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Accurate electron densities and X-ray form factors of Li, Be, F and their ions have been calculated.
Electron correlation, crystal fields and ioni¢ charge transfer change the form factors by up to a few
percent, mainly in the range of sin 6/4 < % K’ !, Although electron correlation and crystal fields are
small perturbations, their effects on the density and form factor are not additive. Densities or form
factors of atomic and ionic systems are very similar; [Li°F°] and [Li*F "] procrystals differ by an
effective charge transfer of not more than 0.4 e. Charge transfer and charge overlap in crystals cannot
be distinguished uniquely. When the experimental data on Li,BeF, (approximately reproduced by

3/4 atomic plus 1/4 ionic procrystal) are interpreted from the atomic viewpoint, the atomic partial

charges are as low as 0.1e (Li; “'Be*°2F,

‘1); when interpreted from the ionic viewpoint, the

charges are much higher, namely 0.7 e. Intermediate viewpoints are also possible.
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1. Introduction

A basic paradigm of chemistry since Dalton [1] is
that matter, ie. molecules, crystals etc. consists of
atoms, which retain a large part of their individuality,
and which become only slightly deformed by the
chemical interactions. In all present textbooks of gen-
eral chemistry and solid-state physics, the interatomic
interactions are classified as covalent, ionic, metallic,
or weak, with transitions between these pure cases. In
this context, partial charges on atoms in compounds
form a useful concept (see e.g. [2]). A serious problem,
however, is that there does not exist a universal
rigorous definition of atoms and ions in molecules and
crystals.

Generally speaking, two different strategies may be
chosen to define atomic charges. Historically the first
strategy was to define a simple model containing
charge parameters, and to calculate the experimen-
tally measurable properties with this recipe. Bond
energies, cohesive energies, elastic constants, reactiv-
ities (branching ratios, rate constants etc.) or spectro-
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scopic constants of all kinds of spectra (IR, VIS-UYV,
Raman, XPS, NMR, X-ray diffraction and scattering
etc.) may be used for this purpose. Such an approach
is useful, if a large body of empirical data can be
rationalized with the help of one consistent charge
scale.

Alternatively one may start from the wave function,
the electron density operator or the electron density
distribution. The prescription to extract atomic charges
should be constructed in a nonarbitrary manner in
order to yield well-defined results. The theoretically
most sophisticated approach of this kind has been
proposed by Bader [3]. Again, in order to be especially
useful to chemists and solid-state physicists, the derived
charges should fit into the empirical charge scales
mentioned above. Theoretically less well founded pre-
scriptions may be more successful in this respect, as
for instance Mulliken’s population analysis of wave-
functions, especially if based on natural or modified
atomic orbitals [4], or Hirshfeld’s density partitioning
5]

Instead of these partitioning approaches, where the
total charge distribution is in some sense arbitrarily
split up into overlapping [4, 5] or nonoverlapping
parts [3, 6], one may also apply comparative approaches.
A frequent approach, for instance, in X-ray crystallog-
raphy is to construct so-called promolecules or pro-
crystals (chemical formulae in square brackets []) as a
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Diagram 1

real density

/ \

atomic model «—— ionic model

superposition of densities of the independent atoms or
ions (0;,m» 1am = independent atom model) and to
compare and to adjust these promolecules to the den-
sity of the real compound (), in reciprocal or in posi-
tion space (see diagram 1). Routinely, the positions of
the atoms in a crystal are determined by minimizing
the density difference

AQ =0 — Qiam (1)

in the weighted-least-squares sense (actually 4F (g, 0;,)
is minimized in reciprocal space). It has been suggested
by Dunitz and Seiler [7] to determine also the atomic
charges p from

p so that
with

2 Jar(do(py*=0 @
P
de(p)=¢—p-ogm—(1—p o (22

A similar approach has also been suggested by Schwarz
et al. [8], both in position and reciprocal space.

Reservations against the very concept of atomic
charges may be found in the literature, too (e.g. [9]).
Dunitz [7], for instance, mentioned “the fact that it is
easier to calculate many properties of (molecules and)
solids with (point) charges than with charge distribu-
tions, making the ionic (point charge) model more
convenient, but it does not necessarily make it more
correct”. Obviously, ions and partial charges on atoms
in matter are not originally given by nature (for the
opposite standpoint see Bader [3]), but they form a
useful concept to understand the nature of matter. The
concept of ions is to be judged not under the categories
“correct or wrong”, but “more or less useful”. The
relevant questions concern reliable recipes to extract
chemically useful charge scales for observable data.

Anyhow, it seems natural and attractive to derive
charges on atoms in compounds directly from the
charge distribution in the compound. Such charges,
which are reproducible, though model-dependent
properties obtained from observables, are still “non-
observables” in the strict quantum-mechanical sense.
The question to be addressed in this paper is, what
kind of atomic charges can be obtained by the com-
parative approach from a given distribution g. We
remember that both ¢ and g;,,, are orders of magni-
tude greater than 4g in most parts of space. Further

F 1§ 1. Sketch of the density distribution in an “ionic crystal”
A™X ™. Bold circles represent halogen ions X~ with an excess
electron, dashed circles represent alkali ions A*. The corre-
sponding “atomic crystal” A°X° has no excess electron on X
(spatial extension comparable to X~, bold circles), but the
diffuse valence electron density of the surrounding A° (dotted
circles) contributes additional density to the valence shell of
X (hatched area).

more, as mentioned already by James [9] or Slater [10]
many years ago, the densities of superimposed atoms
and of superimposed ions are quite similar (see Fig-
ure 1). Therefore, highly accurate data are needed
both for the crystal density g, and for the atomic and
ionic reference densities g;,,, (neutral) and g,,, (ionic).

In the next section, we comment at first on the choice
of accurate atomic and ionic reference densities. In the
third section, we discuss appropriate stabilizing po-
tentials for negative atomic ions. In the fourth section,
we report on the calculation of correlated many-parti-
cle wave functions for atoms and ions with and with-
out a model potential. In the fifth section the calcu-
lated densities in real space and form factors in
reciprocal space are analysed. In Sect. 6 we discuss the
resulting densities of atomic and ionic procrystals of
LiF and report on the application of the correspond-
ing form factors to the determination of charge distri-
butions in Li,BeF, crystals. Section 7 contains the
summary and our conclusions that ionic crystals re-
semble a superposition of ions as well as a superposi-
tion of atoms, and that physically and chemically use-
ful ionic charges therefore cannot be obtained in a
straightforward way from the charge distribution of
ionic crystals by the comparative approach.
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2. Atomic and Ionic Reference Densities

Concerning atomic reference densities, the standard
crystallographic choice is that of an ensemble density
of free atoms in vacuum, spherically averaged over all
low-lying states of the ground configuration [11] (note
that most crystallographers do not choose the atomic
ground state as their reference state but the ground
configuration states average). The (relativistic) Hartree-
Fock approach is a reasonable approximation for the
density of the atomic cores; accordingly (symmetry-
restricted) average-state Hartree-Fock form factors
[11] are used in nearly all crystallographic structure
and charge-density works. The fractional change of
the densities owing to many-particle correlations,
however, may be significant, especially for the valence
shells, so that the Hartree-Fock approximation is not
completely satisfactory. Accordingly, correlated
atomic densities and form factors should be used if
high accuracy is demanded. The treatment of electron
correlation will be described in Section 4.

Concerning ionic reference densities, there are addi-
tional problems. Whereas all positive and many singly
charged negative ions are stable in vacuum, no multi-
ply charged atomic anions (as, for instance, O~ 2 or
S~2) exist in field-free space. Singly charged anions
have rather diffuse charge distributions and are sub-
ject to pronounced electron correlation effects, which
stabilize them considerably with respect to the
Hartree-Fock approximation. Free “doubly charged
anions” are not bound at all, the second excess elec-
tron being at infinity. Neglect of electron correlation
at the unrestricted Hartree-Fock level makes them
even more unstable against immediate autoionization.
In quantum-mechanical calculations it is common to
impose the spatial-symmetry restriction on the orbitals,
which further destabilizes the anion energetically but
artificially prevents autoionization. It is difficult to see
what the physical meaning of restricted Hartree-Fock
calculations of atomic anions in vacuum might be.
Nevertheless, the corresponding form factors are tab-
ulated in the literature [11] and are commonly used
without hesitation.

In real systems, negative ions become stabilized by
the polar environment, which creates a potential well
at the site of the anion (potential stabilization) and a
pseudopotential barrier around the anion because of
the Pauli exclusion effect with respect to the occupied
shells of the surrounding cations and anions (overlap
compression). Physically it is much more reasonable
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to stabilize the negative atomic reference ions by some
realistic model potential than by the artificial symme-
try restriction of the Hartree-Fock approximation. It
is widely accepted to choose the neutral atom’s refer-
ence density (for use in an “atomic” procrystal) from
an atomic calculation in a spherically symmetric poten-
tial (nuclear Coulomb attraction and surrounding
vacuum). According to crystallographic tradition the
same convention of spherical symmetry will also be
chosen for the ionic reference [11]. Of course, atoms
and ions are deformed by covalent and also by ionic
interactions; for instance, p-AOs are indispensable for
any reasonably accurate description of bonded hydro-
gen atoms, and d- and even f-AOs in the cases of
second and third-row atoms (C, Si etc.) Just these
chemically important polarizations or deformations
of atoms and ions by the surrounding matter can then
be seen in the 4¢ map of the density difference with
respect to the spherical atoms and ions.

3. Potential for the Atomic Ions

We suggest to determine the potential for the atomic
ions as the spherical average of the electrostatic poten-
tial in a corresponding crystal lattice of point charges
(Madelung potential V). Our theoretical data will
later be applied to the analysis of highly accurate
X-ray diffraction data of Li,BeF, [7, 29]. This com-
pound had been chosen for the following two reasons:
a) the relative density changes between atoms and ions
are most pronounced for light systems such as Li, Be,
O, or F; b) ionic density changes in the outer valence
shells of atoms can, by X-ray diffraction, best be de-
tected at low scattering angles, which will appear for
crystals with large unit cells such as Li,BeF, (space
group R3 with 126 atoms in the hexagonal unit cell of
v =1365 A3).

The coordinates of Li,BeF, were taken from the
crystal structure in [12], and integer charge values of
Li*!, Be*2, and F~! were chosen. The two weakly
nonequivalent Li* ions and the Be*? ion are approx-
imately tetrahedrally surrounded by four weakly
nonequivalent F~ ions at distances in the range of
Rur =353+ 0054, (~1.87A) and Ry, =294
+001qa, (x~1.56 A), respectively, whereas the F~
ions are roughly trigonally surrounded by two Li*
and one Be*? with the F~ ~0.25 a, above the Li,Be-
plane.
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Fig. 2. Madelung potential V;, in Li;Be*?Fz around F~
(cryst. position I) on a plane o'? 567 A'x5.67 A through F~
parallel to the plane through the adjacent two Li* and one
Be*?, lying ~ § a, lower. Distance of contour lines is 0.1 a.u.
~ 2.72 Volt. ——— positive potential (attractive for negative
electrons); —— negative potential; the zero-potential line is
not shown. The bold circles indicate the standard ionic
spheres with the ionic radii given in Table 1.

0

0 1 2 3 4 1lao) 5
Fig. 3. Spherical component V(r) of the Madelung potential
Vi (attrative for negative electrons) in Li;Be*?F around
F~(I). The dashed line represents the Watson potential Vy,.
Ry, = Watson radius of F~, R, = ion radius of F~. The posi-
tions ofgthe nearest-neighbour ions Be*2, Li* (2 ones) and F~
(4 ones) are also indicated.
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With the help of a program from Roos and Wahl-
gren [13], the Madelung potentials around the differ-
ent ions were calculated according to the method of
Ewald and Bertaut [14]. In Fig.2 a contour plot of the
Madelung potential around F~ at crystallographic
position (I) is presented.

Within the “volume” of F~ there is a significant
variation of the electrostatic crystal potential, especially
in the neighbourhood of the Be*? cation: the crystal
potential is far from being constant inside the anion.
(This asymmetry will cause a polarization of the F~
ion towards the Be?* ion, which will show up in the
deformation-density map [7, 29] and is sometimes in-
terpreted as an indication of covalency.) When we
determine the spherically symmetric monopole com-
ponent V(r) around the F nucleus (Fig. 3), we obtain
a constant potential inside F~ up to R =2.945 a,,
which is the nearest-neighbour (Be*?) distance. The
potential then drops sharply as V = const + 2/r. Fur-
ther decrease of the potential starts at the two F—Li
distances around 3.5 a,,.

The effective potential felt by the fluorine electrons
is smaller than this electrostatic potential in the region
of the outer tails of the surrounding ions because of
Pauli’s exclusion principle. Therefore we choose the
simple Watson potential V4, (r) [15] as an appropriate
model potential (as done already earlier, for instance,
by Weiss et al. [26]),

—Z,/Ry, for
—Z,/r for

r < Ry,
r > Ry,

Vi (r) = { )
which is smaller than the electrostatic potential for
r> Ry, (see the dashed curve in Figure 3). Z; is the
charge of the central ion, and Ry, is the so-called
Watson radius, which is defined here by matching the
spherically averaged Madelung potential V with V, in
the core region. The corresponding Watson radii are
given in Table 1. We note that there is no simple rela-
tion between the ionic radii and the Watson radii;

Table 1.

Inequiv. ions Standard Watson sphere: Madelung
(coordination ion radius  radii* in a, potentials *
no. in parenth.) in a, (its charge in |e|) ineV

2 Lit*, (4) 1.11 2.12-2.14,(—1) 12.76 £ 0.06
Be*2, (4) 0.51 217, (=2) 2513
4F7,(3) 245 1.88-191,(+1) 1431 +0.1

* Slightly different potentials and radii for the nonequivalent
crystallographic positions.
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the ionic radii depend on the respective ions them-
selves, whereas the Watson radii are determined by the
Madelung potential of the surrounding charge lattice.

4. Correlated Wavefunctions of Atoms and Ions
in Spherical Potentials

The atomic-density and form-factor calculations
were performed by the basis-set expansion method
using Cartesian Gaussians. According to the literature
[16], up to f-functions are needed to obtain accurate
correlated densities. For beryllium we used the
[8s 5p 2d 1f] basis given in [17] and augmented it by
a p- ((=12.5) and a d-function ({=2.0), yielding an
[8s 6p 3d 1f] basis. The fluorine basis was taken from
[18], but contracted as [4221...] and augmented by a
diffuse d-function ({=0.1) yielding an [8s 8p 5d 2f]
basis. For lithium, where the L-shell correlation is
weak, the basis of [19] was reduced by the most diffuse
d-function ({=0.045) and all f-functions, leaving an
[11s 11 p 7d] basis in the contraction scheme [311...].
Six-component d-functions and ten-component f-func-
tions were used throughout. The decision to add or
delete specific functions was based on the magnitude
or smallness of the numerical changes observed in the
correlated atomic form factors finally obtained.

The atomic wavefunctions of Li, Be, F and their
ions were calculated by means of ab-initio SCF and CI
methods, using the MRD-CI (multi-reference double-
excitation configuration-mixing) program package of
Buenker and Peyerimhoff [20]. Since the programs
can only handle the largest Abelian subgroup of the
full-symmetry group, special care had to be exercised
to ensure that the resulting one-particle basis for the
configuration-mixing treatment is adapted to spheri-
cal symmetry. All calculations started from a Hartree-
Fock (SCF) calculation for the corresponding closed-
shell system (F~, Be, Be**, Li*).

The SCF orbitals thus obtained were used to gener-
ate symmetry-adapted natural orbitals (NOs) from
the density matrix of a singles—doubles CI for the atom
or ion under consideration. According to [16, 21],
triple and quadruple excitations do not seem negli-
gible especially in the cases of Be and F~. Therefore
MR-CI calculations have been performed for these
two species, whereas only a single main configuration
was used as the reference in the SD-CI calculations of
Li*, Li, Be** and F. Configurations with weight
(squared coefficient) > 0.005 were included in the refer-

ence set. In the cases of Be and F 7, the configuration-
reference spaces consisted of 1s22s? 1s22p?
1s>2p3pand of 1s*2s22p®, 15%2s22p*3p?, respec-
tively. For both fluorine systems, F® and F~, the CI
could not be carried out in full because of limitations
of the program, and an energy selection threshold of
10”7 a.u. was employed in a configuration selection
procedure. The NOs obtained were used, in turn, as the
one-particle basis for an improved MR-SD-CI. This
iterative NO step was repeated once, and from the final
one-particle density matrix the radial densities and
form factors were calculated.

The SCF energies are near the Hartree-Fock limit
(within the order of meV for the Li and Be systems,
and within 0.1 eV for F and F 7). In the cases of F and
F~, 90% of the correlation energies were recovered
[21], 95% for Be and even more for Be*, Li and Li*.

5. Form Factors and Radial Densities
Accuracy

The coherent elastic X-ray scattering form factor f
is the Fourier transform of the one-particle density g,
which is easily obtained from the spherically averaged
one-particle density matrix or the corresponding Nat-
ural Orbitals and their fractional occupation numbers
[22]. The Fourier transforms of the corresponding
GTO expansions were determined analytically using
the approaches given in [23]. At the SCF level, the
finite basis sets resulted in errors of f of ~10~* e (Li)
to ~107 3¢ (F), ie. ~0.01% in the range of sin 6/4
<1A~', as compared to the standard atomic form
factors for atoms and ions given in the International
Tables [11]. From a comparison with very accurate
correlated form factors of the free atoms and ions of Li
and Be [16, 22, 24], we estimate our error to be below
0.1%, but up to slightly more than 0.1% for some
small values of sin 6/4 <04 A~!. These errors are
mainly due to the limitation of the one-particle basis,
which contains only a few functions of higher angular
momentum. Since correlation corrections to f are in
the percent-range, they are correctly recovered at the
semiquantitative level. In an early paper by Tanaka
and Sasaki [25], however, where 60 to 90% of the
L-shell correlation energy were recovered for different
atoms and ions only, significantly less than 50% of
the correlation correction to f in the interesting low
sin 0/ range had apparently been obtained. Concern-
ing o, we may use the very accurate results of Esquivel
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Fig. 4. Change of atomic/ionic form factors owing to elec-
tron correlation (CI minus SCF results), 4°”f(vac), for Be
(—) and for F~ (——-) in vacuum.

et al. [16] on Li° Be® and Ne° as reference (note that
there is an inconsistency of a factor of 47 in the data
of [16]). Then the present accuracy for g seems to be
similar to that of f, namely of the order of several
0.01% at the SCF level and about 0.1% for the corre-
lated densities in the r-range <5 A.

Correlation Effects

In Fig. 4 we present the influence of correlation on
the form factors of free Be® (similar to that of [16, 22])
and free F~'. The correlation effects in Li** and Be*?
with a rather stiff K-shell, and also in Li° are by more
than one order of magnitude smaller [16, 24]. The
largest A4°°"f-value of Be at sin 6/4 =0.12 A1
+0.034 or 1.2%. The 4°°"f curve corresponds to the
density decrease in the outer range of the valence shell
(2—4 a,) and in the core (~0.3 a,), and to the density
increase in the inner region of the valence shell
around 1a, (see Figure 5). The correlation effects in
1522s22p® F~ are quite different from those of
152252 Be®. The dashed curve in Fig. 4 exhibits two
pronounced extrema, a minimum at sin §/4 =0.17 A1
(4°°"f = —0.056 ~ —0.8%) and a maximum at sin 6/4
=0.55 A1 (4°"f= +0.021 ~ +0.8%). The tendency
of the electrons to avoid each other results in a dom-
inant s?>—p? angular correlation in Be, combined with
a radial compression of the valence density, whereas in
F~ there is a dominant radial correlation resulting in
a flattening of the radial L-shell maximum. Owing to
correlation, the density of F~ increases in the outer
part of the valence shell (r > 1.5 a,) and in the core

Fig. 5. Change of radial density D = 4nr? g owing to electron
correlation (CI minus SCF results), 4°° D (vac), for Be (——)
and for F~ (———-) in vacuum.

e
sinf/\ 2

O

sing/x  2A7!

Fig. 6. a) Difference of form factors of atoms and their ions,
A“’“f (corr vac) (C1 results in vacuum). Li°>-Li*: —;
1(Be®-Be*?): —-—- - ; F—F% ———. b) Difference of form
actors of ions in vacuum and in Watson potential A f (corr)
(CI results). —— —: F~; ——: Be*? (in an artificially increased
Watson potentlal with Rw/2 instead of Ry; otherwise no
effect would be visible).

region (r < 0.4 a,) and decreases in the inner valence
shell (r ~ 0.8 a,), see Figure 5. The qualitative differ-
ence between Be and Ne has also been noted, for
instance, by Esquivel and Bunge [16].

Ionic Effects

In Fig. 6a we present the form-factor difference be-
tween the atoms and the free ions at the CI level. They
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Fig. 7. Change of charge density distribution upon formation of a negative fluorine ion, 4°"¢. a) F~ (in vacuum) — F°.

b) F~ (in Watson potential) — F°.
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Fig. 8. a) Form factor f (CI results) of F® (——), F~ in vacuum (- - - - - ) and F~ in a Watson potential (— ——). For sin 6/4
>0.5A"!, the differences are very small. b) Form factors f of the F~ ion: ——— SCF, in vacuum; —- —- - correlated, in
vacuum; SCF, in Watson potential; - - - - correlated, in Watson potential.

do not differ qualitatively from the corresponding
Hartree-Fock approximation as given in the Interna-
tional Tables [11]. The ionic effects are also only im-
portant for sin /2 <03 A~!. The density change
upon the negative-ion formation of fluorine is shown
in Figure 7. The free F~ has a diffuse, extended density
of the excess electron between r=2a, and r> R
=13A=245aq,.

ion

Crystal-Field Effects

The charge distribution of F~ is compressed by the
external Watson potential. The influence on the form
factors had already been investigated at the Hartree-
Fock level of approximation by Suzuki and by Weiss
et al. [26] and by others (compare, e.g., Schwarz et al.
[27]). In Fig. 8a we present our CI results for neutral
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Fig. 9. A4f for F~, see text and diagram 2.

F°, for the free F ~ ion, and for the F ~ ion in a Watson
potential. The modification of the correlated form
factor of F~ by the Watson potential is displayed in
Figure 6b. A maximum of 4°*f=0.16 ~22% is
found at sin 6/4 = 0.19 A~ . For the cations, the Wat-
son-potential effects are, of course, of opposite sign,
and they are negligibly small (see Figure 6b). The crys-
tal-field effects on F~ are partially canceled by elec-
tron correlation. Therefore the difference between the
restricted-Hartree-Fock result and the correlated F~
in the Watson potential (———and - - - - in Fig. 8b) is
small. The same may be expected for all halides X!,
but not for the chalcogenides Y ~2 and pnictides Z 3.

Cross Effects

In Fig. 8b we compare the form factors of F~ in
vacuum and in a Watson potential, at the SCF and CI
levels. The distances between pairs of curves vary in
different manners, i.e. the correlation and Watson-
potential effects on f are not additive (contrary to
what might have been expected from perturbation
theory for small individual effects): (4a)

A4°° f (vac) + 4P f (corr) = 4°°" f (pot) + 4P f(SCF)
but
Acorrf(pot) _ Acorrf(vac)

= 47'f (corr) — 4%f(SCF) = 44f+0, (4b)
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where the symbols are explained in diagram 2. The
nonadditivity (44f) for F~ is shown in Figure 9. 44f
has a deep minimum at sin /4 = 0.13 A~! of about
0.3% (—0.026 e), whereas the correlation and Watson-
potential effects individually amount to up to ~1 and
~ 2%, respectively, of the total f values.

Diagram 2
SCF-ion 47 fseh SCF-ion in
in vacuum Watson potential
1
A% f (vac) «— AAf — A% f (pot)
(Fig. 4) i
correlated w correlated ion in

ion in vacuum Watson potential

6. Atomic Charges in Ionic Compounds

With reliable and accurate atomic and ionic densi-
ties at hand, we will first compare the densities of
atomic and ionic procrystals. As representative exam-
ples we choose the diamond structure with an inter-
atomic distance of 1.54 A, and the face-centred cubic
LiF structure with an interionic distance of 2.01 A.
The electronic probability-density distributions of the
corresponding atomic procrystals are shown in Fig-
ure 10.

Atoms with partially filled valence shells and good
overlap possibilities such as the carbon atom will form
strong covalent bonds; simultaneously they will ex-
hibit a significant density between the atoms. The den-
sity on the bond paths in the atomic procrystal of
diamond (Fig. 10a) is >1.2 ¢/A3. In the real crystal,
the density on the bond paths is enhanced further to
> 1.9 ¢/A3 owing to covalent bond formation [28].

If the partially filled valence shells are very diffuse
(as the ns AOs of the alkali or alkaline earth atoms) or
very compact (as the 3d or 4f AOs of the first transi-
tion-metal series or the lanthanides), they cannot
overlap well, and density enhancement on the bond
path owing to quantum mechanical interference will
not occur. If one atom has a loosely bound electron in
a diffuse valence orbital and the other atom is strongly
electronegative, the atoms will undergo ionic bond-
ing; simultaneously no significant density nor density
enhancement is to be expected between the atoms. In
Fig. 10b the superimposed CI-densities of Li and F
atoms of an atomic [LiF] procrystal are shown, with



188

Diamond procrystal
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LiF procrystal

Li

F

Li

Fig. 10. Electron probability density in a plane through atomic procrystals. a) Diamond [C atom procrgstal], contour-line
values are 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 e/A3; the lowest density between two bonded atoms is 1.2 e/A3. b) [Li°F] (superimposed
independent atoms), contour-line values are 0.1, 0.2, 0.3,0.4, 0.5, 1.0, 1.5, 2.0, 2.5 e/A3; the density between two adjacent atoms
drops below 0.2 e/A3. The atoms are separated by the minimal-density surface (zero-flux surface of Bader [3]), —- —- — . The

dotted circles (- - - -) indicate the standard ionic radii.

the electron density between the atoms as low as 0.1
to 0.2 e/A3. Density deformations upon bond forma-
tion are similarly small [7, 29], 0.1 ¢/A? on Li—F and
0.2¢/A% on Be-F (to be interpreted either as ionic
polarization or as atomic covalency). Note the causal
relations as represented by the arrows in Diagram 3.

Diagram 3

covalent bonding

ionic bonding

atomic procrystal diffuse orbital atomic procrys-

good different from on atom A, tal similar to
overlap ionic procrystal electronegative ionic procrystal
atom X

significant
density on bond

low density
between atoms

In Fig. 11 we compare atomic and ionic procrystals
of [LiF], using the standard Hartree-Fock approxima-
tion for the free atoms and ions (Fig. 11 a), correlation-
corrected densities (Fig. 11b), and ionic densities in
Watson potentials (Figure 11 c). In the ionic procrystal
there is only a very small positive charge density on
the Li*, and also in the region between the ions and
even in the outer region of the F ~-valence shell. A low
negative charge density is found near the F nucleus.
Accordingly, the excess charge within the minimal-
density surface (—- — in Fig. 11c) with respect to the

overlapping atoms, which can be attributed to the
ions, is significantly smaller than +1e, namely + 0.6 ¢
at the SCF level and only +0.2 e at the CI level (it is
rather common that electron correlation smoothens
charge oscillations). Since the crystal field stabilizes
electrons on the negative ions and destabilizes elec-
trons on the positive ions, the effective charges in a
procrystal of ions in Watson potentials are again a
little larger, namely +0.4 e. The experimental excess
charge densities on F (difference density with respect
to the atomic procrystal) in Li,BeF, are even smaller
(<0.06 ¢/A3), yielding an excess charge (Hirshfeld
charge) of only 0.09 e on F [29].

The so-called spherical electron count function
N,(R) of atom A at position R, [27],

NA (R) =

2

R
j. 4nr*dr-g(r,) with r=|R,—r., (5
o

shown in Fig. 12 for Li and F in the [LiF] procrystals,
demonstrates how similar the charge distributions in
atomic and ionic procrystals are, as already men-
tioned in the introduction (Figure 1). Within the radius
of R, =2.5a, (corresponding to minimal radial
charge density [27]) the electron numbers of fluorine
are 9.85¢ in [Li*F~] and 9.6 € in [Li°F°]; those of
lithiumat R ;, = 1.5a,are 203 einLi"F ]and 2.10 e
in [Li°F°).

min
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Our improved atomic and ionic form factors have
been used by Seiler [29] to analyse his very accurate
X-ray diffraction intensities of Li,BeF, (6345 unique
reflections up to sin §/A=1.36 A~1). Using the approach
of comparison with atomic and ionic procrystals, (2)
[7, 8], he obtained the following unexpectedly low
charges: Li;%-2°Be*?-3°F;%-2°. Atomic partial charges
obtained with the standard form factors (restricted
Hartree-Fock, ions in vacuum [11]) are still smaller:
Li}018Be*0-3°F 019, Partitioning the total experi-
mental density distribution according to Hirshfeld’s
stockholder method [5] with respect to the present atomic
densities yields even lower charges: Li%%-1°Be*?-16F ;%%
It looks reasonable that half a Be carries the same or
slightly less charge than Li or F.

Li*%-25F 925 a5 determined by Seiler [29] from ex-
periment using (2), means that the charge distribution
on Li and F in the Li,BeF, crystal is well approximated
by 1/4 [Li*F~] + 3/4 [Li°F°] procrystals. The [Li*F ]
procrystal (correlated ions in Watson potentials) has
~ +0.4 electrons on the ions with respect to [Li°F°]
(see above) corresponding to charges of +0.1 ¢ for
1/4 [Li*F~]. LiF cannot be compared directly with
Li,BeF,: On the one hand, the coordination numbers
(CN)in Li,BeF, are smaller and Be is less diffuse than
Li, both reducing the overlap charge-transfer. On the
other hand, the interatomic distances in Li,BeF, are
comparatively short (corresponding to the lower CN),
thus raising the overlap charge-transfer. In any case,
the aforementioned +0.1 e are just the excess charge
obtained for Li,BeF, with Hirshfeld’s partitioning
approach [29] (see above), where neutral atoms, too,
were used as stockholders. However, the observable
data may equivalently be interpreted by choosing an
ionic [Li*'F~!] procrystal as reference: real Li,BeF,
with a density contribution of 3/4 [Li°F°] has charges
smaller by 2 - (+0.4 €) = + 0.3 e on the ions relative to
the [Li*F~!] procrystal, and one might speak of ionic
charges of +0.7e.

a
<

Fig. 11. Charge density differences between [LiF] procrystals
from atoms and from ions. Contour-line values are 0 (bold
line), +0.01, +£0.02, +0.03, +0.04, +0.05, +0.1, +0.15,
+0.2, +0.25¢/A%. Negative values (dashed lines) indicate
more negative electronic charge density in [Li*F~] than in
[Li°F°). a) SCF: Hartree-Fock atoms and ions. b) CI: atomic
and ionic densities corrected for electron correlation. c) CI
(Watson): dito, but ions in Watson potentials. — - —- — indi-
cates the minimal-density surface between the atoms, the
dotted circles (- - - - - ) indicate the standard ionic radii.
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Fig. 12. Electron count functions N, (R) around Li (a) and F (b) in [LiF] procrystals (number of electrons in a sphere of radius
R (in a,) around the nucleus). —— for ionic procrystal, — — — for atomic procrystal. The vertical lines indicate the R, ; -values
of the minimal radial charge densities around the respective nuclei. The ionic radii R; are also given.

7. Discussion, Conclusions and Summary

If the valence shells of atoms in molecules or crys-
tals are non-diffuse (significantly overlapping and
forming covalent bonds), homopolar-atomic and
heteropolar-ionic charge distributions will be easily
distinguishable. Even in this case, partial charges g on
the atoms may be controversial. For CO, for instance,
q is 0.1 to 0.4 according to the approach of Hirshfeld
[5], Mulliken [4] or Pauling [30] (where atomic point
charges are used to simulate the effects of the charge
distribution @), whereas Bader [3] gives g =1.35
(assuming implicitly a multipolar expansion for the
atoms).

The situation is even more involved for ionic com-
pounds AX with large CN and the electropositive
component A having an extended valence shell. It is
not evident, which partial charges should be assigned to
an overlapping atomic procrystal A°X° (cf. [29]), since
charge overlap of A® with X° may complementarily be
interpreted as charge transfer from A* to X~ (Fig-
ure 1). Let us simulate the real charge distribution as

Qax X P Qa+x-1(v)) + (1—p) Oraoxoy (V) 5 (6)

where p is the “ionic” mixing parameter, and v;, v, are
parameters monitoring the effective potentials in
which the “independent” ions and atoms of the crystal
are calculated.

Schwarz et al. [27] have shown that, by setting p=1
(assumption of integer ionic charges) and v, = 0 (atoms
A° and X° in vacuum), one can find a v, (i.e. modified

Watson radii Ry, for the ions) such that
Oax X Q[A+x-1(Vi) * Q[ono](va =0). (7)

In general the optimum Ry, that simulates the crystal
potential and the overlap compression is larger than
the Ry corresponding to the Madelung potential. Seiler
and Dunitz [7, 29] have shown that, by setting v, =0
and either v; = 0 (restricted SCF ions in vacuum) or
v; = vy (correlated ions in Madelung potential), that is
with the assumption of predefined atoms and ions hav-
ing charge zero and +e, respectively, in the two very
similar procrystals, one can find p-values so that g,y
is well approximated by (6). We may expect that g,y
can also be approximated by setting p = 0 and adjust-
ing v,, the effective potential for atoms in the crystal,
to yield

0ax X Qaoxo(Vy) F 0a+x- (Vi = VM) - (®)

It should be stated clearly that the finding of Schwarz
(i.e. (7)) is no argument against the fact that one cannot
distinguish uniquely between charge overlap and
charge transfer. So, we should remember four points.
First, individual atomic charges are not properties
uniquely given by nature (and in this respect they
cannot be measured), but they are useful and essential
concepts that “serve the purpose of summarizing in-
formation on electron density distributions in a
lapidary though simplifying way” [31] (and in this
respect they can be extracted from measurement).
Second, the 3 parameters in (6) are redundant. One
may either (a) assume that the constituents of the matter
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under discussion are ions with integral charges (p=1);
then the ions must be compressed and polarized ap-
propriately (as, e.g. in [27, 32]). Or one may (b) assume
that the constituents are atoms (p=0); then the atoms
must also be deformed appropriately (this can be
achieved in the multipole refinement approach [33]).
Or one may (c) predefine atoms and ions and then
determine the charge transfer parameter p in (6) [7, 8,
29]; then one must explain the physico-chemical mean-
ing of this p. Defining the atomic charges in [Li*F ] to
be +1, and in overlapping [Li°F°] to be 0, exaggerates
the observable charge transfer from [Li°F°] to [Li*F~]
of about 0.4 e by definition to the integer value of 1e.
Then the experimental charges become + p.

If one does not want to exaggerate the charge trans-
fer, one may define the atomic procrystal [A°X°] of an
“ionic” compound AX with significantly overlapping,
diffuse constituents to have zero atomic charges. With
this assumption (b), as, e.g., in [5, 34], one chooses an
“atomic” viewpoint, and the atomic charges remain
small (+0.1e for Li, F in the Li,BeF, crystal, or
+0.3 e to +0.6 e for the LiF molecule [34]). However,
in order to accord with the traditional charge scales
of chemistry or solid-state physics [4, 30], one must
choose assumption (a) that the ionic procrystal [A*X ]
has integer charges. From this “ionic” viewpoint, Li
and F in Li,BeF, obtain “experimental” charges of
+0.7 e. The formal reason for this situation is that a
covalent and an ionic wavefunction are far from being
orthogonal, but are rather similar, comparable to the
similarity of an MO and a VB function.

Third, in order to determine p in (6), reliable values
of atomic and ionic densities in real and reciprocal
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