (Eq) is the Fermi funct ion. Self-
consistency means that the microscopic total potent ia l 
is related to the external potent ia l and to the induced 
density in a similar way as in classical e lec t rodynam-
ics, 

<Pu* ( * > = <Pext (*>«) + <Pind (*> Ö>) • (44) 

In the LDA, e.g., we obtain 

A n e 2 d 2 

- e cpind (k , cu) = — j - n (k, co) + [n ex c (n)] n (k, co) 

= (Vk + vxc)n(k,co), (45) 

where vk = 4 n e2/k2 and vxc = —- [n exc (n)]. exc (n) is 
d n2 

the exchange-correlation energy per particle in jellium. 
If we neglect vxc, which is a t rue q u a n t u m mechanical 
effect, we obta in the RPA. F r o m (42), (44) and (45) we 
find 

n (k, co) = 
1 ~(vk + vxc)x°(k,co) 

Compar ing (41) and (46) we observe 

X°(fe,co) 

(~e)cpexl(k,co). (46) 

X l d a (Kco) = l - ( v k + vxc)x°(k,co) 

or, neglecting xc-effects, 

. . . A W 

Using (38) we obtain for the dielectric funct ion 

E^(k,CO)=l-
\-vxcX°(k,oj) 

(47) 

(48) 

(49) 

or, in t roducing the so-called local field factor G° (k) of 
the homogeneous electron gas by 

vxc=-vkG°(k), 

s^DA(k,co) = 1 -
vkX°(k,co) 

l+vkG°(k)x°(k,coy 

(50) 

(49') 

Since in the LDA vxc is a negative constant, G° (k) ~ k2. 
This has the p roper behaviour for small k, but it di-
verges for large k a l though it should become a con-
stant . Approx imat ions that satisfy bo th the small- and 
the large-/c requirements for G° (k) qualitatively were 
p roposed by H u b b a r d [8], Singwi et al. [9], Utsumi 
and Ichimaru [10] and by many others [11]. These are 
nonlocal density approximat ions . In principle, G° (k) 
should also depend on frequency [12]. 

XI. Excitation Spectrum of the 
Homogeneous Electron Gas in RPA 

It is well-known tha t the RPA is valid only in 
the high-density limit (rs < 1, where rs is defined by 
4n(rsa0)3/3 = 1/n). Norma l metals range between 
rs = 2 and 6. Nevertheless, it is instructive to discuss 
the excitat ion spect rum of the jellium in the RPA [6], 

e«PA (k, co) = 1 - vk x° (k, co) = £L (k, co), (51) 

where eL(k,co) is the well-known Lindhard dielectric 
funct ion, which is easily evluated for T = 0 f rom (43). 
Its explicit form can be found in many textbooks. 

According to (39') the excitation spectrum is deter-
mined by the energy-loss function, which for jellium in 
the RPA is 

I m [ - l/eL(/c,co)]. 

As illustrated in Fig. 2 it consists of a b road contin-
u u m of (screened) par t i c le -ho le excitations and, for 
small k, of a discrete collective excitation, the plasmon. 
This exhibits a quadra t i c dispersion for k -*• 0 and 
ceases to exist for k> kc, the so-called plasmon cutoff 
wavevector, which is of the order of the Fermi 
wavevector kF. In the long-wavelength limit the 
p lasma frequency cop is determined by 

co2 = Ann e2/m (52) 

and is typically of the order of the Fermi energy EF. It 
was pointed out before (see (9) and (12)) that E E L S 
and IXSS yield the same informat ion on the excitation 
spect rum. There is an impor tan t practical difference, 
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k / k F 

Fig. 2. Excitation spectrum of the homogeneous electron gas 
in the RPA for rs — 2.07 (average valence electron density of 
aluminium). 

however, because (d<r/dß)Th is independent of k, where-
as (da /dß) R ~ l//c4. Consequent ly 

1 - 1 
~ —r Im 

- 1 
i 2 

e e l s k _ £ m ( / c , co)_ 

favours small k, i.e., small-angle scattering, whereas 

- 1 

sM{k, co)_ 

favours large k, i.e., large-angle scattering. E E L S has 
been applied for many years for detailed studies of 
p lasmons [13, 14]. Improvement in the experimental 
technique and the availability of synchrot ron radia-
tion sources [15] has led recently to the discovery of 
unexpected structures in the large-/c regime of the par-
t ic le -hole con t inuum that are particularly interesting 
in the context of xc-effects. This provided the mot iva-
tion for very elaborate theoretical investigations of 
xc-effects on the dielectric function of the homoge-
neous electron gas [16]. Experimental investigations 
centred on simple metals and semiconductors , re-
garded as nature 's closest realization of the jellium 
model . 

O n e must keep in mind, however, that the effective 
crystal potential (pseudopotential), a l though ra ther 
small in simple metals and semiconductors , changes 
the simple picture derived f rom jellium considerably. 
A coupling of the two types of excitations via u m k l a p p 
processes leads to a decay of p lasmons by in terband 
transit ions and to plasmon bands, for example [17, 
18]. The Bloch nature of the electronic states can lead 
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to new collective modes (zone-boundary collective 
states [19-23]) . The unders tanding of these properties 
is based on the S C F approx imat ion for the density-
density response funct ion of crystalline solids [24, 25], 
which is outl ined in the last section. 

XII. Density Response in Crystalline Solids 

Periodicity requires that 

X(r + R,r' + R;a)) = x(r,r';co) (53) 

for any lattice vector R. Expans ion in a double 
Four ie r series yields 

X(r,r';co) = I x(k,k';co)eikre-ik r'. (54) 
k,k' 

Because of (53) we must satisfy 

ei(k-k')R _ j 

which requires 

k-k' = G, 

where G is any reciprocal-lattice vector. If we intro-
duce the Brillouin zone (BZ), then 

k ^ k + G , 

where k is now restricted to the first BZ. Then (54) 
becomes 

X(r,r';co)= Z x(k + G,k + G;co) 
k, G, G' 

. eHk + G)r e-i(k + G')r^ (54') 

This means, for example, that 

n(k + G,co) = x{k + G,k;cD){-e)(pexl(k,(D) (55) 

is valid for any reciprocal-lattice vector G. An external 
potent ial (pext(k,co)elkr will not only excite density 
f luctuat ions of the same periodicity as the external 
potent ial has, but a whole spect rum of short-wave-
length f luctuat ions and vice versa. According to (54') 
the response in a crystalline solid is represented in 
/c-space by a response matrix x spanned by reciprocal-
lattice vectors G, G". 

Again we do not know the many-body eigenstates 
of the crystalline solid. Most calculations rely on the 
S C F approx imat ion based on the solution of the cor-
responding band structure problem, i.e., one calcu-
lates the response matrix x f rom the single-particle 

d2a 

dQdEi 
k2 Im 
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Bloch states and band energies 

X°(k + G,k + G;a>) = — X Hq\e'i(k+G)'\l',q + ky 

f ( E j q ) - f ( E y , q + k) 
hco + iö + Elq - £r,4 + k 

(l',q + k\e^+Gy\lqy, (56) 

where the crystal momentum q is restricted to the first 
BZ and the band indices I (or /', respectively) charac-
terize the Bloch states \ l q ) and band energies Elq. In 
order to calculate eM(A,co) in the SCF, the equat ion 
corresponding to (41) is 

n (k + G, co) (57) 

= X * ° ( * + G,k + G;a))(— e)(piol(k + G',co), 
G' 

where now 

<Ptot (* + G > = ÖG' 0 <Pe*t (*> + <Pind (k + c » co). (58) 

Within the RPA, 

<Pind(* + G',0J)= -
4ne 

(k + G)2 

Using again (57) yields 

<Pind(k + G, co) 

—^n(k + G', co). (59) 

(60) 

4 Tie 
—2^X°(k + G,k + G, co) (plol (k + G", co). 

(k + G')2 a 

Combining (60) and (58), we obtain 

4 Tie2 

(k + G)-
X°(k + G',k + G";o0) 

<Ptot (* + G", co) = X £CG" (*> M ) <Ptot ( k + G " , M ) 
G" 

= ^G'O ^Pext (ki CO) , 

where the microscopic dielectric matrix defined by 

4 ne2 

sGG.(k,co) = ÖGG. -
(k + G) 

:X°(k + G,k + G-,aj) (61) 

is introduced. If we define the inverse dielectric matrix 

£cc-(*><») b y 

X «GC' CO) £ C G W) = &GG" (62) 

(note that eGG. (k, co) 4= ( l / ß G c co)), then we can solve 
formally for (piot (k + G, co) and find 

(Piot (k + G,co) = 2C01 (k, co) cpext (k , co), (63) 

and finally for G = 0 f rom (34) 

1 
= £0 0 (*>co) 

(*,co) 

or 

e*PA (k, co) = I/go«1 (k, co) = e 0 0 (Ä, co) 

241 

(64) 

(65) 

— Z-. 'OG (k, co)MG£. (k, co) e c o (k, co), 
G=t=0,G'*0 

where M ~ 1 is the inverse of the submatrix M which is 
the dielectric matrix e without the first row and first 
column. The first term of the right-hand side of (65) 
describes the intra- and interband contributions to the 
dielectric function, the second term accounts for the 
so-called local field effect that arises from the (peri-
odic) inhomogeneity of the crystalline solid. 

More generally, we have for the dynamic structure 
factor of a crystalline solid (for h co > kBT) in the RPA 

with 

S (K, co) = - I m [£GG (*, co)] 
4 7T ez n 

k 0 - k l = K = k + G. 

(66) 

(67) 

We now have to distinguish between the scattering 
vector K = k0 — k^ and the crystal momentum k, 
which is restricted to the first BZ. In other words, in 
order to obtain the dynamic structure factor, we have 
to calculate the microscopic dielectric matrix, invert it 
and take the G G element, where the appropriate G is 
determined by the requirement (67). For simple metals 
and semiconductors, the nearly-free-electron pseudo-
potential approximat ion can be applied to calculate 
the dielectric matrix by perturbat ion theory within a 
certain (k,co) regime [17]. 

The dielectric matrix can be generalized to include 
xc-effects in some approximate way as in the density 
functional theory. 

The above scheme, however, is not very practical 
when we deal with the response of tightly bound elec-
trons as in insulators. These, to a good approxima-
tion, can be viewed as a collection of independent 
polarizable units with a local polarizability a(co). In-
cluding the intra-atomic Coulomb interaction, a(co) 
can be calculated self-consistently [26, 27] from the 
independent-particle polarizability 

a 0 (co) = - f J d V f d 3 r r X°a (r, r', co) r'. (68) 

Here the index a denotes an atomic-like response 
function. Allowing the polarizable units to interact via 
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the i r d i p o l a r fields leads t o the well k n o w n C laus iu s -
M o s s o t t i f o r m u l a in the l ong -wave leng th l imit o r its 
gene ra l i za t ion [28] to f ini te k. 

In me ta l s it c o m e s to a n in t e rp lay of the c o r e a n d 
c o n d u c t i o n - e l e c t r o n responses tha t , t r e a t e d in t he 
S C F a p p r o x i m a t i o n [29, 30], p rov ides , a m o n g o t h e r 
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th ings , a s imple e x p l a n a t i o n of the so-called sof t -x- ray 
s ingu la r i ty obse rved in the co re a b s o r p t i o n spec t ra of 
s imple me ta l s [31]. 

I a m g ra t e fu l to R. O . J o n e s fo r a crit ical r e a d i n g of 
the m a n u s c r i p t . 
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