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A recently developed method for the least-squares reconstruction of one-particle reduced density
matrices from one-particle expectation values has been applied to isotropic Compton profiles of
neon from the literature. The resulting densities in momentum and position space are compared with
the ones obtained from ab-initio calculations.
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1. Introduction

In the last two decades, several algorithms for the
least-squares fitting of experimental data by functions
that are parametrized in terms of the one-particle re-
duced density matrix (ODM) [1] have been developed
[2—-6]. Most of them are restricted to an idempotent
sub-class of N-representable [7] ODMs, i.e. they de-
scribe the system in an independent-particle model,
which corresponds to a single Slater determinant as
wave function for the system.

We have recently developed a method for the afore-
mentioned ODM reconstructions that works outside
this restriction and varies the ODM over the full set of
ensemble-representable one-matrices [5]. The applica-
tion of this method to theoretical model-systems has
shown that the inclusion of electron correlation is
necessary to reproduce mixed sets of position and
momentum density dependent data [8—10]. The expe-
rience gained on these systems indicates, on the other
hand, that the idempotency condition may well be
retained in cases where only data of one kind are used.

Isotropic Compton profiles J(gq) are sometimes fit
by a linear combination of functions, i.e.

J@ =5 a(:q). ()
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where 7 are functions of g including some nonlinear
parameter(s) {. Gaussians [11, 12], Lorentzians [13, 14,
12] and hydrogenic Lorentzians [15] have been em-
ployed as functional forms of 7. Such fits allow the
straightforward evaluation of the isotropic momen-
tum distribution 7 (p), its moments { p?) [16] and more
complicated momentum-space quantities such as
stopping powers [17]. However, since they do not have
the form of an ODM, they do not permit the direct
calculation of position-space expectation values, ex-
cept through additional approximations in the frame-
work of density-functional theory [12, 18].

In this paper we report results from the application
of our method to the isotropic Compton profile J(gq).
We have used the example of neon to demonstrate the
possibilities and limitations of an inference of informa-
tion about orbitals from small sets of momentum-
space data.

Section 2 gives a general description of the applied
method and its parametrization. Section 3 deals with
the application to the Compton profile of atomic neon.

2. Methodology

In the following we discuss only spin-free properties
of closed-shell singlet systems. The parametrization of
the isotropic Compton profile J(g) is therefore in
terms of the spin-traced ODM. Extensions to systems
including spin are straightforward. We only outline
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the method and refer for more details to [8], [9], and
[10].

We write the isotropic Compton profile in terms of
the ODM by expanding the latter in a basis set {y}:

© 2nm
9=%P.-1 [ [ [ 7@ 7:(p) psin(6,)d0,d¢,dp.
i’ lgl 0 O )

P, are the elements of the ODM in the {y}-expansion,
and the j;(p) are Fourier-transforms of the basis or-
bitals y;(r).

We may not directly use the P,; as fitting parame-
ters, since the ODM they represent has to fulfil so-
called N-representability conditions [7]. It has to be
Hermitean, normalized and positive-semidefinite with
eigenvalues bounded by 0 and 2 [19].

The first condition (Hermiticity) is equivalent to the
orthogonality of the eigenfunctions of the ODM, the
natural orbitals (NOs). We enforce it by applying a finite
series of real-orthogonal transformations to an initial
guess, each transformation associated with only one
non-linear parameter, a so-called “rotation-angle” [20].
The latter may then be used as parameters in a least-
squares fit.

The other conditions (boundaries on eigenvalues)
impose restriction on the occupation numbers of the
NOs, which may consequently be used as additional
linear parameters with linear constraints. If they are
kept fixed at values of either 0 or 2, the resulting ODM
describes the system in the framework of the indepen-
dent-particle model. Variation to fractional values
means the inclusion of electron correlation on a one-
particle level [1].

We employ a nested algorithm [10] to determine the
set of rotation angles that minimizes

Fe= % (T (q0) — I (q)/ ok , ©)

where J*P(q,) is the experimental profile at the mo-
mentum-component value g, , and g, is the associated
experimental error. The occupation numbers are de-
termined separately for each functional evaluation
(equivalent to a linear least-squares fit with linear con-
straints). The employed method is general and has
been applied to test systems, where electron correla-
tion yielded dramatic improvement in the data repro-
duction [8-10].

In the present application, however, we will restrict
ourselves to idempotent ODMs, i.e. to an independent-
particle model. As we will see, this is justified by the
sufficient flexibility of the model.
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Table 1. List of fits performed on the Compton profile of
neon.

Fit No.of Data Weight No.of & GOF*

no. par. iter.

1 8 21 exp.® 1/6* 49 0371 0.169

2 5 21 exp.® 1/6*> 4 0437 0.165

3 4 21 exp.® 1/ 4 0926 0.233

4 5 21 exp.® 1 4 367x107* 4.79x1073
S 4 21CI¢ 1 3 1.84x107% 329x107*

* See text for definition. — ® Ref. [21]. — © Ref. [28].

3. Valence Compton Profile of Neon

In order to apply the described method, we have
chosen the atomic valence Compton profile of neon
that has been reported by Eisenberger in 1972 [21].
The author subtracted from his experimental X-ray
data an energy-dependent hydrogenic core contribu-
tion in order to account for limitations of the impulse
approximation for K-shell electrons. As a result, the
data are normalized to 8 (instead of the full 10) elec-
trons. We have used the AgKa data for the sake of
compatibility with earlier fits [11] and because the
MoKu valence data have been shown to exhibit an
energy dependence [2], i.e. not to fulfil the impulse
approximation [16]. As a basis set, we employed the
near-Hartree-Fock STO basis of Clementi and Roetti
(CR) [23]. The HF canonical 1s-orbital was kept
frozen and unoccupied. The NHF density matrix of
CR served as the initial guess. No variation of occupa-
tion numbers was performed, since the resulting in-
crease of the number of parameters is not supported
by the restricted data set.

This setup results in at most 8 variational parame-
ters: 4 rotation angles to mix the 2s-orbital with the
virtual orbitals of s-type, 3 rotation angles for the
corresponding mixing within the p-set, and a scaling
factor to account for deviations in the normalization
of the profiles. Since Eisenberger [21] reports only 21
data points between g = 0 and g = 5.0 #/a,, linear de-
pendencies are likely to occur, because the system is
overparametrized. The data were weighted by 1/0Z,
where g, is chosen to be the absolute statistical error
of the point k, estimated by interpolation of the data
given in [21]. It has been assumed that the g, are
uncorrelated.

Four fits have been performed with varying num-
bers of vibrational parameters. They are listed in
Table 1. No. 1 varies all parameters described above
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P~ JO N <P <T>

Table 2. Expectation values
of the momentum moments

p* p*

1 5.393
2 5.378
3 5.513
4 5.374
NHF ? 5.365
Gaussians ®  5.425

2.565
2.565
2.571
2.564
2.548
2.566

8.208
8.031
8.041
8.034

8.009

24.02
19.36
19.57
19.39
18.97
18.86

108.0
37.39
38.84
37.53
36.01
32.69

{p?)> for different valence
wave functions (unscaled).
We report the Compton
profile at the peak, J(0) =
{p~')>/2 and the kinetic en-
ergy {T)={p?»/2, rather
than the corresponding mo-
ments themselves.

4.833x10°
7814
8312
7848
7784
1996

6785
511.3
548.4
514.0
498.3
3171

2 Ref. [23]. — ® Ref. [11].
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Fig. 1. Difference valence Compton profiles foir various fits

to the AgKa data of neon [21] (circles with error bars). The

reference is the NHF profile [23]. The curves are fits No. 1

(dashed), No. 2 (full), No. 3 (dotted, see Table 1) and a fit by

Gaussians (dash-dotted, [11]).

-0.1

and results in a close reproduction of the experimental
data. The parameters are, however, very strongly
correlated and consequently undetermined. As a re-
sult, the valence momentum-space expectation values
derived from the resulting orbitals (see Table 2) are
“unreasonable”, especially for the “outer” moments.
In order to avoid this problem, we removed mixing
parameters from the s-subset consecutively. If only the
mixing-angle between the 2s and the first virtual s-or-
bital is left, the sum of weighted deviation squares is
still comparatively small (No. 2 in Table 1). The repro-
duction of the Compton profile is surprisingly good,
given the fact that only 5 variational parameters
(4 angles and the scaling) have been employed (Fig-
ure 1). This fit actually exhibits the best “goodness of
fit” (GOF = |/ &/(n—m) with n data points and m
parameters). Removal of the last s-type mixing angle
from the parameter set, however, leads to a serious
deterioration of the quality of the fit. For the sake of

completeness, we report the results of this (4 parame-
ter) fit as No. 3.

In order to compare our results with a standard fit
to the same data, we have performed another fit of the
same type as No. 2, but with equal (unit) weight on the
data (No. 4). The results may be compared with the
ones obtained by Gadre and Narasimhan [11] with an
expansion of the same data [21] into Gaussian func-
tions. However, their fit employs 16 parameters
(8 Gaussians with one linear and one non-linear pa-
rameter each). Our value for & is almost the same as
the one with the Gaussians (3.70 x 10~ %), despite the
fact that only 5 parameters are varied. The reason lies,
of course, in the stronger “bias” of our scheme by
employing an optimized atomic basis set (Slater-type
functions plus optimum linear combination).

The quality of data reproduction of the various fits
may be judged from Fig. 1, where fit No. 1 (dashed
line), No. 2 (full), No. 3 (dotted) and the Gaussian fit
(dashed-dotted) were used to calculate deviations
from the NHF valence Compton profile. Note that fit
No. 4 has not been plotted, since it is virtually indis-
tinguishable from fit No. 2. The circles denote the ex-
perimental values with error bars of ¢, . It may be seen
that with the exception of fit No. 3, all fits reproduce
the data with similar quality. No. 3 leaves much to be
desired in several regions of the Compton profile, par-
ticularly for small gq. All fits lie well within the (rather
large) error bars.

The p-space valence expectation values (Table 2) of
fit No.4 compared with the results of Gadre and
Narasimhan are characterized by a stronger shift to-
wards large p-values and a larger normalization factor
(as may be seen from column 3). Consequently, the
kinetic energy of our fit is considerably larger than the
one obtained from Gaussian fits. This may easily
be assigned (see [24]) to the different behaviour of
Lorentzian-type functions (which is ultimately the
form of our STO functions in momentum space [25]),
and Gaussians. Our value tends to overestimate the



224

H. Schmider, V. H. Smith, Jr., and W. Weyrich - Atomic Orbitals from Compton Profiles

Table 3. Expectation values

™ JO) N <p> T <p*> 420 of the total momentum mo-

ments {p?) for different wave

28 5.472 2.735 10.00 35.51 129.8 3595 9.860 x 10* functions. We report the
5 5.555 2.739 10.00 35.23 128.7 3586 9.858 x 10* Compton profile at the peak,
NHF °® 5.480 2.728 10.00 35.20 128.5 3584 9.860 x 10* JO)=<¢p~'>/2 and the
CI® 5.553 2.739 10.00 35.24 128.9 3591 9.872 x 10* kinetic energy (T ) =<{p?)/2,

rather than the correspond-

? Valence fit has been rescaled to 8 electrons before adding the NHF [23] core.

® Ref. [23]. - © Ref. [28].
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Fig. 2. Difference in the total spherically averaged momen-
tum density 7 (p) for fit No. 2 (full), fit No. 5 (dashed) and CI
(dotted, [28]) with respect to the NHF density [23]. The fits
are normalized to 10 electrons.

kinetic energy, whereas the Gaussian fit underesti-
mates it. The experimental value lies at 128.94 E,
(E, = 1 Hartree = 27.21165¢eV = 4.359828 - 10~ 18 J)
for the total energy [26, 27], calculated by using the
virial theorem. By adding the “experimental” valence
values to the NHF-core contribution, we obtain
129.93, 130.06 and 125.23 E,, for our fits 2 and 4 and
for the Gaussian fit, respectively. Note that the value
for fit 2 differs somewhat from the one given in
Table 3, since it still includes the scale.

In Figs.2-5 we present difference densities in
momentum and position space for three functions
with the NHF solution as reference. The full line is fit
No. 2 from Table 1 and as such derived from experi-
mental data. The dotted one denotes a CI calculation
by Bunge and Esquivel [28] that was done in a basis
set consisting of the one of CR [23], enhanced by
additional s, p, d, and f-functions. The dashed curve
was obtained by a fit (No. 5 in Table 1) to the same set
of data points as the experimental ones [21], but using
the CI Compton-profile values with unit weight. The
parameters varied are the same as in fit 2, but no scale

ing moments themselves.

1 AI(p)/agh”!

4 6 10
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Fig. 3. Difference in the total radial momentum distribution

I(p) with respect to the NHF distribution [23]. For the nota-

tion and normalization see Fig. 2.

factor was included. This fit was performed in order to
see how close a fit of this type can reproduce values
other than the Compton profile.

As one sees, the agreement in momentum space is
quite good. The momentum density 7 (p) (Fig. 2) and
the radial momentum distribution I(p) (Fig. 3) of fit
No. 5 are (on our scale) almost identical with the ones
from the CI results. For higher values of p, this agree-
ment will, of course, be poorer (in a relative sense), and
higher moments of momentum will deviate more
strongly than the lower ones (see Table 3).

As for the position-space properties (which may be
calculated directly from N-representable ODMs only),
the agreement is much less pronounced. Fit No. 5 gets
only tendencies right (Figs. 4 and 5). The near-nucleus
region shows the largest deviations, where even the
sign of the difference with respect to the NHF result is
different (Figure 4). This is in agreement with the fact
that high momenta (expressed for example in the
{p*>-value) are not well described by the Compton
profile. The electron distribution near the nucleus is
strongly affected by the “fast” electrons. The agree-
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Table 4. Expectation values of the total position moments {r?) for different wave functions.
r % Tty <ty < r* < o <’
28 415.8 31.28 7.934 9.870 16.62 35.69 7.955 x 10* 1.231 x 10*3
5 4149 31.14 7.905 9.467 14.76 28.56 3.790 x 10* 5.031 x 10'2
NHF ® 4149 31.11 7.892 9.376 14.41 27.34 3.233 x 10* 4.117 x 10!
CI® 415.0 31.11 7.935 9.545 14.94 29.01 3.880 x 10* 5.136 x 1012
2 Valence fit has been rescaled to 8 electrons before adding the NHF [23] core. — ® Ref. [23]. — © Ref. [28].
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Fig. 4. Difference in the total spherically averaged charge
density ¢(r) with respect to the NHF density [23]. For the
notation and normalization see Figure 2.

ment becomes better for regions of larger r. This may
also be seen in Table 4 where the positive powers of r
from the CI calculation are reasonably well repre-
sented by the fit, whereas the negative ones from the
fit are equal to or poorer than the ones from the NHF
initial guess.

We note that the differences in the experimental
curves occur in both spaces in similar regions as the
ones from CI. They are only considerably stronger.
Finally, some attention should be paid to the fact that
the CI shows a slight enhancement of the momentum
density at the origin, whereas the one from experiment
is lower than the one obtained from NHF (Figure 2).
For both functions, the difference between the p=0
value and the local maximum in 7(p), which leads to
non-monotonic behaviour [29, 30], is more pronounced
than in the Hartree-Fock function. It is interesting to
observe, that fits of the form (1) do not always repro-
duce this feature [11, 12].

T/a()

Fig. 5. Difference in the total radial charge density distribu-
tion D(r) with respect to the NHF distribution [23]. For the
notation and normalization see Figure 2.

4. Conclusions

For the example of the atomic Compton profile of
neon we have shown that experimentally obtained
one-particle expectation values may be used to obtain
an approximate one-particle wave function. The qual-
ity of fits obtained in such an N-representable ODM
framework is comparable to conventional ones, the
number of parameters required may be even smaller.

Unlike fitting procedures of form (1), this method-
ology offers the opportunity to extract information
about the structure of the system in the complemen-
tary space in general (in contrast to an earlier different
approach [31]). However, since the available informa-
tion is usually insufficient to define the underlying
function — the one-particle density matrix — completely,
the resulting orbitals are not necessarily unique. This
problem, equivalent to the well-known multiple-min-
ima problem in parameter optimization, may be, at
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least partly, overcome by a judicious choice of the
initial guess and the subspace of parameters allowed
to vary. Initial guesses are supplied by ab-initio calcu-
lations, whereas the parameter space can be restricted
by chemical intuition.

In our atomic example, idempotency constraints
had to be retained in order to limit the number of
parameters. This restriction is not inherent in the
applied method, which is general, as pointed out
above. Additional restrictions were introduced to
avoid strong parameter correlation and resulting “un-
physical” behaviour. Given these conditions, we were
able to obtain a wave function yielding essentially the
experimental Compton profile and reproducing other
expectation values quite consistently.

Concerning position space, caution is necessary in
the interpretation of the results of our fits. Especially
changes (with respect to the HF initial guess) in the
small-r region are certainly not well described. How-
ever, some general tendency (charge density shift from
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