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The experimental knowledge of the dielectric response of electrons within a solid is up to now 
mainly gained by inelastic scattering experiments, using a plane wave as initial state of the probe 
particle. These experiments allow the measurement of the dynamical structure factor, related to 
diagonal elements of the inverse dielectric matrix e~ \ We present a new type of scattering experiment 
that uses as initial state of the probe a standing wave field, thus allowing the experimental determi-
nation of non-diagonal elements of £ _ 1 . Comparison of the experimental results with a plasmon-
band model leads to direct experimental evidence for plasmon-banding in Si. 
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1. Introduction 

Conventional Inelastic X-Ray Scattering Spectros-
copy (IXSS) yields information about the macroscopic 
response function Im [e~1 (q, co)] of an electron system. 
(For a review see, for example, [1].) This quantity, 
together with the macroscopic dielectric function 
e(q, a>), which can be obtained from Im [s~1 (q, co)] by 
Kramers -Kron ig transformation, is important for the 
quantum-mechanical understanding of a many-body 
system of interacting particles, as it is related to the 
exact ground-state energy of such a system including 
correlation [2], and to the excitation properties. Col-
lective excitations (plasmons) are indicated by poles of 
e~1 (q, co), whereas the electronic band structure, deter-
mining the single-particle excitations, can be calcu-
lated using a Coulomb interaction, screened by e {q, (o) 
[3]. The Double-Differential Scattering Cross-Section 
(DDSCS) of an IXSS experiment turns out to be con-
nected to the imaginary part of the reciprocal of e {q, coi) 
via the fluctuation-dissipation theorem ([1], (39)). 

Considering a real crystalline solid instead of a 
homogeneous electron gas, we have to introduce the 
dielectric matrix &g g .(q,oS), (g,g' being reciprocal-
lattice vectors). Thus, the macroscopic dielectric func-
tion e - 1 (q,oS) is determined by a diagonal element of 
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the inverse dielectric matrix. This leads to a contribu-
tion of all elements of the dielectric matrix (the so-
called local field effect) to the experimental informa-
tion obtained by an IXSS experiment. Collective 
excitations are no longer coupled to poles of e~1 (q, coi), 
but can be calculated from det [eg g. (q, co)] = 0. When 
in a periodic system there is no longer full transla-
tional symmetry, the momentum hq is no longer a 
conserved quantity, but is defined modulo any recip-
rocal-lattice vector. A consequence of this fact is the 
occurrence of plasmon bands [4] in complete analogy 
to the electron band structure by backfolding of the 
dispersion relation of plasmons into the 1st Brillouin 
zone. It seems extremely worthwhile to extend the 
available experimental information about the dielec-
tric matrix from one diagonal element of the inverse 
dielectric matrix, as obtained by conventional IXSS 
experiments, to information about all elements of this 
matrix. In Sect. 2, a new type of inelastic scattering 
experiment is introduced that, at least in principle, 
allows us to get this desired information. Section 3 
shows an experimental setup and the measuring pro-
cedure. In Sect. 4, the experimental results are com-
pared to a theoretical model, the so-called plasmon 
band model. 

2. Coherent Inelastic X-Ray Scattering 

As is shown in more detail in [1], the DDSCS of an 
IXSS experiment yields the dynamical structure factor 
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5 (q, co) via 

d2a 
kh 

dcodß ~~ V d ß / 0
 S < ' q , C 0 ) , (1) 

which in turn is related to a diagonal element of the 
inverse dielectric matrix via 

S {q, co) = -
4ne2 n • Im [eg}g\qr, co)], 

Qh 

1o 

(2) 

q = qr + g e 1st Brillouin zone. 

Fig. 1. Comparison of the principle of conventional and co-
herent inelastic scattering, IXSS and CIXS; details are given 
in the text. 

From the definition of e ([1], (34), (63)) it is known that 
this quantity connects the Fourier component of an 
external disturbing potential to the Fourier com-
ponent of the potential induced within the solid by 
its response to the external disturbance. Diagonal 
elements connect Fourier components to the same 
spatial periodicity, whereas nondiagonal elements 
connect contributions generated by the microscopic 
local-field effects in response to the external distur-
bance. Keeping in mind that transferring one momen-
tum q within an IXSS experiment leads to experimen-
tal information about diagonal elements of e~\ we J ( r > =Ai +A2 + 2\A0\\Ah\ cos(g • r + A<£), (3) 

component kh. These two plane waves are coupled via 
kh = k0 + g, g being the reciprocal-lattice vector of 
the underlying Bragg-reflection. Now, two scattering 
contributions to k! being observed, two momenta 
q0 = k0 — k' and qh = kh — k' are transferred simulta-
neously. 

Calculating the DDSCS for this type of experiment, 
that is, if the intensity of the primary photon field can 
be expressed as 

should expect that transferring two different momenta 
coherently and simultaneously, the experimental out-
come should be related to nondiagonal elements of 
e - 1 , that is to a quantity related to Fourier compo-
nents of the potentials to different spatial periodicities. 
The necessary extension of the conventional scatter-
ing technique therefore is to use a superposition of two 
coherently coupled plane waves instead of one simple 
plane wave as initial photon state of the scattering 
process. Such a coherent superposition of two plane 
waves is generated when setting a perfect crystal into 
Bragg condition. In this case, the incoming and Bragg-
reflected plane wave are coherently coupled via the 
nonvanishing Fourier component of the valence-elec-
tron density to a certain reciprocal lattice vector, thus 
forming a standing wave field. The properties of this 
wave field (relative amplitudes and phases) can be 
calculated from the dynamical theory of X-ray diffrac-
tion as a function of the exact incidence angle [5]. 

Figure 1 allows a comparison of the principles of 
IXSS experiments and the extended technique, called 
Coherent Inelastic X-Ray Scattering (CIXS). For an 
IXSS experiment, the incoming plane wave k0 is scat-
tered into the direction k', transferring momentum 
q=k0 — k' and energy ha) = h(a>0 — a)') to the scatter-
ing system. In a CIXS experiment, the incoming wave 
k0 is partly Bragg-reflected, leading to a plane-wave 

we end up with (for a centrosymmetric crystal and 
introducing the simplification |<jr0| = [6] 

d2<r 1 

dcodß A2
0+A2

h 
(A2S(q0,co)+A2S(qh,co)) 

+ 
2\A0\\Ah\ 

A2
0 + Al 

cos (A (p )S{q 0 , q h , (o ) , (4) 

where A0 and Ah are the amplitudes of the two compo-
nents of the standing wave field, A</> is the phase rela-
tion between both waves, and S(q0, qh, a>) is called 
nondiagonal dynamic structure factor. As we should 
expect, the DDSCS consists of contributions from the 
plane waves k0 and kk themselves, analogous to a 
simple IXSS experiment (terms I and II), and of an 
interference term (term III) caused by the coherent 
coupling of k0 and kk via g. This term yields 
S(q0, qh, co), a quantity obviously containing informa-
tion about the coherent coupling of two quantum-
mechanical excitation amplitudes. It is related to non-
diagonal elements of the inverse dielectric matrix via 

h 2 q 2 

S(qi,q2,co) = - - i - . - i 
4n e2 q 

with 
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So we end up with an expression for the DDSCS for 
the CIXS experiment that contains a mixture of terms 
correlated to conventional inelastic scattering and an 
interference term containing the desired information 
about nondiagonal elements of e _ 1 . The relative 
weight of these terms is determined by the characteris-
tics of the initial standing wave field, i.e. by the relative 
amplitude and phase. The separation of the three 
terms can be done by using the experimental setup, 
shown in the next section. 

3. Experimental Setup 

Figure 2 shows the principles of the experimental 
setup used at the storage ring DORIS II at HASY-
LAB, Hamburg. The white synchroton radiation 
is monochromatized, using a Si(lll)-double-crystal 
monochromator, to a primary energy of about 8 keV. 

analyzing 
crystal 

scattering sample 

. from D O R I S II-
storage ring 

Double-crystal 
monochromator 

Brag^reflected 
beam ks 

The second crystal of the monochromator together 
with the scattering sample (also Si (111)) form a non-
dispersive ( + / — )-double-crystal setting. The Bragg-
reflected intensity is registered by a Nal-detector, 
whereas the inelastically scattered radiation is energy-
analysed by a spherically bent analysing crystal 
(Si (555)) and registered by a solid-state Ge-detector to 
improve the signal-to-noise ratio. 

As we know from the dynamical theory of X-ray 
diffraction, we can calculate the amplitudes and 
phases of the incoming and the Bragg-reflected wave 
from the exact incidence angle, which in turn can be 
determined experimentally by measuring the Bragg-
reflected intensity. So the factors that give the weights 
of the three contributions to the DDSCS can be ma-
nipulated by tilting the scattering sample with respect 
to the second monochromator crystal. 

In compact notation (4) becomes 

d2<T =F1(Y) S(q0,a>) + F2(Y)S(qh,(o) 
dcod Q 

+ F3(Y)S(q0,qh,a>), (6) 

Fig. 2. The experimental setup. 

where Y denotes a generalized incidence parameter, 
connected to the incidence angle. (The calculation of 

2 3 ( F ) can be found in detail in [13].) We can see 
that, measuring the DDSCS for at least three different 
incidence angles, i.e., for three different values of Y, we 
end up with a system of linear equations for the three 
contributions to the DDSCS. In this way, the nondi-
agonal structure factor can be extracted in principle. 

Fig. 3. Upper par t : raw experimen-
tal da ta for Si with \q\ = 0.51 a.u. for 
three different values of Y, as indi-
cated in the inset. Vertical dashed 
lines indicate the centres of the 
spectra. Lower par t : result of the 
separation process. D: diagonal 
term, N D : nondiagonal term. 
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In practice, in order to reduce statistical errors, we 
measured the DDSCS for seven different values of Y 
and solved the resulting overdetermined system of 
linear equations. 

The measurements were performed for four differ-
ent directions and values of q (the exact values chosen 
were: 0.51, 0.64, 0.76 and 1.21 a.u.). The chosen Bragg 
reflection was the Si( l l l ) -ref lect ion. In any case, 
the scattering geometry was chosen in a way that 
|flol = l tf jJ .so that q0 always ended on different points 

2n 
on the g = — ( 1 , 1 , 1 ) Bragg-plane. 

The upper part of Fig. 3 shows the experimental 
raw data for |</0| = 0 . 5 1 a.u. for three different values 
of the incidence angle, indicated on the rocking-curve 
in the inset. The difference in height of these spectra is 
due to extinction and absorption effects, which strongly 
depend on the incidence angle. The influence of the 
interference term can be seen f rom the different maxi-
mum positions of the three curves. In the lower part of 
Fig. 3, the result of the separation process is shown. 
Because q0 and qh were chosen equivalent with respect 
to crystal symmetry, S(q0, a>) and S(qh,co) are identical. 
They show the typical plasmon line-shape, marked as 
curve D. The nondiagonal term, on the other hand, 
leads to a strong peak-va l ley structure, as can be seen 
from the curve labelled ND. 

In the next section, the gained experimental results 
are compared with a theoretical model for the dielec-
tric response. 

4. Experimental Results vs. Theory 

The experimental results shall be compared to the 
so-called plasmon-band model for the dielectric re-
sponse of the electrons of a solid. Considering a homo-
geneous electron gas, we find the well-known disper-
sion relation for the collective excitation 

hat {q) = tia)0+ aq' (7) 

with co0 and a being the free-electron plasmon fre-
quency and a constant depending on the electron den-
sity, respectively. As was mentioned in Section 1, turn-
ing to a spatially periodic solid means that in recipro-
cal space cop (q) is a periodic function. Backfolding into 
the 1st Brillouin zone yields a plasmon band structure 
(o;{qT) with qT = q-gT [7, 4]. 

Following [2], the interaction of two plasmons that 
differ in momentum by h g, g being a reciprocal lattice 

vector, is determined by the grth Fourier-component of 
the electron density. This can be described using the 
Hamiltonian 

ü 4 Tie2 4ne2 q{q+g) 
Hi =L — j - 2 — eis) <1 

g \q\ \q+9\ 2m 

•(q+9)Q(q)Q(-q-g), (8) 

where Q(q) are generalized plasmon coordinates. 
Thus we get the following linear eigenvalue problem 
for the plasmon band structure <j)p (qT) and the eigen-
vector-components Av(qT + gT), the squared modulus 
of which gives the probability to find a plasmon with 
momentum h(qr + gr) and energy ha>v

p(qT): 

[«p (qr + 9)~OJ {qT)] A (qr + g) 

+ ZC(qI + g,g')A(qr + g') = 0 (9) 
9' 

with 

C(qr + g,g') = 
4 n e 2 4 n e 2 

\q<+9\2 \qr+9'\2 

(•qr+9)-(qr+9') e(g'-g) 
4m Mo(9r + 9') 

(10) 

According to [4], i.e. assuming that only collective 
modes with <5-function-like energy shape are excited, 
the imaginary part of the related elements of the 
dielectric matrix can be calculated by 

_, 4 n e 2 
Ime

9r.g(9r><*>) = - t — ; — n — i — r 
\qr+9r\\qr+9\ (ii) 

•T,Ä,(qr + gr)A*(qt + g)xö((o-a)l(qr)). 
V 

This equation is fundamental for the interpretation of 
inelastic scattering experiments in terms of the plas-
mon band model. 

In the case of conventional IXSS, where only diag-
onal elements of e _ 1 can be measured, the D D S C S 
turns out to be connected to Thus, if we 
try to find experimental evidence for the plasmon 
band structure, we have to choose the momentum 
transfer to lie on a Bragg plane whose corresponding 
reciprocal lattice vector g* is the shortest with non-
vanishing Fourier component of the electron density 
and is smaller than the plasmon cut-off vector. Using 
a simple two-plasmon-band model, we get two eigen-
vector components 2(q) of equal size and sign, 
which correspond to two plasmons the energies of 
which are separated by the plasmon band gap. The 
D D S C S then should exhibit a double-peak structure. 
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2n 
(For the case of Si, g* = — (1,1,1), see [8].) In prac-
tice, IXSS experiments failed in detecting this double-
peak structure because of the fact that the natural 
line-width of both plasmons is large compared to the 
expected energy gap. 

This failure can be overcome by looking at a special 

nondiagonal element of e - 1 , namely % l
g* 

Using again the two-plasmon-band model, the 

two products A1
 anc* ^ ' - y -

are equal in size but different in sign, thus 
A* - r 

2 
leading to a peak-val ley structure in the DDSCS. In 
this type of experiment, the fingerprint of plasmon-

banding should therefore be clearly seen indepen-
dently of the ratio of line-width and band-gap. 

Figures 4 and 5 show the obtained experimental 
da ta for four different nondiagonal elements of e~1 in 
the left-hand part. The right-hand part shows the re-
sults of a calculation following the plasmon band 
model using 51 reciprocal lattice vectors. These calcu-
lations were carried out in the following way: First, 
the eigenvalue-problem (9) was solved, leading to the 
contributions of the different plasmons, which are 
given by the eigenvector-components. Then, for every 
contributing plasmon, instead of a <5-function-like 
energy distribution, a Gaussian-like distribution, the 
F W H M (Full Width at Half Maximum) of which was 
fitted to empirical X-Ray data [9], was added to 
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the DDSCS, weighted with the appropriate factor 

Av ^ f ) ' ^"lrst f r e c l u e n c y moments 

of the experimental nondiagonal terms fulfil the John-
son sum-rule [10] within experimental error. 

For the two measurements with q0 in the vicinity of 
the L-point, the conditions for the two-plasmon-band 
model are fulfilled (see Figure 4). The peak-valley 
structure, an indication for plasmon banding as stated 
above, can be seen clearly in the experimental and 
theoretical data for both measurements. It is remark-
able that even for values of the momentum transfer 
larger than the plasmon cut-off vector, when a collec-
tive excitation should easily decay into single-particle 
excitations, the calculation using the plasmon band 
model fits the experimental results at least qualita-
tively. 

Another way of comparison of the experimental 
data with theory is to calculate the elements of the 

dielectric matrix and perform matrix inversion. This 
was done in the random-phase approximation [11], 
[12], leading to similar results. 

5. Summary 

We have presented a new technique for inelastic 
scattering experiments that allows the measurement of 
nondiagonal elements of the inverse dielectric matrix. 
An experimental setup installed at HASYLAB was 
shown. The experimental results were compared to 
the results of a plasmon-band model for the dielectric 
response, finding for the first time direct experimental 
evidence for the existence of plasmon-banding. 
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