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A practical method for the calculation of Compton profiles for cubic systems with O and O,
symmetry is presented that is based on a multipole expansion of the electron momentum density
(EMD) in terms of cubic harmonics. The central quantities, the expansion coefficients, are deter-
mined by a Gaussian-type integration (special directions) over the angular coordinates. From these
coefficients the coefficients of an analogous expansion of the Compton profile can be directly
calculated, establishing a transparent relationship between the electron momentum density and the
Compton profile. This direct relationship offers the possibility of tracing back Compton-profile
anisotropies to EMD anisotropies more easily, as demonstrated for MgO and FeAl.
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1. Introduction

Compton scattering within the impulse approxima-
tion [1-4] provides valuable insight into the ground-
state electronic structure of solids. The central quan-
tity is the electron momentum density (EMD), which
is accessible by summing the squares of the Fourier
transforms (FT) of the ground-state one-electron
wavefunctions. Unfortunately the Compton profile
(CP) contains only the average of the EMD over
planes perpendicular to the scattering vector, compli-
cating the interpretation of the CP considerably. It is
a very demanding and time consuming task to obtain
an experimental EMD, since profiles for many direc-
tions of the scattering vector have to be collected.
Most of the time one is forced to make a comparison
between theory and experiment for CPs or their differ-
ences (DCPs) along the main symmetry directions,
rather than for the EMD itself. It is therefore highly
desirable to gain knowledge of how to relate impor-
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tant features in the CPs (DCPs) to certain features in
the EMD. In the present study we try to achieve this
goal by noticing that both the EMD and the CPs may
be expanded in a series of lattice harmonics, and that
the coefficients of both expansions are closely related.

2. Theory

The EMD can be expanded in a series of lattice
harmonics (cf. [5] and the references therein), in the
present case for the Laue class O, in a series of cubic
(or hexoctahedral) harmonics K :

n(p,p) = % GL(p)KL(D). 1)

Unlike in previous work [6, 7] the coefficients G, (mo-
ments of the EMD) are not obtained by least-squares
fitting but are computed by integrating over the angu-
lar coordinates. We use a Gaussian integration for-
mula (N special directions) introduced by Fehlner and
Vosko [8] and also their definition of cubic harmonics:

Gi(p)=[dpK.(p)n(p,p)
N
~4n Z AjKL(ﬁj)n(Psﬁj)- (2

ji=1
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Within the impulse approximation [3, 4] the CP is
the projection J,(q) of the EMD onto the scattering
vector a =|q| - d. Using (1) one gets [9, 10]

Jalg) =2n % 9@ K.(@), ©)

9.@= [ dpp Gr(p) P (1) : )
lal p
where [ is the order of the associated Legendre func-
tions P™ contained in K;, and P, is the Legendre
polynomial of the same order.

It is obvious from (4) that the expansion coefficient
g.(q) for a particular cubic harmonic in the CP expan-
sion is based only on the corresponding EMD expan-
sion coefficient G, (p) (same L-value). This fact is es-
sential to our present work, since it allows us (as we
will discuss later on) to trace back anisotropies in the
CP (DCPs) to anisotropies in the EMD. Establishing
such a link has always been of considerable interest
[11-15]. Usually CPs are calculated by a direct nu-
merical integration of the EMD over planes perpen-
dicular to the scattering vector [7, 16, 17]. If the density
of sampling points is roughly equivalent, both ap-
proaches are of comparable accuracy. However, dis-
cussing DCPs in terms of EMD anisotropies is con-
siderably more complicated, if not impossible, in the
latter case.

An FT of real-space Bloch wavefunctions and sub-
sequent squaring and summation provides the EMD
n(p,p;) along special Gauss-directions p; needed to
calculate the expansion coefficients G (p). In the pres-
ent work the wavefunctions have been obtained from
a nonrelativistic one-electron Schrédinger equation
by means of the Linearized Augmented Plane Wave
(LAPW) method [18, 19] within the Local Density
Approximation (LDA). The FT of an LAPW wave-
function is similar to the case of an Augmented Plane
Wave (APW) wavefunction [7, 16, 20].

Table 1. Parameters for the valence CP calculations.

MgO FeAl
Lattice constant [a.u.] 7.96466 5.49619
Number of special directions 15 21
Pomax [2-0.] 733 7.43
Points/direction (p<p,..,) 651 651
P_.. [a.u] — isotropic correction 42.43 41.15
Points/ direction (p,,,, <p<P,,.) 90 60
CP-norm in p<P,,, 7.988 10.998

The procedure outlined above is used to calculate
the valence part of a CP. Several additions are neces-
sary to obtain total CPs: (a) isotropic cutoff correction
(Pmax <0 in (4)), which is essential to achieve the
correct normalization, (b) addition of an isotropic
atomic-like core-CP, and (c) a Lam-Platzman term
[21, 22] to describe electron correlation effects beyond
the non-interacting limit, isotropic in the case of the
LDA.

3. Computational Details

In order to check the feasibility and accuracy of our
approach, we chose two cubic systems as our test cases
for which rather accurate theoretical and experimen-
tal data exist [16, 17, 23, 24]: Insulating MgO (NaCl
structure) and the ordered transition-metal alloy FeAl
(CsCl structure). The present LAPW calculation uti-
lizes the same self-consistent LDA muffin-tin poten-
tials [16, 25] as the previous APW calculations and
restricts the maximum number of plane waves to 140
for MgO and to 200 for FeAl. The EMD and CPs are
computed using the new procedure outlined in Sec-
tion 2.

The 15- and 21- special-direction Gaussian integra-
tion formula [8] was applied to calculate the multipole
moments of the valence EMD for MgO and FeAl,
respectively. Therefore the first 15 (L < 24) terms for
MgO and the first 20 terms (L <28) for FeAl are
described properly both in the EMD and CP expan-
sions. All other parameters are listed in Table 1.

4. Results and Discussion
A) MgO

Figure 1 shows the most important anisotropic
contributions to the EMD in the top panel and to the
CP in the bottom panel. The L=4 and L = 6 contri-
butions (‘moments’) are of comparable size, whereas
the L=28 term (not shown) is already smaller by a
factor of 2. For L> 16 the contributions are practi-
cally zero, indicating a rapid convergence of both the
EMD and CP expansions. Focussing on the EMD
expansion, we find maxima between 1 and 1.5 a.u. It
is obvious from Table 2 that the L =4 term transfers
momenta from [111] to [100], whereas the L =6 term
shuffles momenta from [110] to both [100] and [111].
Hence the net result is a momentum-density transfer
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Fig. 1. Expansion coefficients of the electron momentum
density (top panel) and of the Compton profile (bottom
panel) for MgO.

from [110] (next-nearest neighbours O—0) to [100]
(nearest neighbours Mg—0O). The redistribution has
been attributed to the orthogonality constraints im-
posed on the ionic O wavefunctions leaking into the
Mg-ion core regions [16]. Hence, the L=4 and L=6
contributions are due to the small components of the
wavefunctions around the Mg sites built up by the O
wavefunction tails. Considering the CP moments, we
see that despite of the integration procedure in (4) the
positions of the minima and maxima are similar to the
EMD moments.

In Fig.2a the DCP between [100] and [111] is
shown for MgO. Comparing the present results (full
line) with those of a previous APW calculation [16]
(dotted line), we find a very good agreement. We at-
tribute the small deviations to our denser p-mesh and
not to the different approaches of computing CPs
from the EMD. However, a clear advantage of our
present approach is demonstrated by the dashed line
in Fig. 2a, indicating that only the L = 4 contribution
matters for this particular DCP (see Table 2). Consid-
ering the angular dependence of the cubic harmonics,

- Compton Profiles from a Multipole Expansion

MgO  DCP [100]-[111]
0.10 (a) |
0.05 _
0.00 E—h

5 005 _

8, 4

. —

% 0.08 (b)

Q _
0.04 _

N 4

0.00 Soeqgy
-0.04 ]
C 1 1| 1 1 1 1 1 ]

0 1 2 3 4

q [au]

Fig. 2. Compton-profile difference [100]-[111] for MgO:
(a) Calculated unconvoluted differences: Total (solid), L =4
contribution (dashed), and previous APW results [16] (dot-
ted). (b) Experimental results [23] (bullets) and the present
theoretical data convoluted with the experimental residual
instrument function (solid).

Table 2. Values for the cubic harmonics along high-symme-
try directions.

K, ([100) K, ([110) K, ([111])

L l

0 0 0.28 0.28 0.28
4 4 0.65 —-0.16 —-043
6 6 0.36 —0.58 0.64

it is possible to relate the [100]-[111] DCP unambigu-
ously to the different shape of the EMD around the
above directions.

Concerning the agreement with the experimental

data [23] shown in Fig. 2b, we refer to the discussion
in [16].

B) FeAl

In Fig. 3 we show the EMD coefficients in the top
and the CP coefficients in the bottom panel. Although
the L=4 and L =6 terms are the largest, the L-con-
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Fig. 3. Expansion coefficients of the electron momentum
density (top panel) and of the Compton profile (bottom
panel) for FeAl.

vergence is much slower than for MgO. This is entirely
a consequence of the rather complicated Fermi sur-
face, which introduces sharp breaks into the EMD.
Yet, we have to disagree with Bross [7], who claimed
that a decomposition of the EMD in cubic harmonics
is not appropriate, and hence the calculation of CPs
will not work properly. Inspecting the EMD moments
more closely, we see that the coefficients are smooth
only for small p-values (inside the 1st Brillouin zone).
The superposed small irregular oscillations are cer-
tainly not a consequence of the finite p-mesh along the
special directions (Ap ~0.01 a.u.), but rather of the
limited number of special directions, 21 in our case.
From the L=4 and L =6 term we infer a redistribu-
tion of the momentum density for p < 1.5 a.u. away
from the nearest-neighbour direction [111] (see
Table 2). The redistribution is mainly caused by or-
thogonality constraints imposed on the wavefunctions
along the Fe—Al bond due to the hybridization of the
almost free-electron-like Al states with localized Fe
d-states. Looking at the CP moments in Fig. 3 we
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Fig. 4. Compton-profile difference [100]-[111] for FeAl:
(a) Calculated unconvoluted differences: Total (solid) and
L=4 contribution (dashed). (b) Calculated contributions
from the lowest Al s-like band (dashed) and from all other,
mainly Fe d-like, bands (solid). (c) Experimental results [24]
(bullets) and the present theoretical data convoluted with the
experimental residual instrument function (solid).

notice that the small irregular oscillations are
smoothed by the integration, leading to a slightly bet-
ter L-convergence of the CP expansion.

In Fig. 4a we show the [100]-[111] DCP for FeAl,
which agrees well with previous APW results [17].
Looking at the contributions from the various terms
in the expansion, we find the L = 4 contribution to be
by far the most important one (see Table 2), describing
the DCP rather well for g > 0.75 a.u. In this region the
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DCP is dominated by Fe d-states, which is illustrated
in Figure 4b. Anisotropies caused by the localized
d-like wavefunctions (e, vs. t,,) will contribute
strongly to the L =4 term because the FT step con-
serves their [-character. At lower momenta we find
also a rather large contribution from the lowest al-
most free-electron-like Al s-band, which is opposite to
the Fe d-bands contribution. The opposite sign can be
explained by considering orthogonalized plane-wave-
like Al states, i.e. states showing a d-like orthogonal-
ization hole around the Fe-sites.

A comparison with most recent experimental re-
sults as obtained with a WKa,-spectrometer [24] is
shown in Figure 4c. The agreement is very encourag-
ing, since the remaining discrepancies are contained to
a large extent within the present experimental error
bars. Nevertheless, the CP anisotropy is overesti-
mated, which seems to be a common feature of all
results based on calculations within the framework of
the LDA [2].

5. Summary

The present work demonstrates the usefulness of
computing CPs via an expansion of the EMD into
cubic harmonics. The EMD coefficients are deter-
mined accurately by means of a Gaussian-type inte-
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