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A recently developed method for the least-squares reconstruction of one-particle reduced density 
matrices from one-particle expectation values has been applied to isotropic Compton profiles of 
neon from the literature. The resulting densities in momentum and position space are compared with 
the ones obtained from ab-initio calculations. 
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1. Introduction 

In the last two decades, several algorithms for the 
least-squares fitting of experimental data by functions 
that are parametrized in terms of the one-particle re-
duced density matrix (ODM) [1] have been developed 
[2-6]. Most of them are restricted to an idempotent 
sub-class of iV-representable [7] ODMs, i.e. they de-
scribe the system in an independent-particle model, 
which corresponds to a single Slater determinant as 
wave function for the system. 

We have recently developed a method for the afore-
mentioned O D M reconstructions that works outside 
this restriction and varies the O D M over the full set of 
ensemble-representable one-matrices [5]. The applica-
tion of this method to theoretical model-systems has 
shown that the inclusion of electron correlation is 
necessary to reproduce mixed sets of position and 
momentum density dependent data [8-10]. The expe-
rience gained on these systems indicates, on the other 
hand, that the idempotency condition may well be 
retained in cases where only data of one kind are used. 

Isotropic Compton profiles J{q) are sometimes fit 
by a linear combination of functions, i.e. 

J(q) = Haixi(Ci;q), (1) 
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where r are functions of q including some nonlinear 
parameter(s) Gaussians [11,12], Lorentzians [13,14, 
12] and hydrogenic Lorentzians [15] have been em-
ployed as functional forms of t . Such fits allow the 
straightforward evaluation of the isotropic momen-
tum distribution n(p), its moments <p 9 ) [16] and more 
complicated momentum-space quantities such as 
stopping powers [17]. However, since they do not have 
the form of an O D M , they do not permit the direct 
calculation of position-space expectation values, ex-
cept through additional approximations in the frame-
work of density-functional theory [12, 18]. 

In this paper we report results from the application 
of our method to the isotropic Compton profile J(q). 
We have used the example of neon to demonstrate the 
possibilities and limitations of an inference of informa-
tion about orbitals from small sets of momentum-
space data. 

Section 2 gives a general description of the applied 
method and its parametrization. Section 3 deals with 
the application to the Compton profile of atomic neon. 

2. Methodology 

In the following we discuss only spin-free properties 
of closed-shell singlet systems. The parametrization of 
the isotropic Compton profile J(q) is therefore in 
terms of the spin-traced O D M . Extensions to systems 
including spin are straightforward. We only outline 
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the method and refer for more details to [8], [9], and 
[10]. 

We write the isotropic Compton profile in terms of 
the O D M by expanding the latter in a basis set {/}: 

oo In it 

J ( q ) = Z P u -k
2 f f \ x ? ( p ) X i ( p ) p s ™ ( e p ) d d p d < j > p d p . 

H' k l 0 0 (2) 

PiV are the elements of the O D M in the {^-expansion, 
and the Xi(p) a r e Fourier-transforms of the basis or-
bitals Xi(r). 

We may not directly use the PiV as fitting parame-
ters, since the O D M they represent has to fulfil so-
called N-re pre sent ability conditions [7], It has to be 
Hermitean, normalized and positive-semidefinite with 
eigenvalues bounded by 0 and 2 [19]. 

The first condition (Hermiticity) is equivalent to the 
orthogonality of the eigenfunctions of the O D M , the 
natural orbitals (NOs). We enforce it by applying a finite 
series of real-orthogonal transformations to an initial 
guess, each transformation associated with only one 
non-linear parameter, a so-called "rotation-angle" [20]. 
The latter may then be used as parameters in a least-
squares fit. 

The other conditions (boundaries on eigenvalues) 
impose restriction on the occupation numbers of the 
NOs, which may consequently be used as additional 
linear parameters with linear constraints. If they are 
kept fixed at values of either 0 or 2, the resulting O D M 
describes the system in the framework of the indepen-
dent-particle model. Variation to fractional values 
means the inclusion of electron correlation on a one-
particle level [1]. 

We employ a nested algorithm [10] to determine the 
set of rotation angles that minimizes 

y = X ( J e x p ( q k ) - J ( q k ) ) / ° 2
k , (3) 

fc 
where Je*p(qk) is the experimental profile at the mo-
mentum-component value qk, and ok is the associated 
experimental error. The occupation numbers are de-
termined separately for each functional evaluation 
(equivalent to a linear least-squares fit with linear con-
straints). The employed method is general and has 
been applied to test systems, where electron correla-
tion yielded dramatic improvement in the data repro-
duction [8-10]. 

In the present application, however, we will restrict 
ourselves to idempotent ODMs, i.e. to an independent-
particle model. As we will see, this is justified by the 
sufficient flexibility of the model. 

Table 1. List of fits per formed on the C o m p t o n profile of 
neon. 

Fit No. of Data Weight No. of GOF a 

no. par. iter. 

1 8 21 exp. b 1/a 49 0.371 0.169 
2 5 21 exp. b 4 0.437 0.165 
3 4 21 exp. b Mo1 4 0.926 0.233 
4 5 21 exp. b 

21 CI c 
1 4 3.67 x 1 0 ~ 4 4.79 x 1 0 " 3 

5 4 
21 exp. b 

21 CI c 1 3 1.84 x 10~ 6 3.29 x 1 0 " 4 

a See text for definition. - b Ref. [21], - c Ref. [28]. 

3. Valence Compton Profile of Neon 

In order to apply the described method, we have 
chosen the atomic valence Compton profile of neon 
that has been reported by Eisenberger in 1972 [21]. 
The author subtracted from his experimental X-ray 
data an energy-dependent hydrogenic core contribu-
tion in order to account for limitations of the impulse 
approximation for K-shell electrons. As a result, the 
data are normalized to 8 (instead of the full 10) elec-
trons. We have used the AgKa data for the sake of 
compatibility with earlier fits [11] and because the 
MoKa valence data have been shown to exhibit an 
energy dependence [2], i.e. not to fulfil the impulse 
approximation [16], As a basis set, we employed the 
near-Hartree-Fock STO basis of Clementi and Roetti 
(CR) [23], The H F canonical ls-orbital was kept 
frozen and unoccupied. The N H F density matrix of 
CR served as the initial guess. No variation of occupa-
tion numbers was performed, since the resulting in-
crease of the number of parameters is not supported 
by the restricted data set. 

This setup results in at most 8 variational parame-
ters: 4 rotation angles to mix the 2s-orbital with the 
virtual orbitals of s-type, 3 rotation angles for the 
corresponding mixing within the p-set, and a scaling 
factor to account for deviations in the normalization 
of the profiles. Since Eisenberger [21] reports only 21 
data points between q = 0 and q = 5.0 h/a0, linear de-
pendencies are likely to occur, because the system is 
overparametrized. The data were weighted by l / a k , 
where ok is chosen to be the absolute statistical error 
of the point k, estimated by interpolation of the data 
given in [21]. It has been assumed that the ak are 
uncorrelated. 

Four fits have been performed with varying num-
bers of vibrational parameters. They are listed in 
Table 1. No. 1 varies all parameters described above 
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< p - 2 > J( 0) N <P> <T> <P3> <P4> 

1 5.393 2.565 8.208 24.02 108.0 6785 4.833 x l O 5 

2 5.378 2.565 8.031 19.36 37.39 511.3 7814 
3 5.513 2.571 8.041 19.57 38.84 548.4 8312 
4 5.374 2.564 8.034 19.39 37.53 514.0 7848 
N H F a 5.365 2.548 8.000 18.97 36.01 498.3 7784 
Gaussians b 5.425 2.566 8.009 18.86 32.69 317.1 1996 

Ref. [23], - b Ref. [11]. 

Table 2. Expectation values 
of the momentum moments 
<p*> for different valence 
wave functions (unsealed). 
We report the Compton 
profile at the peak, J(0) = 
< p _ 1 ) / 2 and the kinetic en-
ergy < T ) = <p2 >/2, rather 
than the corresponding mo-
ments themselves. 
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Fig. 1. Difference valence Compton profiles foir various fits 
to the AgKa da ta of neon [21] (circles with error bars). The 
reference is the N H F profile [23], The curves are fits No. 1 
(dashed), No. 2 (full), No. 3 (dotted, see Table 1) and a fit by 
Gaussians (dash-dotted, [11]). 

and results in a close reproduction of the experimental 
data. The parameters are, however, very strongly 
correlated and consequently undetermined. As a re-
sult, the valence momentum-space expectation values 
derived from the resulting orbitals (see Table 2) are 
"unreasonable", especially for the "outer" moments. 

In order to avoid this problem, we removed mixing 
parameters f rom the s-subset consecutively. If only the 
mixing-angle between the 2 s and the first virtual s-or-
bital is left, the sum of weighted deviation squares is 
still comparatively small (No. 2 in Table 1). The repro-
duction of the Compton profile is surprisingly good, 
given the fact that only 5 variational parameters 
(4 angles and the scaling) have been employed (Fig-
ure 1). This fit actually exhibits the best "goodness of 
fit" ( G O F = y£f/(n — m) with n data points and m 
parameters). Removal of the last s-type mixing angle 
from the parameter set, however, leads to a serious 
deterioration of the quality of the fit. For the sake of 

completeness, we report the results of this (4 parame-
ter) fit as No. 3. 

In order to compare our results with a standard fit 
to the same data, we have performed another fit of the 
same type as No. 2, but with equal (unit) weight on the 
data (No. 4). The results may be compared with the 
ones obtained by Gadre and Naras imhan [11] with an 
expansion of the same data [21] into Gaussian func-
tions. However, their fit employs 16 parameters 
(8 Gaussians with one linear and one non-linear pa-
rameter each). Our value for Sf is almost the same as 
the one with the Gaussians (3.70 x 10 ~4), despite the 
fact that only 5 parameters are varied. The reason lies, 
of course, in the stronger "bias" of our scheme by 
employing an optimized atomic basis set (Slater-type 
functions plus opt imum linear combination). 

The quality of data reproduction of the various fits 
may be judged from Fig. 1, where fit No. 1 (dashed 
line), No. 2 (full), No. 3 (dotted) and the Gaussian fit 
(dashed-dotted) were used to calculate deviations 
from the N H F valence Compton profile. Note that fit 
No. 4 has not been plotted, since it is virtually indis-
tinguishable from fit No. 2. The circles denote the ex-
perimental values with error bars of c k . It may be seen 
that with the exception of fit No. 3, all fits reproduce 
the data with similar quality. No. 3 leaves much to be 
desired in several regions of the Compton profile, par-
ticularly for small q. All fits lie well within the (rather 
large) error bars. 

The p-space valence expectation values (Table 2) of 
fit No. 4 compared with the results of Gadre and 
Naras imhan are characterized by a stronger shift to-
wards large p-values and a larger normalization factor 
(as may be seen from column 3). Consequently, the 
kinetic energy of our fit is considerably larger than the 
one obtained from Gaussian fits. This may easily 
be assigned (see [24]) to the different behaviour of 
Lorentzian-type functions (which is ultimately the 
form of our STO functions in momentum space [25]), 
and Gaussians. Our value tends to overestimate the 
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<p - 2 > J( 0) N <p> < r > <P3> <P4> 

2 a 5.472 2.735 10.00 35.51 129.8 3595 9.860 x 104 

5 5.555 2.739 10.00 35.23 128.7 3586 9.858 x 104 

N H F b 5.480 2.728 10.00 35.20 128.5 3584 9.860 x 104 

C I C 5.553 2.739 10.00 35.24 128.9 3591 9.872 x 104 

Valence fit has been rescaled to 8 electrons before adding the N H F [23] core. 
Ref. [23], - c Ref. [28], 

Table 3. Expectation values 
of the total momen tum mo-
ments <p9> for different wave 
functions. We report the 
Compton profile at the peak, 
J(0) = < p - 1 > / 2 and the 
kinetic energy <T> = <p 2 ) /2 , 
rather than the correspond-
ing moments themselves. 

Fig. 2. Difference in the total spherically averaged momen-
tum density n(p) for fit No. 2 (full), fit No. 5 (dashed) and CI 
(dotted, [28]) with respect to the N H F density [23], The fits 
are normalized to 10 electrons. 

Fig. 3. Difference in the total radial momentum distribution 
I(p) with respect to the N H F distribution [23], For the nota-
tion and normalization see Fig. 2. 

kinetic energy, whereas the Gaussian fit underesti-
mates it. The experimental value lies at 128.94 EH 

( £ h = 1 Hartree - 27.21165 eV = 4.359828 • 1 0 " 1 8 J) 
for the total energy [26, 27], calculated by using the 
virial theorem. By adding the "experimental" valence 
values to the NHF-core contribution, we obtain 
129.93, 130.06 and 125.23 EH for our fits 2 and 4 and 
for the Gaussian fit, respectively. Note that the value 
for fit 2 differs somewhat from the one given in 
Table 3, since it still includes the scale. 

In Figs. 2 - 5 we present difference densities in 
momentum and position space for three functions 
with the N H F solution as reference. The full line is fit 
No. 2 from Table 1 and as such derived from experi-
mental data. The dotted one denotes a CI calculation 
by Bunge and Esquivel [28] that was done in a basis 
set consisting of the one of CR [23], enhanced by 
additional s, p, d, and f-functions. The dashed curve 
was obtained by a fit (No. 5 in Table 1) to the same set 
of data points as the experimental ones [21], but using 
the CI Compton-profile values with unit weight. The 
parameters varied are the same as in fit 2, but no scale 

factor was included. This fit was performed in order to 
see how close a fit of this type can reproduce values 
other than the Compton profile. 

As one sees, the agreement in momentum space is 
quite good. The momentum density n(p) (Fig. 2) and 
the radial momentum distribution J(p) (Fig. 3) of fit 
No. 5 are (on our scale) almost identical with the ones 
from the CI results. For higher values of p, this agree-
ment will, of course, be poorer (in a relative sense), and 
higher moments of momentum will deviate more 
strongly than the lower ones (see Table 3). 

As for the position-space properties (which may be 
calculated directly from N-representable O D M s only), 
the agreement is much less pronounced. Fit No. 5 gets 
only tendencies right (Figs. 4 and 5). The near-nucleus 
region shows the largest deviations, where even the 
sign of the difference with respect to the N H F result is 
different (Figure 4). This is in agreement with the fact 
that high momenta (expressed for example in the 
<p4)-value) are not well described by the Compton 
profile. The electron distribution near the nucleus is 
strongly affected by the "fast" electrons. The agree-
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Table 4. Expectation values of the total position moments <r9> for different wave functions. 

< r " 2 > ( r - 1 ) <r*> <r2> <r3> <r4> < r 1 0 > < r 2 0 > 

2 a 415.8 31.28 7.934 9.870 16.62 35.69 7.955 x 104 1.231 x 101 3 

5 414.9 31.14 7.905 9.467 14.76 28.56 3.790 x 104 5.031 x 101 2 

N H F b 414.9 31.11 7.892 9.376 14.41 27.34 3.233 x 104 4.117 x 1012 

C I C 415.0 31.11 7.935 9.545 14.94 29.01 3.880 x 104 5.136 x 101 2 

a Valence fit has been rescaled to 8 electrons before adding the N H F [23] core. - b Ref. [23]. - c Ref. [28]. 

0.6 

0.4 

- 1 
0 0.5 1 1.5 2 

r/a o 

Fig. 4. Difference in the total spherically averaged charge 
density g(r) with respect to the N H F density [23]. For the 
notat ion and normalization see Figure 2. 
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Fig. 5. Difference in the total radial charge density distribu-
tion D(r) with respect to the N H F distribution [23]. For the 
notation and normalization see Figure 2. 

ment becomes better for regions of larger r. This may 
also be seen in Table 4 where the positive powers of r 
from the CI calculation are reasonably well repre-
sented by the fit, whereas the negative ones from the 
fit are equal to or poorer than the ones from the N H F 
initial guess. 

We note that the differences in the experimental 
curves occur in both spaces in similar regions as the 
ones from CI. They are only considerably stronger. 
Finally, some attention should be paid to the fact that 
the CI shows a slight enhancement of the momentum 
density at the origin, whereas the one from experiment 
is lower than the one obtained from N H F (Figure 2). 
For both functions, the difference between the p = 0 
value and the local maximum in n(p), which leads to 
non-monotonic behaviour [29, 30], is more pronounced 
than in the Hartree-Fock function. It is interesting to 
observe, that fits of the form (1) do not always repro-
duce this feature [11, 12]. 

4. Conclusions 

For the example of the atomic Compton profile of 
neon we have shown that experimentally obtained 
one-particle expectation values may be used to obtain 
an approximate one-particle wave function. The qual-
ity of fits obtained in such an N-representable O D M 
framework is comparable to conventional ones, the 
number of parameters required may be even smaller. 

Unlike fitting procedures of form (1), this method-
ology offers the opportunity to extract information 
about the structure of the system in the complemen-
tary space in general (in contrast to an earlier different 
approach [31]). However, since the available informa-
tion is usually insufficient to define the underlying 
function - the one-particle density matrix - completely, 
the resulting orbitals are not necessarily unique. This 
problem, equivalent to the well-known multiple-min-
ima problem in parameter optimization, may be, at 
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least partly, overcome by a judicious choice of the 
initial guess and the subspace of parameters allowed 
to vary. Initial guesses are supplied by ab-initio calcu-
lations, whereas the parameter space can be restricted 
by chemical intuition. 

In our atomic example, idempotency constraints 
had to be retained in order to limit the number of 
parameters. This restriction is not inherent in the 
applied method, which is general, as pointed out 
above. Additional restrictions were introduced to 
avoid strong parameter correlation and resulting "un-
physical" behaviour. Given these conditions, we were 
able to obtain a wave function yielding essentially the 
experimental Compton profile and reproducing other 
expectation values quite consistently. 

Concerning position space, caution is necessary in 
the interpretation of the results of our fits. Especially 
changes (with respect to the H F initial guess) in the 
small-r region are certainly not well described. How-
ever, some general tendency (charge density shift from 

intermediate to lower and higher radii) may be ex-
tracted. 

In order to get a firmer grip on the "true" O D M , 
one has to combine experimental information about 
both position and momentum space. More recent and 
considerably more accurate measurements than the 
one used in this work are available. Applications of 
our method to molecular and solid-state systems are 
presently being carried out as well. 
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