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A practical method for the calculation of Compton profiles for cubic systems with O and O h 
symmetry is presented that is based on a multipole expansion of the electron momentum density 
(EMD) in terms of cubic harmonics. The central quantities, the expansion coefficients, are deter-
mined by a Gaussian-type integration (special directions) over the angular coordinates. F rom these 
coefficients the coefficients of an analogous expansion of the Compton profile can be directly 
calculated, establishing a transparent relationship between the electron momentum density and the 
Compton profile. This direct relationship offers the possibility of tracing back Compton-profi le 
anisotropics to E M D anisotropics more easily, as demonstrated for M g O and FeAl. 
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1. Introduction 

Compton scattering within the impulse approxima-
tion [1-4] provides valuable insight into the ground-
state electronic structure of solids. The central quan-
tity is the electron momentum density (EMD), which 
is accessible by summing the squares of the Fourier 
transforms (FT) of the ground-state one-electron 
wavefunctions. Unfortunately the Compton profile 
(CP) contains only the average of the E M D over 
planes perpendicular to the scattering vector, compli-
cating the interpretation of the C P considerably. It is 
a very demanding and time consuming task to obtain 
an experimental EMD, since profiles for many direc-
tions of the scattering vector have to be collected. 
Most of the time one is forced to make a comparison 
between theory and experiment for CPs or their differ-
ences (DCPs) along the main symmetry directions, 
rather than for the E M D itself. It is therefore highly 
desirable to gain knowledge of how to relate impor-
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tant features in the CPs (DCPs) to certain features in 
the EMD. In the present study we try to achieve this 
goal by noticing that both the E M D and the CPs may 
be expanded in a series of lattice harmonics, and that 
the coefficients of both expansions are closely related. 

2. Theory 

The E M D can be expanded in a series of lattice 
harmonics (cf. [5] and the references therein), in the 
present case for the Laue class O h in a series of cubic 
(or hexoctahedral) harmonics KL: 

n(p,p) = j:GL(p)KL(p). (1) 
L 

Unlike in previous work [6, 7] the coefficients Gt (mo-
ments of the EMD) are not obtained by least-squares 
fitting but are computed by integrating over the angu-
lar coordinates. We use a Gaussian integration for-
mula (N special directions) introduced by Fehlner and 
Vosko [8] and also their definition of cubic harmonics: 

GL(p) = j d pKL(p)n(p,p) 

— 4ft X AjKL(pj)n(p,pj). (2) 
j= i 
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Within the impulse approximation [3, 4] the CP is 
the projection Jä(q) of the E M D onto the scattering 
vector a = \q\-ä. Using (1) one gets [9, 10] 

J M = 2 n Z g L ( q ) K L ( ä ) , (3) 
L 

9 M = f d P P G M P J Z ) , ( 4 ) 
l«l W 

where / is the order of the associated Legendre func-
tions Pz

m contained in KL, and P, is the Legendre 
polynomial of the same order. 

It is obvious from (4) that the expansion coefficient 
gL(q) for a particular cubic harmonic in the C P expan-
sion is based only on the corresponding E M D expan-
sion coefficient GL(p) (same L-value). This fact is es-
sential to our present work, since it allows us (as we 
will discuss later on) to trace back anisotropics in the 
C P (DCPs) to anisotropics in the EMD. Establishing 
such a link has always been of considerable interest 
[11-15], Usually CPs are calculated by a direct nu-
merical integration of the E M D over planes perpen-
dicular to the scattering vector [7,16,17]. If the density 
of sampling points is roughly equivalent, both ap-
proaches are of comparable accuracy. However, dis-
cussing DCPs in terms of E M D anisotropics is con-
siderably more complicated, if not impossible, in the 
latter case. 

An FT of real-space Bloch wavefunctions and sub-
sequent squaring and summation provides the E M D 
n(p,pj) along special Gauss-directions pj needed to 
calculate the expansion coefficients GL(p). In the pres-
ent work the wavefunctions have been obtained from 
a nonrelativistic one-electron Schrödinger equation 
by means of the Linearized Augmented Plane Wave 
(LAPW) method [18, 19] within the Local Density 
Approximation (LDA). The FT of an LAPW wave-
function is similar to the case of an Augmented Plane 
Wave (APW) wavefunction [7, 16, 20], 

Table 1. Parameters for the valence C P calculations. 

M g O FeAl 

Lattice constant [a.u.] 7.96466 5.49619 

Number of special directions 15 21 

Pmax [a-U.] 
Points/direction ( p < p m a x ) 

7.33 
651 

7.43 
651 

Pmax [a.u.] - isotropic correction 
Points/ direction ( p m a x < P < P m a x ) 

42.43 
90 

41.15 
60 

CP-norm in p < P m a x 7.988 10.998 

The procedure outlined above is used to calculate 
the valence part of a CP. Several additions are neces-
sary to obtain total CPs: (a) isotropic cutoff correction 
(Pmax < oo in (4)), which is essential to achieve the 
correct normalization, (b) addition of an isotropic 
atomic-like core-CP, and (c) a Lam-Platzman term 
[21, 22] to describe electron correlation effects beyond 
the non-interacting limit, isotropic in the case of the 
LDA. 

3. Computational Details 

In order to check the feasibility and accuracy of our 
approach, we chose two cubic systems as our test cases 
for which rather accurate theoretical and experimen-
tal data exist [16, 17, 23, 24]: Insulating MgO (NaCl 
structure) and the ordered transition-metal alloy FeAl 
(CsCl structure). The present LAPW calculation uti-
lizes the same self-consistent LDA muffin-tin poten-
tials [16, 25] as the previous APW calculations and 
restricts the maximum number of plane waves to 140 
for MgO and to 200 for FeAl. The E M D and CPs are 
computed using the new procedure outlined in Sec-
tion 2. 

The 15- and 21- special-direction Gaussian integra-
tion formula [8] was applied to calculate the multipole 
moments of the valence E M D for MgO and FeAl, 
respectively. Therefore the first 15 (L < 24) terms for 
MgO and the first 20 terms ( L < 28) for FeAl are 
described properly both in the E M D and C P expan-
sions. All other parameters are listed in Table 1. 

4. Results and Discussion 

A) MgO 

Figure 1 shows the most important anisotropic 
contributions to the E M D in the top panel and to the 
C P in the bottom panel. The L = 4 and L = 6 contri-
butions ('moments') are of comparable size, whereas 
the L = 8 term (not shown) is already smaller by a 
factor of 2. For L > 16 the contributions are practi-
cally zero, indicating a rapid convergence of both the 
E M D and C P expansions. Focussing on the E M D 
expansion, we find maxima between 1 and 1.5 a.u. It 
is obvious from Table 2 that the L = 4 term transfers 
momenta from [111] to [100], whereas the L = 6 term 
shuffles momenta from [110] to both [100] and [111]. 
Hence the net result is a momentum-density transfer 
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MgO EMD moments 

MgO CP moments 

q [a.u.] 
Fig. 1. Expansion coefficients of the electron momentum 
density (top panel) and of the Compton profile (bottom 
panel) for MgO. 

from [110] (next-nearest neighbours O - O ) to [100] 
(nearest neighbours M g - O ) . The redistribution has 
been attributed to the orthogonality constraints im-
posed on the ionic O wavefunctions leaking into the 
Mg-ion core regions [16]. Hence, the L = 4 and L = 6 
contributions are due to the small components of the 
wavefunctions around the Mg sites built up by the O 
wavefunction tails. Considering the C P moments, we 
see that despite of the integration procedure in (4) the 
positions of the minima and maxima are similar to the 
E M D moments. 

In Fig. 2a the D C P between [100] and [111] is 
shown for MgO. Comparing the present results (full 
line) with those of a previous A P W calculation [16] 
(dotted line), we find a very good agreement. We at-
tribute the small deviations to our denser /j-mesh and 
not to the different approaches of computing CPs 
from the E M D . However, a clear advantage of our 
present approach is demonstrated by the dashed line 
in Fig. 2 a, indicating that only the L = 4 contribution 
matters for this particular D C P (see Table 2). Consid-
ering the angular dependence of the cubic harmonics, 

MgO DCP [100]-[111] 

q [a.u.] 
Fig. 2. Compton-profile difference [100] —[111] for MgO: 
(a) Calculated unconvoluted differences: Total (solid), L = 4 
contribution (dashed), and previous A P W results [16] (dot-
ted). (b) Experimental results [23] (bullets) and the present 
theoretical data convoluted with the experimental residual 
instrument function (solid). 

Table 2. Values for the cubic harmonics along high-symme-
try directions. 

L I Kl ([100]) Kl ([110]) Kl ([111]) 

0 0 0.28 0.28 0.28 
4 4 0.65 - 0 . 1 6 - 0 . 4 3 
6 6 0.36 - 0 . 5 8 0.64 

it is possible to relate the [100]-[111] D C P unambigu-
ously to the different shape of the E M D around the 
above directions. 

Concerning the agreement with the experimental 
data [23] shown in Fig. 2 b, we refer to the discussion 
in [16], 

B) FeAl 

In Fig. 3 we show the E M D coefficients in the top 
and the C P coefficients in the bot tom panel. Although 
the L = 4 and L— 6 terms are the largest, the L-con-
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Fig. 3. Expansion coefficients of the electron momentum 
density (top panel) and of the Compton profile (bottom 
panel) for FeAl. 

vergence is much slower than for MgO. This is entirely 
a consequence of the rather complicated Fermi sur-
face, which introduces sharp breaks into the E M D . 
Yet, we have to disagree with Bross [7], who claimed 
that a decomposition of the E M D in cubic harmonics 
is not appropriate, and hence the calculation of CPs 
will not work properly. Inspecting the E M D moments 
more closely, we see that the coefficients are smooth 
only for small p-values (inside the 1st Brillouin zone). 
The superposed small irregular oscillations are cer-
tainly not a consequence of the finite p-mesh along the 
special directions (Ap ~ 0.01 a.u.), but rather of the 
limited number of special directions, 21 in our case. 
F rom the L = 4 and L = 6 term we infer a redistribu-
tion of the momentum density for p < 1.5 a.u. away 
from the nearest-neighbour direction [111] (see 
Table 2). The redistribution is mainly caused by or-
thogonality constraints imposed on the wavefunctions 
along the F e - A l bond due to the hybridization of the 
almost free-electron-like Al states with localized Fe 
d-states. Looking at the C P moments in Fig. 3 we 

0 1 2 3 4 
q [a.u.] 

Fig. 4. Compton-profi le difference [100]-[111] for FeAl: 
(a) Calculated unconvoluted differences: Total (solid) and 
L = 4 contribution (dashed), (b) Calculated contributions 
from the lowest Al s-like band (dashed) and f rom all other, 
mainly Fe d-like, bands (solid), (c) Experimental results [24] 
(bullets) and the present theoretical da ta convoluted with the 
experimental residual instrument function (solid). 

notice that the small irregular oscillations are 
smoothed by the integration, leading to a slightly bet-
ter L-convergence of the C P expansion. 

In Fig. 4 a we show the [100]-[111] D C P for FeAl, 
which agrees well with previous A P W results [17]. 
Looking at the contributions f rom the various terms 
in the expansion, we find the L = 4 contribution to be 
by far the most important one (see Table 2), describing 
the D C P rather well for q > 0.75 a.u. In this region the 
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D C P is dominated by Fe d-states, which is illustrated 
in Figure 4 b. Anisotropics caused by the localized 
d-like wavefunctions (eg vs. t2g) will contribute 
strongly to the L = 4 term because the FT step con-
serves their /-character. At lower momenta we find 
also a rather large contribution from the lowest al-
most free-electron-like Al s-band, which is opposite to 
the Fe d-bands contribution. The opposite sign can be 
explained by considering orthogonalized plane-wave-
like Al states, i.e. states showing a d-like orthogonal-
ization hole around the Fe-sites. 

A comparison with most recent experimental re-
sults as obtained with a WKo^-spectrometer [24] is 
shown in Figure 4 c. The agreement is very encourag-
ing, since the remaining discrepancies are contained to 
a large extent within the present experimental error 
bars. Nevertheless, the C P anisotropy is overesti-
mated, which seems to be a common feature of all 
results based on calculations within the framework of 
the LDA [2], 

5. Summary 

The present work demonstrates the usefulness of 
computing CPs via an expansion of the E M D into 
cubic harmonics. The E M D coefficients are deter-
mined accurately by means of a Gaussian-type inte-

gration using special directions, which distinguishes 
our method from the least-squares fitting procedure 
found in the literature. The C P coefficients are easily 
obtained from the related E M D coefficients by a one-
dimensional integration. This differs from the stan-
dard procedure of integrating the E M D over planes 
perpendicular to the scattering vector and facilitates 
the understanding of CP anisotropics in terms of 
E M D anisotropics, as demonstrated for insulating 
MgO and metallic FeAl. Taking the [100]-[111] D C P 
as an example, we were able to establish a simple 
correspondence between C P and E M D anisotropics, 
even though the origin of the anisotropics is quite 
different for MgO and FeAl. For MgO, orthogonality 
constraints are dominating, whereas for FeAl on-site 
Fe d-like states are identified as a dominant source. 
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