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The experimental knowledge of the dielectric response of electrons within a solid is up to now
mainly gained by inelastic scattering experiments, using a plane wave as initial state of the probe
particle. These experiments allow the measurement of the dynamical structure factor, related to
diagonal elements of the inverse dielectric matrix ¢~ . We present a new type of scattering experiment
that uses as initial state of the probe a standing wave field, thus allowing the experimental determi-
nation of non-diagonal elements of ¢~ !. Comparison of the experimental results with a plasmon-
band model leads to direct experimental evidence for plasmon-banding in Si.
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1. Introduction

Conventional Inelastic X-Ray Scattering Spectros-
copy (IXSS) yields information about the macroscopic
response function Im [¢ ™! (¢, w)] of an electron system.
(For a review see, for example, [1].) This quantity,
together with the macroscopic dielectric function
¢(g, w), which can be obtained from Im [¢ ™ (¢, w)] by
Kramers—Kronig transformation, is important for the
quantum-mechanical understanding of a many-body
system of interacting particles, as it is related to the
exact ground-state energy of such a system including
correlation [2], and to the excitation properties. Col-
lective excitations (plasmons) are indicated by poles of
¢~ (g, w), whereas the electronic band structure, deter-
mining the single-particle excitations, can be calcu-
lated using a Coulomb interaction, screened by ¢ (g, @)
[3]. The Double-Differential Scattering Cross-Section
(DDSCS) of an IXSS experiment turns out to be con-
nected to the imaginary part of the reciprocal of ¢ (¢, w)
via the fluctuation-dissipation theorem ([1], (39)).

Considering a real crystalline solid instead of a
homogeneous electron gas, we have to introduce the
dielectric matrix ¢, ,.(¢, @), (9,9’ being reciprocal-
lattice vectors). Thus, the macroscopic dielectric func-
tion ¢~ ! (g, ) is determined by a diagonal element of
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the inverse dielectric matrix. This leads to a contribu-
tion of all elements of the dielectric matrix (the so-
called local field effect) to the experimental informa-
tion obtained by an IXSS experiment. Collective
excitations are no longer coupled to poles of ¢ ™! (¢, ),
but can be calculated from det [, ,- (g, @)] = 0. When
in a periodic system there is no longer full transla-
tional symmetry, the momentum #g¢ is no longer a
conserved quantity, but is defined modulo any recip-
rocal-lattice vector. A consequence of this fact is the
occurrence of plasmon bands [4] in complete analogy
to the electron band structure by backfolding of the
dispersion relation of plasmons into the 1* Brillouin
zone. It seems extremely worthwhile to extend the
available experimental information about the dielec-
tric matrix from one diagonal element of the inverse
dielectric matrix, as obtained by conventional IXSS
experiments, to information about all elements of this
matrix. In Sect. 2, a new type of inelastic scattering
experiment is introduced that, at least in principle,
allows us to get this desired information. Section 3
shows an experimental setup and the measuring pro-
cedure. In Sect. 4, the experimental results are com-
pared to a theoretical model, the so-called plasmon
band model.

2. Coherent Inelastic X-Ray Scattering

As is shown in more detail in [1], the DDSCS of an
IXSS experiment yields the dynamical structure factor
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S (g, ) via
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which in turn is related to a diagonal element of the
inverse dielectric matrix via

2

Sgw)=- 4me’n

mfeg ) g0l @

q =4q,+ g € 1° Brillouin zone.

From the definition of ¢ ([1], (34), (63)) it is known that
this quantity connects the Fourier component of an
external disturbing potential to the Fourier com-
ponent of the potential induced within the solid by
its response to the external disturbance. Diagonal
elements connect Fourier components to the same
spatial periodicity, whereas nondiagonal elements
connect contributions generated by the microscopic
local-field effects in response to the external distur-
bance. Keeping in mind that transferring one momen-
tum ¢ within an IXSS experiment leads to experimen-
tal information about diagonal elements of ¢~ !, we
should expect that transferring two different momenta
coherently and simultaneously, the experimental out-
come should be related to nondiagonal elements of
¢!, that is to a quantity related to Fourier compo-
nents of the potentials to different spatial periodicities.
The necessary extension of the conventional scatter-
ing technique therefore is to use a superposition of two
coherently coupled plane waves instead of one simple
plane wave as initial photon state of the scattering
process. Such a coherent superposition of two plane
waves is generated when setting a perfect crystal into
Bragg condition. In this case, the incoming and Bragg-
reflected plane wave are coherently coupled via the
nonvanishing Fourier component of the valence-elec-
tron density to a certain reciprocal lattice vector, thus
forming a standing wave field. The properties of this
wave field (relative amplitudes and phases) can be
calculated from the dynamical theory of X-ray diffrac-
tion as a function of the exact incidence angle [5].
Figure 1 allows a comparison of the principles of
IXSS experiments and the extended technique, called
Coherent Inelastic X-Ray Scattering (CIXS). For an
IXSS experiment, the incoming plane wave k|, is scat-
tered into the direction k', transferring momentum
q=k,—k' and energy hwo=h(w,— ') to the scatter-
ing system. In a CIXS experiment, the incoming wave
k, is partly Bragg-reflected, leading to a plane-wave
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Fig. 1. Comparison of the principle of conventional and co-
herent inelastic scattering, IXSS and CIXS; details are given
in the text.

component k,. These two plane waves are coupled via
k,=ky+g, g being the reciprocal-lattice vector of
the underlying Bragg-reflection. Now, two scattering
contributions to k' being observed, two momenta
qo=k,—k' and q,=k,—Kk' are transferred simulta-
neously.

Calculating the DDSCS for this type of experiment,
that is, if the intensity of the primary photon field can
be expressed as

I(r,Ad) = A7 + Ay +2|Ao| |4y cos(g - r +A¢),  (3)

we end up with (for a centrosymmetric crystal and
introducing the simplification |q,| = |g4|) [6]

d%c 1
~ A% S(q,, A2 S(q,,
do dQ A(2)+A,2,( 0 (‘Io w)+ h (qh (,U))
2| Aol |44l
A(2)+A£ COS(A¢)S(quqh’ w)a (4)

where A, and A, are the amplitudes of the two compo-
nents of the standing wave field, A¢ is the phase rela-
tion between both waves, and S(q,, g5, @) is called
nondiagonal dynamic structure factor. As we should
expect, the DDSCS consists of contributions from the
plane waves k, and k, themselves, analogous to a
simple IXSS experiment (terms I and II), and of an
interference term (term III) caused by the coherent
coupling of k, and k, via g. This term yields
S(q0, 91> @), @ quantity obviously containing informa-
tion about the coherent coupling of two quantum-
mechanical excitation amplitudes. It is related to non-
diagonal elements of the inverse dielectric matrix via

hzqz .
S(ql,qz,w)=—mxlme,,,gz(q,w) (5
with
9:=9+9:, 4.=4+9>.
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So we end up with an expression for the DDSCS for
the CIXS experiment that contains a mixture of terms
correlated to conventional inelastic scattering and an
interference term containing the desired information
about nondiagonal elements of ¢ !. The relative
weight of these terms is determined by the characteris-
tics of the initial standing wave field, i.e. by the relative
amplitude and phase. The separation of the three
terms can be done by using the experimental setup,
shown in the next section.

3. Experimental Setup

Figure 2 shows the principles of the experimental
setup used at the storage ring DORIS II at HASY-
LAB, Hamburg. The white synchroton radiation
is monochromatized, using a Si(111)-double-crystal
monochromator, to a primary energy of about 8 keV.

solid state

detector /\

scattering sample

from DORIS II-
storage ring

Double-crystal
monochromator

analyzing Bragg:reflected
crystal L] beamk,

Fig. 2. The experimental setup.
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The second crystal of the monochromator together
with the scattering sample (also Si(111)) form a non-
dispersive (+/—)-double-crystal setting. The Bragg-
reflected intensity is registered by a Nal-detector,
whereas the inelastically scattered radiation is energy-
analysed by a spherically bent analysing crystal
(Si(5595)) and registered by a solid-state Ge-detector to
improve the signal-to-noise ratio.

As we know from the dynamical theory of X-ray
diffraction, we can calculate the amplitudes and
phases of the incoming and the Bragg-reflected wave
from the exact incidence angle, which in turn can be
determined experimentally by measuring the Bragg-
reflected intensity. So the factors that give the weights
of the three contributions to the DDSCS can be ma-
nipulated by tilting the scattering sample with respect
to the second monochromator crystal.

In compact notation (4) becomes

2

dwdp = Fi(1)8@0.0) +F(Y) (g1, 0)

+F;(Y) S(q0, 41 » ®), (6)

where Y denotes a generalized incidence parameter,
connected to the incidence angle. (The calculation of
F, , 3(Y) can be found in detail in [13].) We can see
that, measuring the DDSCS for at least three different
incidence angles, i.e., for three different values of Y, we
end up with a system of linear equations for the three
contributions to the DDSCS. In this way, the nondi-
agonal structure factor can be extracted in principle.
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In practice, in order to reduce statistical errors, we
measured the DDSCS for seven different values of Y
and solved the resulting overdetermined system of
linear equations.

The measurements were performed for four differ-
ent directions and values of ¢ (the exact values chosen
were: 0.51, 0.64, 0.76 and 1.21 a.u.). The chosen Bragg
reflection was the Si(111)-reflection. In any case,
the scattering geometry was chosen in a way that
|go| = |q4l, so that g, always ended on different points

on the g = gaﬁ (1,1,1) Bragg-plane.

The upper part of Fig. 3 shows the experimental
raw data for |g,| = 0.51 a.u. for three different values
of the incidence angle, indicated on the rocking-curve
in the inset. The difference in height of these spectra is
due to extinction and absorption effects, which strongly
depend on the incidence angle. The influence of the
interference term can be seen from the different maxi-
mum positions of the three curves. In the lower part of
Fig. 3, the result of the separation process is shown.
Because ¢, and ¢, were chosen equivalent with respect
to crystal symmetry, S(g,, @) and S (g, w) are identical.
They show the typical plasmon line-shape, marked as
curve D. The nondiagonal term, on the other hand,
leads to a strong peak —valley structure, as can be seen
from the curve labelled ND.

In the next section, the gained experimental results
are compared with a theoretical model for the dielec-
tric response.

4. Experimental Results vs. Theory

The experimental results shall be compared to the
so-called plasmon-band model for the dielectric re-
sponse of the electrons of a solid. Considering a homo-
geneous electron gas, we find the well-known disper-
sion relation for the collective excitation

haw,(q) =hw,+ag? (7

with w, and « being the free-clectron plasmon fre-
quency and a constant depending on the electron den-
sity, respectively. As was mentioned in Section 1, turn-
ing to a spatially periodic solid means that in recipro-
cal space w, (q) is a periodic function. Backfolding into
the 1** Brillouin zone yields a plasmon band structure
oy (g,) with ¢.=q —g, [7, 4].

Following [2], the interaction of two plasmons that
differ in momentum by # g, g being a reciprocal lattice
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vector, is determined by the gth Fourier-component of
the electron density. This can be described using the
Hamiltonian

5 4ne? 4ne® q-(q+g)

-

T laver 2m 001
q+90@0(—q—9). ®)

where Q(g) are generalized plasmon coordinates.
Thus we get the following linear eigenvalue problem
for the plasmon band structure w; (¢,) and the eigen-
vector-components A4, (g, +¢,), the squared modulus
of which gives the probability to find a plasmon with
momentum # (g, +g¢,) and energy hw; (g, ):

[w,(g:+9) —w(g)] Ag:+9)
+2C(g.+9.9)4(q.+9)=0 )
with ’
C(¢1,+g,.¢1r’)=—4l2247[762,2
lg.+91" 19, +4'l

(g.+9) (g, +9) 2(9'—9)

4m o (g, +9)
According to [4], i.e. assuming that only collective
modes with J-function-like energy shape are excited,

the imaginary part of the related elements of the
dielectric matrix can be calculated by

47 e
lq.+9.l1q.+9| (11)
XA, (q,+9,) A¥ (g, +9)x 6 (w—wy(q,))-

(10)

Ime, ', (q,.0)=

This equation is fundamental for the interpretation of
inelastic scattering experiments in terms of the plas-
mon band model.

In the case of conventional IXSS, where only diag-
onal elements of ¢~! can be measured, the DDSCS
turns out to be connected to Y | 4,(g)|% Thus, if we
try to find experimental evidence for the plasmon
band structure, we have to choose the momentum
transfer to lie on a Bragg plane whose corresponding
reciprocal lattice vector g* is the shortest with non-
vanishing Fourier component of the electron density
and is smaller than the plasmon cut-off vector. Using
a simple two-plasmon-band model, we get two eigen-
vector components A, ,(¢g) of equal size and sign,
which correspond to two plasmons the energies of
which are separated by the plasmon band gap. The
DDSCS then should exhibit a double-peak structure.
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(For the case of Si, g* = %Tn (1,1,1), see [8].) In prac-

tice, IXSS experiments failed in detecting this double-
peak structure because of the fact that the natural
line-width of both plasmons is large compared to the
expected energy gap.

This failure can be overcome by looking at a special

*

1 % ,o).
Using again the two-plasmon-band model, the

g* g* g*

two products A, 3 At — ER and A4, E3

*

¥ - % are equal in size but different in sign, thus
leading to a peak —valley structure in the DDSCS. In
this type of experiment, the fingerprint of plasmon-

nondiagonal element of ¢™', namely &g }.
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qg=08xgq,

Fig. 4. Left part: (a, b) experimental and (A, B) correspond-
ing model-calculated nondiagonal elements of &4 ; (9, w)

with g = 27 (1,1,7), |4, 4| = 0.51 a.u. and |4, 5| = 064 a.u.

Right part: position of the g-end-points on the Brillouin zone
boundary.

qg=12xgq,

Fig. S. Left part: (a, b) experimental and (A, B) correspond-
ing model-calculated nondiagonal elements of &g ‘, (g, ®)
with g = 2% (1,1,1), |4, 4| = 076 2.u. and | g, 5| = 1.21 a.u.

Right part: position of the g-end-points on the Brillouin zone
boundary.

banding should therefore be clearly seen indepen-
dently of the ratio of line-width and band-gap.
Figures 4 and 5 show the obtained experimental
data for four different nondiagonal elements of ¢~ * in
the left-hand part. The right-hand part shows the re-
sults of a calculation following the plasmon band
model using 51 reciprocal lattice vectors. These calcu-
lations were carried out in the following way: First,
the eigenvalue-problem (9) was solved, leading to the
contributions of the different plasmons, which are
given by the eigenvector-components. Then, for every
contributing plasmon, instead of a J-function-like
energy distribution, a Gaussian-like distribution, the
FWHM (Full Width at Half Maximum) of which was
fitted to empirical X-Ray data [9], was added to



232

the DDSCS, weighted with the appropriate factor
A, (‘%) ~A¥ (— g;) The first frequency moments
of the experimental nondiagonal terms fulfil the John-
son sum-rule [10] within experimental error.

For the two measurements with g, in the vicinity of
the L-point, the conditions for the two-plasmon-band
model are fulfilled (see Figure 4). The peak—valley
structure, an indication for plasmon banding as stated
above, can be seen clearly in the experimental and
theoretical data for both measurements. It is remark-
able that even for values of the momentum transfer
larger than the plasmon cut-off vector, when a collec-
tive excitation should easily decay into single-particle
excitations, the calculation using the plasmon band
model fits the experimental results at least qualita-
tively.

Another way of comparison of the experimental
data with theory is to calculate the elements of the
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dielectric matrix and perform matrix inversion. This
was done in the random-phase approximation [11],
[12], leading to similar results.

5. Summary

We have presented a new technique for inelastic
scattering experiments that allows the measurement of
nondiagonal elements of the inverse dielectric matrix.
An experimental setup installed at HASYLAB was
shown. The experimental results were compared to
the results of a plasmon-band model for the dielectric
response, finding for the first time direct experimental
evidence for the existence of plasmon-banding.
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