
Electron Density Distributions and Atomic Charges * 
B. Hess 
Theoretische Chemie, Universität Bonn, D-W-5300 Bonn, Germany 

H. L. Lin, J. E. Niu, and W. H. E. Schwarz 
Theoretische Chemie, Universität Siegen, D-W-5900 Siegen 

Z. Naturforsch. 48 a, 180-192 (1993); received January 11, 1992 

Accurate electron densities and X-ray form factors of Li, Be, F and their ions have been calculated. 
Electron correlation, crystal fields and ionic charge transfer change the form factors by up to a few 
percent, mainly in the range of sin 0 /k < | Ä " 1 . Although electron correlation and crystal fields are 
small perturbations, their effects on the density and form factor are not additive. Densities or form 
factors of atomic and ionic systems are very similar; [Li°F°] and [Li + F~] procrystals differ by an 
effective charge transfer of not more than 0.4 e. Charge transfer and charge overlap in crystals cannot 
be distinguished uniquely. When the experimental data on Li2BeF4 (approximately reproduced by 
3/4 atomic plus 1/4 ionic procrystal) are interpreted from the atomic viewpoint, the atomic partial 
charges are as low as 0.1 e (Li2

 0 1 B e + 0 , 2 F4 *); when interpreted from the ionic viewpoint, the 
charges are much higher, namely 0.7 e. Intermediate viewpoints are also possible. 
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1. Introduction 

A basic paradigm of chemistry since Dalton [1] is 
that matter, i.e. molecules, crystals etc. consists of 
atoms, which retain a large part of their individuality, 
and which become only slightly deformed by the 
chemical interactions. In all present textbooks of gen-
eral chemistry and solid-state physics, the interatomic 
interactions are classified as covalent, ionic, metallic, 
or weak, with transitions between these pure cases. In 
this context, partial charges on atoms in compounds 
form a useful concept (see e.g. [2]). A serious problem, 
however, is that there does not exist a universal 
rigorous definition of atoms and ions in molecules and 
crystals. 

Generally speaking, two different strategies may be 
chosen to define atomic charges. Historically the first 
strategy was to define a simple model containing 
charge parameters, and to calculate the experimen-
tally measurable properties with this recipe. Bond 
energies, cohesive energies, elastic constants, reactiv-
ities (branching ratios, rate constants etc.) or spectro-
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scopic constants of all kinds of spectra (IR, VIS-UV, 
Raman, XPS, NMR, X-ray diffraction and scattering 
etc.) may be used for this purpose. Such an approach 
is useful, if a large body of empirical data can be 
rationalized with the help of one consistent charge 
scale. 

Alternatively one may start from the wave function, 
the electron density operator or the electron density 
distribution. The prescription to extract atomic charges 
should be constructed in a nonarbitrary manner in 
order to yield well-defined results. The theoretically 
most sophisticated approach of this kind has been 
proposed by Bader [3]. Again, in order to be especially 
useful to chemists and solid-state physicists, the derived 
charges should fit into the empirical charge scales 
mentioned above. Theoretically less well founded pre-
scriptions may be more successful in this respect, as 
for instance Mulliken's population analysis of wave-
functions, especially if based on natural or modified 
atomic orbitals [4], or Hirshfeld's density partitioning 

[51. 
Instead of these partitioning approaches, where the 

total charge distribution is in some sense arbitrarily 
split up into overlapping [4, 5] or nonoverlapping 
parts [3, 6], one may also apply comparative approaches. 
A frequent approach, for instance, in X-ray crystallog-
raphy is to construct so-called promolecules or pro-
crystals (chemical formulae in square brackets [ ]) as a 
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Diagram 1 

real density 

I \ 
atomic model ionic model 

superposition of densities of the independent atoms or 
ions (giam, iam = independent atom model) and to 
compare and to adjust these promolecules to the den-
sity of the real compound (0), in reciprocal or in posi-
tion space (see diagram 1). Routinely, the positions of 
the a toms in a crystal are determined by minimizing 
the density difference 

Ag = g- (1) 

in the weighted-least-squares sense (actually AF(g,gmn) 
is minimized in reciprocal space). It has been suggested 
by Dunitz and Seiler [7] to determine also the atomic 
charges p f rom 

d r 
p so that — dz{Ag(p))2 = 0 (2) 

dp J 
with 

AQ(p) = e - p - Q ^ - ( i - p ) ' e \ atoms 
iam (2 a) 

A similar approach has also been suggested by Schwarz 
et al. [8], both in position and reciprocal space. 

Reservations against the very concept of atomic 
charges may be found in the literature, too (e.g. [9]). 
Dunitz [7], for instance, mentioned "the fact that it is 
easier to calculate many properties of (molecules and) 
solids with (point) charges than with charge distribu-
tions, making the ionic (point charge) model more 
convenient, but it does not necessarily make it more 
correct". Obviously, ions and partial charges on atoms 
in matter are not originally given by nature (for the 
opposite standpoint see Bader [3]), but they form a 
useful concept to understand the nature of matter. The 
concept of ions is to be judged not under the categories 
"correct or wrong", but "more or less useful". The 
relevant questions concern reliable recipes to extract 
chemically useful charge scales for observable data. 

Anyhow, it seems natural and attractive to derive 
charges on atoms in compounds directly f rom the 
charge distribution in the compound. Such charges, 
which are reproducible, though model-dependent 
properties obtained from observables, are still "non-
observables" in the strict quantum-mechanical sense. 
The question to be addressed in this paper is, what 
kind of atomic charges can be obtained by the com-
parative approach from a given distribution g. We 
remember that both g and £ i am are orders of magni-
tude greater than Ag in most parts of space. Fur ther 

Fig. 1. Sketch of the density distribution in an "ionic crystal" 
A + X ~ . Bold circles represent halogen ions X - with an excess 
electron, dashed circles represent alkali ions A+ . The corre-
sponding "atomic crystal" A°X° has no excess electron on X 
(spatial extension comparable to X~, bold circles), but the 
diffuse valence electron density of the surrounding A 0 (dotted 
circles) contributes additional density to the valence shell of 
X (hatched area). 

more, as mentioned already by James [9] or Slater [10] 
many years ago, the densities of superimposed atoms 
and of superimposed ions are quite similar (see Fig-
ure 1). Therefore, highly accurate data are needed 
both for the crystal density g, and for the atomic and 
ionic reference densities £ i am (neutral) and giam (ionic). 

In the next section, we comment at first on the choice 
of accurate atomic and ionic reference densities. In the 
third section, we discuss appropriate stabilizing po-
tentials for negative atomic ions. In the fourth section, 
we report on the calculation of correlated many-parti-
cle wave functions for a toms and ions with and with-
out a model potential. In the fifth section the calcu-
lated densities in real space and form factors in 
reciprocal space are analysed. In Sect. 6 we discuss the 
resulting densities of atomic and ionic procrystals of 
LiF and report on the application of the correspond-
ing form factors to the determination of charge distri-
butions in Li2BeF4 crystals. Section 7 contains the 
summary and our conclusions that ionic crystals re-
semble a superposition of ions as well as a superposi-
tion of atoms, and that physically and chemically use-
ful ionic charges therefore cannot be obtained in a 
straightforward way from the charge distribution of 
ionic crystals by the comparative approach. 
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2. Atomic and Ionic Reference Densities 

Concerning atomic reference densities, the standard 
crystallographic choice is that of an ensemble density 
of free atoms in vacuum, spherically averaged over all 
low-lying states of the ground configuration [11] (note 
that most crystallographers do not choose the atomic 
ground state as their reference state but the ground 
configuration states average). The (relativistic) Hartree-
Fock approach is a reasonable approximation for the 
density of the atomic cores; accordingly (symmetry-
restricted) average-state Hartree-Fock form factors 
[11] are used in nearly all crystallographic structure 
and charge-density works. The fractional change of 
the densities owing to many-particle correlations, 
however, may be significant, especially for the valence 
shells, so that the Hartree-Fock approximation is not 
completely sat isfactory. Accordingly, corre la ted 
atomic densities and form factors should be used if 
high accuracy is demanded. The treatment of electron 
correlation will be described in Section 4. 

Concerning ionic reference densities, there are addi-
tional problems. Whereas all positive and many singly 
charged negative ions are stable in vacuum, no multi-
ply charged atomic anions (as, for instance, O - 2 or 
S - 2 ) exist in field-free space. Singly charged anions 
have rather diffuse charge distributions and are sub-
ject to pronounced electron correlation effects, which 
stabilize them considerably with respect to the 
Hartree-Fock approximation. Free "doubly charged 
anions" are not bound at all, the second excess elec-
tron being at infinity. Neglect of electron correlation 
at the unrestricted Hartree-Fock level makes them 
even more unstable against immediate autoionization. 
In quantum-mechanical calculations it is common to 
impose the spatial-symmetry restriction on the orbitals, 
which further destabilizes the anion energetically but 
artificially prevents autoionization. It is difficult to see 
what the physical meaning of restricted Hartree-Fock 
calculations of atomic anions in vacuum might be. 
Nevertheless, the corresponding form factors are tab-
ulated in the literature [11] and are commonly used 
without hesitation. 

In real systems, negative ions become stabilized by 
the polar environment, which creates a potential well 
at the site of the anion (potential stabilization) and a 
pseudopotential barrier around the anion because of 
the Pauli exclusion effect with respect to the occupied 
shells of the surrounding cations and anions (overlap 
compression). Physically it is much more reasonable 

to stabilize the negative atomic reference ions by some 
realistic model potential than by the artificial symme-
try restriction of the Hartree-Fock approximation. It 
is widely accepted to choose the neutral atom's refer-
ence density (for use in an "atomic" procrystal) from 
an atomic calculation in a spherically symmetric poten-
tial (nuclear Coulomb attraction and surrounding 
vacuum). According to crystallographic tradition the 
same convention of spherical symmetry will also be 
chosen for the ionic reference [11]. Of course, atoms 
and ions are deformed by covalent and also by ionic 
interactions; for instance, p-AOs are indispensable for 
any reasonably accurate description of bonded hydro-
gen atoms, and d- and even f-AOs in the cases of 
second and third-row atoms (C, Si etc.) Just these 
chemically important polarizations or deformations 
of atoms and ions by the surrounding matter can then 
be seen in the AQ map of the density difference with 
respect to the spherical atoms and ions. 

3. Potential for the Atomic Ions 

We suggest to determine the potential for the atomic 
ions as the spherical average of the electrostatic poten-
tial in a corresponding crystal lattice of point charges 
(Madelung potential FM). Our theoretical data will 
later be applied to the analysis of highly accurate 
X-ray diffraction data of Li2BeF4 [7, 29]. This com-
pound had been chosen for the following two reasons: 
a) the relative density changes between atoms and ions 
are most pronounced for light systems such as Li, Be, 
O, or F; b) ionic density changes in the outer valence 
shells of atoms can, by X-ray diffraction, best be de-
tected at low scattering angles, which will appear for 
crystals with large unit cells such as Li2BeF4 (space 
group R3 with 126 atoms in the hexagonal unit cell of 
F = 1365 Ä3). 

The coordinates of Li2BeF4 were taken from the 
crystal structure in [12], and integer charge values of 
Li + 1, Be + 2, and F _ 1 were chosen. The two weakly 
nonequivalent Li+ ions and the Be + 2 ion are approx-
imately tetrahedrally surrounded by four weakly 
nonequivalent F~ ions at distances in the range of 
RUF = 3.53 ± 0.05 a0 ( « 1 . 8 7 Ä ) and RBeF = 2.94 
± 0.01 a 0 (%1.56Ä), respectively, whereas the F~ 
ions are roughly trigonally surrounded by two Li+ 

and one Be+ 2 with the F " ~0.25 a 0 above the Li2Be-
plane. 
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Fig. 2. M a d e l u n g potential Fw in L i ^ B e ^ F a a r o u n d F 
(cryst. posi t ion I) on a plane of 5.67 Ä x 5 .67 Ä th rough F 
parallel to the plane through the adjacent two Li + a n d one 
Be + 2 , lying « ^ a0 lower. Distance of con tour lines is 0.1 a.u. 
% 2.72 Volt. positive potent ia l (attractive for negative 
electrons); negative potent ial ; the zero-potent ial line is 
not shown. The bold circles indicate the s t andard ionic 
spheres with the ionic radii given in Table 1. 
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Fig. 3. Spherical component V(r) of the Made lung potent ia l 
VM (a t t ra t ive for negative electrons) in B e + 2 F ~ a r o u n d 
F"(I) . T h e dashed line represents the Watson potent ia l TV 
Rw = Watson radius of F " , R{ = ion radius of F~. The posi-
t ions ofethe nearest-neighbour ions Be + 2 , Li+ (2 ones) a n d F 
(4 ones) are also indicated. 

With the help of a program from Roos and Wahl-
gren [13], the Madelung potentials around the differ-
ent ions were calculated according to the method of 
Ewald and Bertaut [14]. In Fig. 2 a contour plot of the 
Madelung potential around F~ at crystallographic 
position (I) is presented. 

Within the "volume" of F~ there is a significant 
variation of the electrostatic crystal potential, especially 
in the neighbourhood of the Be + 2 cation: the crystal 
potential is far from being constant inside the anion. 
(This asymmetry will cause a polarization of the F~ 
ion towards the Be 2 + ion, which will show up in the 
deformation-density m a p [7, 29] and is sometimes in-
terpreted as an indication of covalency.) When we 
determine the spherically symmetric monopole com-
ponent V(r) around the F nucleus (Fig. 3), we obtain 
a constant potential inside F~ up to R = 2.945 a0, 
which is the nearest-neighbour (Be+2) distance. The 
potential then drops sharply as V = const + 2/r. Fur-
ther decrease of the potential starts at the two F - L i 
distances around 3.5 a0. 

The effective potential felt by the fluorine electrons 
is smaller than this electrostatic potential in the region 
of the outer tails of the surrounding ions because of 
Pauli's exclusion principle. Therefore we choose the 
simple Watson potential Fw(r) [15] as an appropriate 
model potential (as done already earlier, for instance, 
by Weiss et al. [26]), 

Vw(r) 
ZJRw 
Z.Jr 

for r < , 
for r > Rw, 

(3) 

which is smaller than the electrostatic potential for 
r > R w (see the dashed curve in Figure 3). Z; is the 
charge of the central ion, and R w is the so-called 
Watson radius, which is defined here by matching the 
spherically averaged Madelung potential V with Fw in 
the core region. The corresponding Watson radii are 
given in Table 1. We note that there is no simple rela-
tion between the ionic radii and the Watson radii; 

Table 1. 

Inequiv. ions Standard Watson sphere: Madelung 
(coordination ion radius radii * in a0 potentials * 
no. in parenth.) in a0 (its charge in | e |) in eV 

2 Li + , (4) 1.11 2 .12-2 .14 , ( - 1 ) 12.76 ± 0 . 0 6 
Be + 2 , (4) 0.51 2.17, ( - 2 ) 25.13 

4 F - , (3) 2.45 1 .88-1.91, ( + 1 ) 14.31 ± 0 . 1 

Slightly different potentials and radii for the nonequivalent 
crysta l lographic posit ions. 
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the ionic radii depend on the respective ions them-
selves, whereas the Watson radii are determined by the 
Madelung potential of the surrounding charge lattice. 

4. Correlated Wavefunctions of Atoms and Ions 
in Spherical Potentials 

The atomic-density and form-factor calculations 
were performed by the basis-set expansion method 
using Cartesian Gaussians. According to the literature 
[16], up to f-functions are needed to obtain accurate 
correlated densities. For beryllium we used the 
[8s 5p 2d 1 f] basis given in [17] and augmented it by 
a p- (£=12.5) and a d-function (£ = 2.0), yielding an 
[8 s 6 p 3d 1 f] basis. The fluorine basis was taken from 
[18], but contracted as [4221...] and augmented by a 
diffuse d-function (C = 0.1) yielding an [ 8 s 8 p 5 d 2 f ] 
basis. For lithium, where the L-shell correlation is 
weak, the basis of [19] was reduced by the most diffuse 
d-function (C = 0.045) and all f-functions, leaving an 
[11 s 11 p 7 d] basis in the contraction scheme [311...]. 
Six-component d-functions and ten-component f-func-
tions were used throughout. The decision to add or 
delete specific functions was based on the magnitude 
or smallness of the numerical changes observed in the 
correlated atomic form factors finally obtained. 

The atomic wavefunctions of Li, Be, F and their 
ions were calculated by means of ab-initio SCF and CI 
methods, using the MRD-CI (multi-reference double-
excitation configuration-mixing) program package of 
Buenker and Peyerimhoff [20]. Since the programs 
can only handle the largest Abelian subgroup of the 
full-symmetry group, special care had to be exercised 
to ensure that the resulting one-particle basis for the 
configuration-mixing treatment is adapted to spheri-
cal symmetry. All calculations started from a Hartree-
Fock (SCF) calculation for the corresponding closed-
shell system (F~, Be, Be+ + , Li+). 

The SCF orbitals thus obtained were used to gener-
ate symmetry-adapted natural orbitals (NOs) from 
the density matrix of a singles-doubles CI for the atom 
or ion under consideration. According to [16, 21], 
triple and quadruple excitations do not seem negli-
gible especially in the cases of Be and F~. Therefore 
MR-CI calculations have been performed for these 
two species, whereas only a single main configuration 
was used as the reference in the SD-CI calculations of 
Li+, Li, Be+ + and F. Configurations with weight 
(squared coefficient) > 0.005 were included in the refer-

ence set. In the cases of Be and F , the configuration-
reference spaces consisted of I s 2 2s2, l s 2 2 p 2 , 
1 s2 2 p 3 p and of 1 s2 2 s2 2 p6, 1 s2 2 s2 2 p4 3 p2, respec-
tively. For both fluorine systems, F° and F~, the CI 
could not be carried out in full because of limitations 
of the program, and an energy selection threshold of 
10~7a.u. was employed in a configuration selection 
procedure. The NOs obtained were used, in turn, as the 
one-particle basis for an improved MR-SD-CI. This 
iterative N O step was repeated once, and from the final 
one-particle density matrix the radial densities and 
form factors were calculated. 

The SCF energies are near the Hartree-Fock limit 
(within the order of meV for the Li and Be systems, 
and within 0.1 eV for F and F - ) . In the cases of F and 
F " , 90% of the correlation energies were recovered 
[21], 95% for Be and even more for Be+, Li and Li+ . 

5. Form Factors and Radial Densities 

Accuracy 

The coherent elastic X-ray scattering form factor / 
is the Fourier transform of the one-particle density Q, 
which is easily obtained from the spherically averaged 
one-particle density matrix or the corresponding Nat-
ural Orbitals and their fractional occupation numbers 
[22]. The Fourier transforms of the corresponding 
G T O expansions were determined analytically using 
the approaches given in [23]. At the SCF level, the 
finite basis sets resulted in errors o f / of ~ 10" 4 e (Li) 
to ~ 1 0 ~ 3 e (F), i.e. ~0 .01% in the range of sin 9/X 
< 1 Ä - 1 , as compared to the standard atomic form 
factors for atoms and ions given in the International 
Tables [11]. From a comparison with very accurate 
correlated form factors of the free atoms and ions of Li 
and Be [16, 22, 24], we estimate our error to be below 
0.1%, but up to slightly more than 0.1% for some 
small values of sin 9//. < 0.4 Ä - 1 . These errors are 
mainly due to the limitation of the one-particle basis, 
which contains only a few functions of higher angular 
momentum. Since correlation corrections to / are in 
the percent-range, they are correctly recovered at the 
semiquantitative level. In an early paper by Tanaka 
and Sasaki [25], however, where 60 to 90% of the 
L-shell correlation energy were recovered for different 
atoms and ions only, significantly less than 50% of 
the correlation correction to / in the interesting low 
sin 9/1 range had apparently been obtained. Concern-
ing Q, we may use the very accurate results of Esquivel 



Fig. 4. Change of atomic/ionic form factors owing to elec-
tron correlation (CI minus SCF results), ACOTTf (vac), for Be 
( ) and for F~ ( ) in vacuum. 

B. Hess et al. • 

Fig. 5. Change of radial density D = 4nr2 g owing to electron 
correlation (CI minus SCF results), ACOTTD(\ac), for Be ( ) 
and for F~ ( ) in vacuum. 

Electron Density Distributions and Atomic Charges 197 

0.05 

-0.05 
0 

et al. [16] on Li°, Be0 and Ne° as reference (note that 
there is an inconsistency of a factor of 4 n in the data 
of [16]). Then the present accuracy for Q seems to be 
similar to that of / , namely of the order of several 
0.01% at the SCF level and about 0.1% for the corre-
lated densities in the r-range < 5 Ä. 

Correlation Effects 

In Fig. 4 we present the influence of correlation on 
the form factors of free Be0 (similar to that of [16, 22]) 
and free F - 1 . The correlation effects in Li + 1 and Be + 2 

with a rather stiff K-shell, and also in Li° are by more 
than one order of magnitude smaller [16, 24]. The 
largest Aco"f-value of Be at sin 0/A = 0.12 Ä " 1 is 
+ 0.034 or 1.2%. The Acorrf curve corresponds to the 
density decrease in the outer range of the valence shell 
( 2 - 4 a0) and in the core ( ~ 0 . 3 a0), and to the density 
increase in the inner region of the valence shell 
a round 1 a0 (see Figure 5). The correlation effects in 
l s 2 2 s 2 2 p 6 F~ are quite different from those of 
1 s2 2 s2 Be0. The dashed curve in Fig. 4 exhibits two 
pronounced extrema, a minimum at sin 6/1 =0.17 Ä - 1 

(Aco"f = - 0 . 0 5 6 ~ - 0 . 8 % ) and a maximum at sin 6/1 
= 0.55 Ä - 1 {Aco"f = +0.021 ~ +0.8%). The tendency 
of the electrons to avoid each other results in a dom-
inant s 2 - p 2 angular correlation in Be, combined with 
a radial compression of the valence density, whereas in 
F~ there is a dominant radial correlation resulting in 
a flattening of the radial L-shell maximum. Owing to 
correlation, the density of F~ increases in the outer 
part of the valence shell (r > 1.5 a0) and in the core 

A / 
0.8 

0 . 6 

0.4 

0 . 2 

. 16 
A / 

. 12 

0. 1 

.06 

sin6/X 
2 A"1 

1 sin0/A 2 Ä " 1 

Fig. 6. a) Difference of form factors of atoms and their ions, 
Aionf {corr, vac) (CI results in vacuum). L i ° - L i + : ; 
i ( B e ° - B e + 2 ) : ; F " - F ° : . b) Difference of form 
factors of ions in vacuum and in Watson potential zlp o ,/(corr) 
(CI results). : F~; : Be + 2 (in an artificially increased 
Watson potential with / ? w / 2 instead of otherwise no 
effect would be visible). 

region (r < 0.4 a0) and decreases in the inner valence 
shell (r ~ 0.8 a0), see Figure 5. The qualitative differ-
ence between Be and Ne has also been noted, for 
instance, by Esquivel and Bunge [16]. 

Ionic Effects 

In Fig. 6 a we present the form-factor difference be-
tween the atoms and the free ions at the CI level. They 
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Fig. 7. Change of charge density distribution upon formation of a negative fluorine ion, A' 
b) F~ (in Watson potential) - F°. 

'ß. a) F (in vacuum) — F°. 

1 0 r ~ - 10 

b) 

0.3 sin #/A 0 0.1 0 .2 siue/x 0 . 3 ( Ä - 1 ) 

Fig. 8. a) Form factor / (CI results) of F° ( ), F~ in vacuum ( ) and F~ in a Watson potential ( ). For sin 0/X 
> 0.5 Ä - 1 , the differences are very small, b) Form factors / of the F~ ion: SCF, in vacuum; correlated, in 
vacuum; SCF, in Watson potential; • • • • correlated, in Watson potential. 

do not differ qualitatively from the corresponding 
Hartree-Fock approximation as given in the Interna-
tional Tables [11]. The ionic effects are also only im-
portant for sin 6/X < 0.3 Ä - 1 . The density change 
upon the negative-ion formation of fluorine is shown 
in Figure 7. The free F ~ has a diffuse, extended density 
of the excess electron between r = 2a0 and r Rion 

= 1.3 Ä = 2.45 flo. 

Crystal-Field Effects 

The charge distribution of F~ is compressed by the 
external Watson potential. The influence on the form 
factors had already been investigated at the Hartree-
Fock level of approximation by Suzuki and by Weiss 
et al. [26] and by others (compare, e.g., Schwarz et al. 
[27]). In Fig. 8 a we present our CI results for neutral 
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- 3 

100-AA/ 
Fig. 9. AAf for F ~ , see text and d iag ram 2. 

F°, for the free F~ ion, and for the F~ ion in a Watson 
potential. The modification of the correlated form 
factor of F~ by the Watson potential is displayed in 
Figure 6b. A maximum of z l p o t /=0 .16 ~ 2 . 2 % is 
found at sin 6/X = 0.19 Ä - 1 . For the cations, the Wat-
son-potential effects are, of course, of opposite sign, 
and they are negligibly small (see Figure 6 b). The crys-
tal-field effects on F " are partially canceled by elec-
tron correlation. Therefore the difference between the 
restricted-Hartree-Fock result and the correlated F~ 
in the Watson potential ( and • • • • in Fig. 8 b) is 
small. The same may be expected for all halides X " \ 
but not for the chalcogenides Y - 2 and pnictides Z - 3 . 

Cross Effects 

In Fig. 8 b we compare the form factors of F~ in 
vacuum and in a Watson potential, at the SCF and CI 
levels. The distances between pairs of curves vary in 
different manners, i.e. the correlation and Watson-
potential effects on / are not additive (contrary to 
what might have been expected from perturbation 
theory for small individual effects): 

zlC0r7(vac) + Apotf (corr) = Ac 

but 

(4 a) 
/ ( p o t ) + zlp o t/(SCF) 

where the symbols are explained in diagram 2. The 
nonadditivity {AAf) for F~ is shown in Figure 9. AAf 
has a deep minimum at sin 6/X = 0.13 Ä - 1 of about 
0.3% ( — 0.026 e), whereas the correlation and Watson-
potential effects individually amount to up to ~ 1 and 
~ 2%, respectively, of the total / values. 

SCF-ion 
in vacuum 

Diagram 2 

Jp o7( SCF) 

-4corr/(vac) 
(Fig. 4) 

correlated 
ion in vacuum 

T 
- AAf -

i 

^' / (corr) (Fig. 9) 

SCF-ion in 
Watson potent ia l 

Jcorr/(pot) 

correlated ion in 
Watson potent ia l 

^lC0rr/(P0t) - Aco"f(yac) 

= A p o t/(corr) - A p o t /(SCF) = A Af * 0 , (4 b) 

6. Atomic Charges in Ionic Compounds 

With reliable and accurate atomic and ionic densi-
ties at hand, we will first compare the densities of 
atomic and ionic procrystals. As representative exam-
ples we choose the diamond structure with an inter-
atomic distance of 1.54 Ä, and the face-centred cubic 
LiF structure with an interionic distance of 2.01 Ä. 
The electronic probability-density distributions of the 
corresponding atomic procrystals are shown in Fig-
ure 10. 

Atoms with partially filled valence shells and good 
overlap possibilities such as the carbon atom will form 
strong covalent bonds; simultaneously they will ex-
hibit a significant density between the atoms. The den-
sity on the bond paths in the atomic procrystal of 
diamond (Fig. 10 a) is >1.2 e/Ä3. In the real crystal, 
the density on the bond paths is enhanced further to 
> 1 . 9 e/Ä3 owing to covalent bond formation [28]. 

If the partially filled valence shells are very diffuse 
(as the ns AOs of the alkali or alkaline earth atoms) or 
very compact (as the 3d or 4f AOs of the first transi-
tion-metal series or the lanthanides), they cannot 
overlap well, and density enhancement on the bond 
path owing to quantum mechanical interference will 
not occur. If one atom has a loosely bound electron in 
a diffuse valence orbital and the other atom is strongly 
electronegative, the atoms will undergo ionic bond-
ing; simultaneously no significant density nor density 
enhancement is to be expected between the atoms. In 
Fig. 10 b the superimposed CI-densities of Li and F 
atoms of an atomic [LiF] procrystal are shown, with 
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Diamond procrystal LiF procrysta l 

F 
values 

g. 10. Elect ron probabi l i ty density in a plane th rough a tomic procrystals . a) D i a m o n d [C a t o m procrystal], contour- l ine 
lues are 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 e/Ä3 ; the lowest density between two b o n d e d a toms is 1.2 e /Ä 3 . b) [Li F°] (superimposed 

independent atoms), contour- l ine values are 0.1,0.2, 0.3,0.4, 0.5,1.0,1.5, 2.0, 2.5 e /Ä 3 ; the density between two ad jacen t a toms 
d rops below 0.2 e/Ä3 . The a toms are separated by the minimal-densi ty surface (zero-flux surface of Bader [3]), . The 
do t ted circles ( • • • • ) indicate the s tandard ionic radii. 

the electron density between the atoms as low as 0.1 
to 0.2 e/Ä3 . Density deformations upon bond forma-
tion are similarly small [7, 29], 0.1 e/Ä3 on L i - F and 
0.2 e/Ä3 on B e - F (to be interpreted either as ionic 
polarization or as atomic covalency). Note the causal 
relations as represented by the arrows in Diagram 3. 

good . 
overlap 

Diagram 3 

• covalent bonding 

atomic procrystal diffuse orbital 
. different from on atom A, -
ionic procrystal electronegative 

atom X 

( significant 
density on bond 

• ionic bonding 

atomic procrys-
• tal similar to 
ionic procrystal 

low density 
between atoms 

In Fig. 11 we compare atomic and ionic procrystals 
of [LiF], using the standard Hartree-Fock approxima-
tion for the free atoms and ions (Fig. 11 a), correlation-
corrected densities (Fig. 11 b), and ionic densities in 
Watson potentials (Figure 11 c). In the ionic procrystal 
there is only a very small positive charge density on 
the Li+ , and also in the region between the ions and 
even in the outer region of the F"-valence shell. A low 
negative charge density is found near the F nucleus. 
Accordingly, the excess charge within the minimal-
density surface ( in Fig. 11 c) with respect to the 

overlapping atoms, which can be attributed to the 
ions, is significantly smaller than + 1 e, namely ± 0.6 e 
at the SCF level and only ±0 .2 e at the CI level (it is 
rather common that electron correlation smoothens 
charge oscillations). Since the crystal field stabilizes 
electrons on the negative ions and destabilizes elec-
trons on the positive ions, the effective charges in a 
procrystal of ions in Watson potentials are again a 
little larger, namely ± 0.4 e. The experimental excess 
charge densities on F (difference density with respect 
to the atomic procrystal) in Li2BeF4 are even smaller 
( < 0.06 e/Ä3), yielding an excess charge (Hirshfeld 
charge) of only 0.09 e on F [29]. 

The so-called spherical electron count function 
NA(R) of a tom A at position RA [27], 

R 

NA(R)= J 4N r2 dr • G(re) with r = | Ä A - r e | , (5) 
r = 0 

shown in Fig. 12 for Li and F in the [LiF] procrystals, 
demonstrates how similar the charge distributions in 
atomic and ionic procrystals are, as already men-
tioned in the introduction (Figure 1). Within the radius 
of RMIN = 2.5 a0 (corresponding to minimal radial 
charge density [27]) the electron numbers of fluorine 
are 9.85 e in [Li+F~] and 9.6 e in [Li°F0]; those of 
lithium at RMIN = 1.5 a0 are 2.03 e in Li + F~] and 2.10 e 
in [Li°F0]. 
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Our improved atomic and ionic form factors have 
been used by Seiler [29] to analyse his very accurate 
X-ray diffraction intensities of Li2BeF4 (6345 unique 
reflections up to sin 6/X = 1.36 Ä~*). Using the approach 
of comparison with atomic and ionic procrystals, (2) 
[7, 8], he obtained the following unexpectedly low 
charges: Li^°- 2 5Be+ 0 - 5 0F 4

0 - 2 5 . Atomic partial charges 
obtained with the standard form factors (restricted 
Hartree-Fock, ions in vacuum [11]) are still smaller: 
Li^°- 1 8 Be + 0 - 3 9 F 4

0 - 1 9 . Partitioning the total experi-
mental density distribution according to HirshfelcTs 
stockholder method [5] with respect to the present atomic 
densities yields even lower charges: Li2

0-10Be+0-16F4
0 '09 . 

It looks reasonable that half a Be carries the same or 
slightly less charge than Li or F. 

L i+o.25F-o.25 ) a s determined by Seiler [29] from ex-
periment using (2), means that the charge distribution 
on Li and F in the Li2BeF4 crystal is well approximated 
by 1/4 [Li+F~] + 3/4 [Li°F°] procrystals. The [Li+F~] 
procrystal (correlated ions in Watson potentials) has 
~ +0 .4 electrons on the ions with respect to [Li°F°] 
(see above) corresponding to charges of +0 .1 e for 
l / 4 [L i + F~] , LiF cannot be compared directly with 
Li2BeF4: On the one hand, the coordination numbers 
(CN) in Li2BeF4 are smaller and Be is less diffuse than 
Li, both reducing the overlap charge-transfer. On the 
other hand, the interatomic distances in Li2BeF4 are 
comparatively short (corresponding to the lower CN), 
thus raising the overlap charge-transfer. In any case, 
the aforementioned +0.1 e are just the excess charge 
obtained for Li2BeF4 with Hirshfeld's partit ioning 
approach [29] (see above), where neutral atoms, too, 
were used as stockholders. However, the observable 
data may equivalently be interpreted by choosing an 
ionic [Li+ 1F _ 1 ] procrystal as reference: real Li2BeF4 

with a density contribution of 3/4 [Li°F°] has charges 
smaller by | • ( + 0.4 e) = + 0.3 e on the ions relative to 
the [Li + F _ 1 ] procrystal, and one might speak of ionic 
charges of + 0.7 e. 

<4 

Fig. 11. Charge density differences between [LiF] procrystals 
from atoms and from ions. Contour-line values are 0 (bold 
line), ±0.01, ±0.02, ±0.03, ±0.04, ±0.05, ±0.1, ±0.15, 
±0.2 , ±0.25 e/Ä3 . Negative values (dashed lines) indicate 
more negative electronic charge density in [Li+F~] than in 
[Li°F0]. a) SCF: Hartree-Fock atoms and ions, b) CI : atomic 
and ionic densities corrected for electron correlation, c) CI 
(Watson): dito, but ions in Watson potentials. indi-
cates the minimal-density surface between the atoms, the 
dotted circles ( ) indicate the s tandard ionic radii. 
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1.5 2 0.5 1 1.5 2 2.5 3 
R(o0) R(a„) 

Fig. 12. Electron count functions NA(R) a round Li (a) and F (b) in [LiF] procrystals (number of electrons in a sphere of radius 
R (in a 0 ) a round the nucleus). for ionic procrystal, for a tomic procrystal . The vertical lines indicate the Rm i n-values 
of the minimal radial charge densities a round the respective nuclei. The ionic radii R ; are also given. 

7. Discussion, Conclusions and Summary 

If the valence shells of atoms in molecules or crys-
tals are non-diffuse (significantly overlapping and 
forming covalent bonds), homopolar-atomic and 
heteropolar-ionic charge distributions will be easily 
distinguishable. Even in this case, partial charges q on 
the atoms may be controversial. For CO, for instance, 
q is 0.1 to 0.4 according to the approach of Hirshfeld 
[5], Mulliken [4] or Pauling [30] (where atomic point 
charges are used to simulate the effects of the charge 
distribution £>), whereas Bader [3] gives ^ — 1.35 
(assuming implicitly a multipolar expansion for the 
atoms). 

The situation is even more involved for ionic com-
pounds AX with large CN and the electropositive 
component A having an extended valence shell. It is 
not evident, which partial charges should be assigned to 
an overlapping atomic procrystal A°X° (cf. [29]), since 
charge overlap of A0 with X° may complementarily be 
interpreted as charge transfer from A+ to X~ (Fig-
ure 1). Let us simulate the real charge distribution as 

QAX ~ P e [ A +x-] ( v i ) + I 1 ~P) e [ A°x°](va) . (6) 

where p is the "ionic" mixing parameter, and V;, va are 
parameters monitoring the effective potentials in 
which the "independent" ions and atoms of the crystal 
are calculated. 

Schwarz et al. [27] have shown that, by setting p = 1 
(assumption of integer ionic charges) and va = 0 (atoms 
A0 and X° in vacuum), one can find a v; (i.e. modified 

Watson radii R w for the ions) such that 

QAX ~ ß[A+x-](vi) * 0[Aoxo](va = 0). (7) 

In general the optimum R w that simulates the crystal 
potential and the overlap compression is larger than 
the R w corresponding to the Madelung potential. Seiler 
and Dunitz [7, 29] have shown that, by setting va = 0 
and either v; = 0 (restricted SCF ions in vacuum) or 
V; = vM (correlated ions in Madelung potential), that is 
with the assumption of predefined atoms and ions hav-
ing charge zero and ± e, respectively, in the two very 
similar procrystals, one can find p-values so that Qax 

is well approximated by (6). We may expect that Qax 

can also be approximated by setting p = 0 and adjust-
ing va, the effective potential for atoms in the crystal, 
to yield 

QAX ~ 0 A ° x ° ( v a ) * QA+X~ ( v i = v m ) • (8) 

It should be stated clearly that the finding of Schwarz 
(i.e. (7)) is no argument against the fact that one cannot 
distinguish uniquely between charge overlap and 
charge transfer. So, we should remember four points. 

First, individual atomic charges are not properties 
uniquely given by nature (and in this respect they 
cannot be measured), but they are useful and essential 
concepts that "serve the purpose of summarizing in-
formation on electron density distributions in a 
lapidary though simplifying way" [31] (and in this 
respect they can be extracted from measurement). 

Second, the 3 parameters in (6) are redundant. One 
may either (a) assume that the constituents of the matter 
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under discussion are ions with integral charges (p = 1); 
then the ions must be compressed and polarized ap-
propriately (as, e.g. in [27, 32]). Or one may (b) assume 
that the constituents are a toms (p = 0); then the a toms 
must also be deformed appropriately (this can be 
achieved in the multipole refinement approach [33]). 
Or one may (c) predefine a toms and ions and then 
determine the charge transfer parameter p in (6) [7, 8, 
29]; then one must explain the physico-chemical mean-
ing of this p. Defining the atomic charges in [Li+F~] to 
be +1 , and in overlapping [Li°F°] to be 0, exaggerates 
the observable charge transfer from [Li°F°] to [Li+F~] 
of about 0.4 e by definition to the integer value of 1 e. 
Then the experimental charges become + p. 

If one does not want to exaggerate the charge trans-
fer, one may define the atomic procrystal [A°X°] of an 
"ionic" compound AX with significantly overlapping, 
diffuse constituents to have zero atomic charges. With 
this assumption (b), as, e.g., in [5, 34], one chooses an 
"atomic" viewpoint, and the atomic charges remain 
small ( + 0.1 e for Li, F in the Li2BeF4 crystal, or 
+ 0.3 e to +0 .6 e for the LiF molecule [34]). However, 
in order to accord with the traditional charge scales 
of chemistry or solid-state physics [4, 30], one must 
choose assumption (a) that the ionic procrystal [A+X~] 
has integer charges. From this "ionic" viewpoint, Li 
and F in Li2BeF4 obtain "experimental" charges of 
+ 0.7 e. The formal reason for this situation is that a 
covalent and an ionic wavefunction are far from being 
orthogonal, but are rather similar, comparable to the 
similarity of an M O and a VB function. 

Third, in order to determine p in (6), reliable values 
of atomic and ionic densities in real and reciprocal 

space are needed. They have been calculated here for 
Li, Be and F. We note that ion formation effects, elec-
tron correlation effects, and crystal-field effects on the 
atomic form factors / (k ) are only important at small 
k/4n = sin 0//t < | Ä - 1 . Although F " has a rather 
"soft" charge distribution, correlation and crystal-
field effects modify its density Q (r) and form factor / (k) 
by not more than a few percent. Although the effects 
are small, they are not additive (Figure 9). Electron 
correlation and the crystal field both stabilize F~ 
energetically, but have opposite influences on its 
form factor and modify the a t o m - i o n difference 
[ / (F 0 )—/(F~) ] slightly, mainly in the range of sin B/A 
g [0.15 Ä" 1 ; 0.35 Ä"1]. So, because of cancellation of 
errors, simple R H F form factors for F~ [11] are still 
quite useful. Correlation and crystal-field effects on the 
"hard-core ions" Li+ and Be+ 2 are negligibly small. 

Fourth, the concept of ionic charges becomes more 
"well-defined" for compact valence orbitals inside the 
atomic cores (d and / elements) and for low coordina-
tion numbers. 
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